
HAL Id: hal-01578441
https://inria.hal.science/hal-01578441

Submitted on 29 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multilevel Modeling with Structured Penalties for
Classification from Imaging Genetics data

Pascal Lu, Olivier Colliot

To cite this version:
Pascal Lu, Olivier Colliot. Multilevel Modeling with Structured Penalties for Classification from
Imaging Genetics data. 3rd MICCAI Workshop on Imaging Genetics (MICGen 2017), Sep 2017,
Québec City, Canada. pp.230-240. �hal-01578441�

https://inria.hal.science/hal-01578441
https://hal.archives-ouvertes.fr


Multilevel Modeling with Structured Penalties
for Classification from Imaging Genetics data

Pascal Lu1,2(B), Olivier Colliot1,2, and
the Alzheimer’s Disease Neuroimaging Initiative

1. Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du
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Abstract. In this paper, we propose a framework for automatic classi-
fication of patients from multimodal genetic and brain imaging data by
optimally combining them. Additive models with unadapted penalties
(such as the classical group lasso penalty or `1-multiple kernel learning)
treat all modalities in the same manner and can result in undesirable
elimination of specific modalities when their contributions are unbal-
anced. To overcome this limitation, we introduce a multilevel model that
combines imaging and genetics and that considers joint effects between
these two modalities for diagnosis prediction. Furthermore, we propose
a framework allowing to combine several penalties taking into account
the structure of the different types of data, such as a group lasso penalty
over the genetic modality and a `2-penalty on imaging modalities. Fi-
nally, we propose a fast optimization algorithm, based on a proximal
gradient method. The model has been evaluated on genetic (single nu-
cleotide polymorphisms - SNP) and imaging (anatomical MRI measures)
data from the ADNI database, and compared to additive models [13,15].
It exhibits good performances in AD diagnosis; and at the same time,
reveals relationships between genes, brain regions and the disease status.

1 Introduction

The research area of imaging genetics studies the association between genetic
and brain imaging data [8]. A large number of papers studied the relationship
between genetic and neuroimaging data by considering that a phenotype can
be explained by a sum of effects from genetic variants. These multivariate ap-
proaches use partial least squares [16], sparse canonical correlation analysis [17],
sparse regularized linear regression with a `1-penalty [10], group lasso penalty
[12,11], or Bayesian model that links genetic variants to imaging regions and
imaging regions to the disease status [9].

But another interesting problem is about combining genetic and neuroimag-
ing data for automatic classification of patients. In particular, machine learning
methods have been used to build predictors for heterogeneous data, coming
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from different modalities for brain disease diagnosis, such as Alzheimer’s disease
(AD) diagnosis. However, challenging issues are high-dimensional data, small
number of observations, the heterogeneous nature of data, and the weight for
each modality.

A framework that is commonly used to combine heterogeneous data is multi-
ple kernel learning (MKL) [6]. In MKL, each modality is represented by a kernel
(usually a linear kernel). The decision function and weights for the kernel are
simultaneously learnt. Moreover, the group lasso [2,3] is a way to integrate struc-
ture inside data. However, the standard `1-MKL and group lasso may eliminate
modalities that have a weak contribution. In particular, for AD, imaging data
already provides good results for its diagnosis. To overcome this problem, differ-
ent papers have proposed to use a `1,p-penalty [7] to combine optimally different
modalities [13,14].

These approaches do not consider potential effects between genetic and imag-
ing data for diagnosis prediction, as they only capture brain regions and SNPs
separately taken. Moreover, they put on the same level genetic and imaging
data, although these data do not provide the same type of information: given
only APOE genotyping, subjects can be classified according to their risk to de-
velop AD in the future; on the contrary, imaging data provides a photography
of the subject’s state at the present time.

Thereby, we propose a new framework that makes hierarchical the parameters
and considers interactions between genetic and imaging data for AD diagnosis.
We started with the idea that learning AD diagnosis from imaging data already
provides good results. Then, we considered that the decision function parame-
ters learnt from imaging data could be modulated, depending on each subject’s
genetic data. In other words, genes would express themselves through these pa-
rameters. Considering a linear regression that links these parameters and the
genetic data, it leads to a multilevel model between imaging and genetics. Our
method also proposes potential relations between genetic and imaging variables,
if both of them are simultaneously related to AD. This approach is different
from the modeling proposed by [9], where imaging variables are predicted from
genetic variables, and diagnosis is predicted from imaging variables.

Furthermore, current approaches [13,14,15] do not exploit data structure in-
side each modality, as it is logical to group SNPs by genes, to expect sparsity
between genes (all genes are not linked to AD) and to enforce a smooth regular-
ization over brain regions for imaging modality. Thus, we have imposed specific
penalties for each modality by using a `2-penalty on the imaging modality, and a
group lasso penalty over the genetic modality. It models the mapping of variants
into genes, providing a better understanding of the role of genes in AD.

To learn all the decision function parameters, a fast optimization algorithm,
based on a proximal gradient method, has been developed. Finally, we have
evaluated our model on 1,107 genetic (SNP) and 114 imaging (anatomical MRI
measures) variables from the ADNI database1 and compared it to additive mod-
els [13,15].

1 http://adni.loni.usc.edu

http://adni.loni.usc.edu
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2 Model set-up

2.1 Multilevel Logistic Regression with Structured Penalties

Let {(xkG ,xkI , yk), k = 1, . . . , N} be a set of labeled data, with xkG ∈ R|G| (genetic

data), and xkI ∈ R|I| (imaging data) and yk ∈ {0, 1} (diagnosis). Genetic, imag-
ing and genetic-imaging cross products training data are assumed centered and
normalized.

We propose the following Multilevel Logistic Regression model:

p(y = 1|xG ,xI) = σ
(
α(xG)>xI + α0(xG)

)
with σ : x 7→ 1

1 + e−x

where α0(xG) is the intercept and α(xG) ∈ R|I| is the parameter vector. On
the contrary of the classical logistic regression model, we propose a multilevel
model, for which the parameter vector α(xG) and the intercept α0(xG) depend
on genetic data xG .

This is to be compared to an additive model, where the diagnosis is directly
deduced from genetic and imaging data put at the same level. We assume that
α and α0 are affine functions of genetic data xG :

α(xG) = WxG + βI and α0(xG) = β>G xG + β0

where W ∈ M|I|,|G|(R), βI ∈ R|I|, βG ∈ R|G| and β0 ∈ R. Therefore, the

probability becomes p(y = 1|xG ,xI) = σ
(
x>GW

>xI + β>I xI + β>G xG + β0

)
.

Figure 1 summarizes the relations between parameters.

y

α(xG) xI
α0(xG)

β0 βG xG βI W

Fig. 1. The disease status y is predicted from imaging data xI and the parameters
β0(xG),β(xG) (which are computed from genetic data xG)
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The parameters W,βI ,βG , β0 are obtained by minimizing the objective:

S(W,βI ,βG , β0) = RN (W,βI ,βG , β0) +Ω(W,βI ,βG)

with RN (W,βI ,βG , β0) =
1

N

N∑
k=1

{
−yk

(
(xkG)

>
W>xkI + β>I x

k
I + β>G x

k
G + β0

)
+ log

(
1 + e(x

k
G)>W>xk

I+β>
I xk

I+β>
G xk

G+β0

)}
and Ω(W,βI ,βG) = λWΩW (W) + λIΩI(βI) + λGΩG(βG)

ΩW , ΩI , ΩG are respectively the penalties for W, βI , βG , whereas λW > 0,
λI > 0, λG > 0 are respectively the regularization parameters for ΩW , ΩI , ΩG .

Genetic data are a sequence of single-polymorphism nucleotides (SNP) counted
by minor allele. A SNP can belong (or not) to one gene ` (or more) and there-
fore participate in the production of proteins that interact inside pathways. We
decided to group SNPs by genes, and designed a penalty to enforce sparsity
between genes and regularity inside genes. Given that some SNPs may belong
to multiple genes, the group lasso with overlap penalty [4] is more suitable,
with genes as groups. To deal with this penalty, an overlap expansion is per-
formed. Given x ∈ R|G| a subject’s feature vector, a new feature vector is created

x̃ =
(
x>G1 , . . . ,x

>
GL
)> ∈ R

∑L
`=1 |G`|, defined by the concatenation of copies of the

genetic data restricted by group G`. Similarly, the same expansion is performed

on βG ,W to obtain β̃G ∈ R
∑L

`=1 |G`| and W̃ ∈ R|I|×(
∑L

`=1 |G`|). This group lasso
with overlap penalty is used for the matrix W and for βG .

For imaging variables, the ridge penalty is considered: ΩI(βI) = ‖βI‖
2
2. In

particular, brain diseases usually have a diffuse anatomical pattern of alteration
throughout the brain and therefore, regularity is usually required for the imaging
parameter. Finally, Ω is defined by:

Ω
(
W̃, β̃G ,βI

)
= λW

|I|∑
i=1

L∑
`=1

θG`

∥∥∥W̃i,G`

∥∥∥
2

+ λI

∥∥∥β̃I∥∥∥
2

+ λG

L∑
`=1

θG`

∥∥∥β̃G`∥∥∥2
2.2 Minimization of S(W, βI , βI , β0)

From now on, and for simplicity reasons, W̃, β̃ and x̃ are respectively denoted
as W, β and x. Let Φ be the function that reshapes a matrix of M|I|,|G|(R) to

a vector of R|I|×|G| (i.e. Wi,g = Φ(W)i|G|+g):

Φ : W 7→ ((W1,1, . . . ,W1,|G|), . . . , (W|I|,1, . . . ,W|I|,|G|))

We will estimate Φ(W) and then reshape it to obtain W. The algorithm
developed is based on a proximal gradient method [1,5].
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The parameters w(t+1) =
(
Φ
(
W(t+1)

)
,β

(t+1)
I ,β

(t+1)
G , β

(t+1)
0

)
are updated

with:

w(t+1) = argmin
w

RN (w) +
[
w −w(t)

]>
∇RN

(
w(t)

)
+

1

2ε

∥∥∥w −w(t)
∥∥∥2
2

+Ω(w)

= argmin
w

{
1

2

∥∥∥ω(t) −w(t)
∥∥∥2
2

+ εΩ(w)

}
with ω(t) = w(t) − ε∇RN

(
w(t)

)
The idea is to update w(t+1) from w(t) with a Newton-type algorithm without

the constraint Ω given a stepsize ε, and then to project the result onto the
compact set defined by Ω. Regarding the stepsize ε, a backtracking line search

[5] is performed. Let Ĝ
(
w(t), ε

)
=

1

ε

[
w(t) −w(t+1)

]
be the step in the proximal

gradient update. A line search is performed over ε until the inequality is reached:

RN

(
w(t+1)

)
≤ RN

(
w(t)

)
− ε∇RN

(
w(t)

)>
Ĝ
(
w(t), ε

)
+
ε

2

∥∥∥Ĝ(w(t), ε
)∥∥∥2

2

The minimization algorithm stops when
∣∣∣S (w(t+1)

)
− S

(
w(t)

)∣∣∣ ≤ η ∣∣∣S (w(t)
)∣∣∣,

where η = 10−5. The whole algorithm is summarized below:

Algorithm 1: Training the multilevel logistic regression

1 Input: {(xk
I ,x

k
G , y

k), k = 1, . . . , N}, δ = 0.8, ε0 = 1, η = 10−5 ;
2 Initialization: W = 0, βI = 0, βG = 0, β0 = 0 and continue = True ;
3 while continue do
4 ε = ε0;

5 RN = RN

(
W,βI ,βG , β0

)
;

6 ∇RN =
1

N

N∑
k=1


Φ
(

(xk
I)
>
xk
G

)
xk
I

xk
G
1

[σ ((xk
G)
>
W>xk

I + β>I x
k
I + β>G x

k
G + β0

)
− yk

]

7

(
Ŵ, β̂I , β̂G , β̂0, Ĝ

)
= Algo 2(W,βI ,βG , β0,∇RN , ε);

8 while RN

(
Ŵ, β̂I , β̂G , β̂0

)
> RN − ε∇R>N Ĝ+

ε

2
‖Ĝ‖22 do

9 ε = δε and
(
Ŵ, β̂I , β̂G , β̂0, Ĝ

)
= Algo 2(W,βI ,βG , β0,∇RN , ε);

10 end

11 continue =
∣∣∣S (Ŵ, β̂I , β̂G , β̂0

)
− S

(
W,βI ,βG , β0

)∣∣∣ ?
>η

∣∣S (W,βI ,βG , β0
)∣∣

12 W = Ŵ, βI = β̂I , βG = β̂G , β0 = β̂0;

13 end

14 return
(
W,βI ,βG , β0

)
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Algorithm 2: Parameter update

1 Input: (W,βI ,βG , β0) (parameters), ∇RN (gradient), ε (stepsize) ;
2 Compute ω = β − ε∇(W,βI ,βG)RN ;

3 Update ŴG`,i = max

0, 1− ελGθG`∥∥∥ω(t)

G`+i|G|

∥∥∥
2

ωG`+i|G| for (i, `) ∈ J1, |I|K× J1, LK ;

4 Update β̂I =
ωI+|G||I|
1 + 2ελI

(imaging modality) ;

5 Update β̂G` = max

0, 1− ελGθG`∥∥∥ω(t)

G`+(|G|+1)|I|

∥∥∥
2

ωG`+(|G|+1)|I| for ` ∈ J1, LK ;

6 Update β̂0 = β0 − ε
∂RN

∂β0
and Ĝ =

1

ε



Φ(W)
βI
βG
β0

−

Φ(Ŵ)

β̂I
β̂G
β̂0


 ;

7 return
(
Ŵ, β̂I , β̂G , β̂0, Ĝ

)

3 Experimental results

3.1 Dataset

The ADNI1 GWAS dataset from ADNI studied 707 subjects, with 156 Alzheimer’s
Disease patients (denoted AD), 196 MCI patients at baseline who progressed to
AD (denoted pMCI, as progressive MCI), 150 MCI patients who remain stable
(denoted sMCI, as stable MCI) and 201 healthy control subjects (denoted CN).

In ADNI1 GWAS dataset, 620,901 SNPs have been genotyped, but we se-
lected 1,107 SNPs based on the 44 first top genes related to AD (from AlzGene2)
and on the Illumina annotation using the Genome build 36.2. Group weighting

for genes is based on gene size: for group G`, the weight θG` =
√
|G`| ensures

that the penalty term is of the order of the number of parameters of the group.
The parameter λG influences the number of groups that are selected by the

model. In particular, the group G` enters in the model during the first iteration if∥∥∥∇βG`
RN (0)

∥∥∥
2
> λGθG` . This inequality gives an upper bound for λG . The same

remark can be done for λW . Regarding MRI modality, we used the segmentation
of FreeSurfer which gives the volume of subcortical regions (44 features) and the
average cortical region thickness (70 features). Therefore, there are 1, 107×114 =
126, 198 parameters to infer for W, 114 parameters for βI and 1, 107 parameters
for βG .

3.2 Results

We ran our multilevel model and compared it to the logistic regression applied
to one single modality with simple penalties (lasso, group lasso, ridge), to ad-

2 http://www.alzgene.org

http://www.alzgene.org
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ditive models ([13], [15] EasyMKL with a linear kernel for each modality, and

the model p(y = 1|xG ,xI) = σ
(
β>I xI + β>G xG + β0

)
with our algorithm under

the constraint βG 6= 0), and to the multiplicative model with W only, where

p(y = 1|xG ,xI) = σ
(
x>GW

>xI + β0
)
. We considered two classification tasks:

“AD versus CN” and “pMCI versus CN”. Four measures are used: the sensitiv-
ity (Sen), the specificity (Spe), the precision (Pre) and the balanced accuracy
between the sensitivity and the specificity (BAcc). A 10-fold cross validation is
performed. The parameters λW , λI , λG are optimised between [10−3, 1]. Classi-
fication results for these tasks are shown on table 1. It typically takes between
5 and 8 minutes to learn the parameters.

Table 1. Classification results for different modalities and methods

AD versus CN (%)
Modality Method & Penalty Sen Spe Pre BAcc
SNPs only logistic regression (lasso `1) 69.4 77.5 71.1 73.4

SNPs grouped by genes logistic regression (group lasso) 69.4 77.5 71.1 73.4
MRI (cortical) logistic regression (ridge `2) 84.4 89.5 87.1 86.9

MRI (subcortical) logistic regression (ridge `2) 80.0 86.0 83.2 83.0
SNP + MRI (all) [15] EasyMKL, Aiolli et al. 89.4 85.0 83.0 87.2
SNP + MRI (all) [13] Wang et al. 89.4 88.0 85.7 88.7
SNP + MRI (all) additive model (βI ,βG only) 88.8 89.5 87.6 89.1
SNP + MRI (all) multiplicative model (W only) 89.4 87.0 85.0 88.2
SNP + MRI (all) multilevel model (all) 90.6 87.0 85.5 88.8

pMCI versus CN (%)
Modality Method & Penalty Sen Spe Pre BAcc
SNPs only logistic regression (lasso `1) 72.0 77.0 75.9 74.5

SNPs grouped by genes logistic regression (group lasso) 72.0 77.0 75.9 74.5
MRI (cortical) logistic regression (ridge `2) 74.0 76.0 76.4 75.0

MRI (subcortical) logistic regression (ridge `2) 73.0 76.5 76.6 74.7
SNP + MRI (all) [15] EasyMKL, Aiolli et al. 77.0 73.5 75.1 75.3
SNP + MRI (all) [13] Wang et al. 79.5 81.5 82.4 80.5
SNP + MRI (all) additive model (βI ,βG only) 80.5 81.0 82.0 80.8
SNP + MRI (all) multiplicative model (W only) 81.0 81.5 82.9 81.3
SNP + MRI (all) multilevel model (all) 82.5 83.0 84.1 82.8

Regarding MRI features, the most important features (in weight) are the
left/right hippocampus, the left/right Amygdala, the left/right entorhinal and
the left middle temporal cortices. Regarding genetic features, the most important
features in weight are SNPs that belong to gene APOE (rs429358) for both tasks
“AD versus CN” and “pMCI versus CN”.

Regarding the matrix W, the couples (brain region, gene) learnt through
the task “pMCI versus CN” are shown on Fig. 2. It can be seen that W has
a sparse structure. Among the couples (brain region, gene) that have non null
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Fig. 2. Overview of the reduced parameters W ∈ R|I|×L, βI ∈ R|I| and βG ∈ RL

(learnt through the task “pMCI vs CN” for the whole model). For brain region i and
gene `, W[i, `] = max

g∈G`
|W[i, g]|, βI [i] = |βI [i]| and βG [`] = max

g∈G`
|βG [g]|. Only some

brain regions are shown in this figure.

coefficients for the both tasks “AD versus CN” and “pMCI versus CN”, there
are (Left Hippocampus, MGMT), (Right Entorhinal, APOE) or (Left Middle
Temporal, APOE). Only couples related to AD are selected by the model.
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We noticed that genes and brain regions strongly related to AD are captured
by the vectors βG and βI , whereas genes less strongly related to AD are captured
by the matrix W. Coming back to original formulation described in section 2.1,
the contribution of the function α0 : xG 7→ β>G xG +β0 is much smaller (in terms
of weights) than the function α : xG 7→WxG + βI . Furthermore, Fig. 2 shows
that genetic data xG tend to express through W, and thereby participate in the
modulation of the vector α(xG).

We compared our approach to [13,15], for which the codes are available. The
features that are selected by [13,15] are similar to ours for each modality taken
separately. For instance, for [13] and the task “AD versus CN”, SNPs that have
the most important weights are in genes APOE (rs429358), BZW1 (rs3815501)
and MGMT (rs7071424). However, the genetic parameter vector learnt from [13]
or [15] is not sparse, in contrary of ours. Furthermore, for [15], the weight for the
imaging kernel is nine times much larger than the weight for the genetic kernel.
These experiments show that the additive model with adapted penalties for each
modality provides better performances than [15], but our additive, multiplicative
and multilevel models provide similar performances.

4 Conclusion

In this paper, we developed a novel approach to integrate genetic and brain
imaging data for prediction of disease status. Our multilevel model takes into
account potential interactions between genes and brain regions, but also the
structure of the different types of data though the use of specific penalties within
each modality. When applied to genetic and MRI data from the ADNI database,
the model was able to highlight brain regions and genes that have been previously
associated with AD, thereby demonstrating the potential of our approach for
imaging genetics studies in brain diseases.

Acknowledgments. We wish to thank Theodoros Evgeniou for many useful
insights. The research leading to these results has received funding from the
program Investissements d’avenir ANR-10-IAIHU-06.

A Probabilistic formulation

This section proposes a probabilistic formulation for the model. The conditional

probability is given by p(y = 1|xG ,xI) = σ
(
x>GW

>xI + β>I xI + β>G xG + β0

)
.

– For each region i ∈ I and gene G`, Wi,G` ∼ M-Laplace(0, λW ) (M-Laplace
stands for “Multi-Laplacian prior”). In other words:

p(W;λW ,G,θG) ∝
|I|∏
i=1

L∏
`=1

e−λW θG`
‖Wi,G`

‖2

– For each region i ∈ I, βi ∼ N
(

0,
1

2λI

)
, i.e. p(βI ;λI) ∝ e−λI‖βI‖

2
2
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– For each gene G`, βG` ∼ M-Laplace(0, λG), i.e.

p(βG ;λG ,G,θG) ∝
L∏
`=1

e−λGθG`
‖βG`

‖2

Let Y = (y1, . . . , yN ), XI = (x1
I , . . . ,x

N
I ) and XG = (x1

G , . . . ,x
N
G ).

The generative model is given by:

p(W,βI ,βG , β0, Y,XI , XG ;λW , λI , λG ,G,θG)

Bayes
= p(Y,XI , XG |W,βI ,βG)p(W;λW ,G,θG)p(βI ;λI)p(βG ;λG ,G,θG)p(β0)

obs iid
=

(
N∏
k=1

p(y = yk,xkI ,x
k
G |W,βI ,βG)

)
p(W;λW ,G,θG)p(βI ;λI)p(βG ;λG ,G,θG)p(β0)

∝
N∏
k=1

σ
(

(xkG)
>
W>xkI + β>I x

k
I + β>G x

k
G + β0

)yk
N∏
k=1

[
1− σ

(
(xkG)

>
W>xkI + β>I x

k
I + β>G x

k
G + β0

)]1−yk
 |I|∏
i=1

L∏
`=1

e−λW θG`
‖Wi,G`

‖2

× e−λI‖βI‖
2
2 ×

(
L∏
`=1

e−λGθG`
‖βG`

‖2

)

The maximum a posteriori estimation is given by:

(Ŵ, β̂I , β̂G , β̂0) ∈ argmax
W,βI ,βG ,β0

p(W,βI ,βG , β0|Y,XI , XG ;λW , λI , λG ,G,θG)

∈ argmax
W,βI ,βG ,β0

p(W,βI ,βG , β0, Y,XI , XG ;λW , λI , λG ,G,θG)

It is equivalent to minimize the function S defined by:

S(W,βI ,βG , β0) = − log p(Y,W,βI ,βG , β0, XI , XG ;λW , λI , λG ,G,θG)

= RN (W,βI ,βG , β0) +Ω(W,βI ,βG)
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