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An Immersed Boundary Method for

Detail-Preserving Soft Tissue Simulation from

Medical Images

Christoph J. Paulus, Roland Maier, Daniel Peterseim, and Stéphane Cotin

Abstract Simulating the deformation of the human anatomy is a central element

of Medical Image Computing and Computer Assisted Interventions. Such simula-

tions play a key role in non-rigid registration, augmented reality, and several other

applications. Although the Finite Element Method is widely used as a numerical

approach in this area, it is often hindered by the need for an optimal meshing of the

domain of interest. The derivation of meshes from imaging modalities such as CT or

MRI can be cumbersome and time-consuming. In this paper we use the Immersed

Boundary Method (IBM) to bridge the gap between these imaging modalities and

the fast simulation of soft tissue deformation on complex shapes represented by a

surface mesh directly retrieved from binary images. A high resolution surface, that

can be obtained from binary images using a marching cubes approach, is embedded

into a hexahedral simulation grid. The details of the surface mesh are properly taken

into account in the hexahedral mesh by adapting the Mirtich integration method.

In addition to not requiring a dedicated meshing approach, our method results in

higher accuracy for less degrees of freedom when compared to other element types.

Examples on brain deformation demonstrate the potential of our method.
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1 Introduction

Computational models in the field of Medical Image Computing and Computer As-

sisted Interventions play an increasingly important role, in areas such as non-rigid

registration, augmented reality, or surgical training. In this context, the Finite Ele-

ment Method (FEM) is often used as the reference numerical approach, and many

works have addressed its computational efficiency and accuracy [3, 10, 15].

An alternative approach are mesh-free methods that can be applied likewise, but

need a separate surface representation and hence dealing with boundary conditions

can become cumbersome. Additionally, mesh-free methods use integration methods

which need a volumetric grid and can be computationally expensive. Thus, mesh-

free methods are less appealing for our purposes and this work is based on the FEM.

To construct a Finite Element mesh, the general procedure consists of the follow-

ing steps: the pre-operative image is segmented, then a surface mesh is built as the

isosurface of the segmented image, and finally a volumetric mesh is constructed in

the domain enclosed by the boundary surface. At this stage, the geometrical com-

plexity of anatomical structures make the generation of volume meshes from a given

surface representation a very challenging task.

Volumetric meshing of the domain is almost always done with linear tetrahe-

dral elements and remains a very active area of research [13, 8]. While simulations

with tetrahedral elements may lead to numerical issues, such as volumetric locking

[1], hexahedral elements suffer less from volumetric locking and yield an equiv-

alent or higher accuracy per degree of freedom. However, hexahedral meshes can

hardly be adapted to complex surfaces [7]. Thus, it is advantageous to either extend

the partial differential equation (PDE) outside the actual domain in order to use a

domain-independent mesh, which is known as the Finite Cell Method [14], or to

work with partially filled elements. In the following, we will focus on the latter ap-

proach. The Composite FEM [6, 18, 19], for instance, simulates deformations with

a coarse hexahedral grid efficiently, while a fine grid is used to modify the shape

functions in such a way that they match the boundary conditions to a given accuracy.

The fine grid is also utilized for the numerical integration. Tuning the resolution of

the coarse grid increases the accuracy of deformations, while the resolution of the

fine grid controls the geometric proximity at the beginning of the simulation. Other

popular approaches also require two meshes. For example, the Cut Finite Element

Method [2] operates on coarse elements but requires a sub-mesh in order to inte-

grate basis functions over the actual domain. The method proposed in [9] is based

on two overlapping Finite Element meshes, a coarse mesh that does not resolve any

domain boundaries and one that resolves the boundary. The method is then based on

the coarse Finite Element functions enriched by the Finite Element functions of the

resolving mesh. Boundary conditions are enforced in integral form with Nitsche’s

method. The key challenge is to integrate over the cut elements at the boundary and

the boundary segments, where an efficient integration method proposed by Mirtich

[11] is used. The additional Finite Element functions ensure the accuracy at the

boundary but also increase the number of degrees of freedom.
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In this paper we present a Finite Element approach derived from the Immersed

Boundary Method (IBM), which was first introduced by Peskin [16] to simulate

blood flows: A potentially high resolution surface mesh is immersed into a coarse

simulation mesh. We solve partial differential equations with a regular hexahedral

mesh that can automatically be built from the bounding box of a segmented image.

To precompute the system matrices, such as the stiffness, the damping and the mass

matrix, our method uses the extension of an integration method dealing with arbi-

trary polygons [11] and thus with arbitrary geometrical shapes. The efficiency of

this integration method yields a fast initialization of our algorithm while the speed

depends upon the resolution of the objects surface.

Our approach is very similar to the one presented in [9]. Both methods use

Nitsche’s method to apply boundary conditions and Mirtich’s integration method

to integrate over boundary elements. The key advantage of our method, however, is

that we do not need a second volumetric mesh to resolve the boundary and only use

the basis functions of the coarse volumetric mesh. While this difference results in

less accuracy at the boundary itself, the information gathered from the exact inte-

gration is enough to efficiently simulate the coarse behavior of an object. The fewer

degrees of freedom are particularly appealing since we aim for dynamic simulations

in real time. Other methods, such as [9] that resolve the boundary are less suitable

for dynamic simulations because of the higher number of degrees of freedom which

results in larger linear systems to be solved in every time step. The main difference

compared to the Composite FEM or the Cut FEM lies in the fact that no additional

refined mesh is needed to resolve complicated structures. Moreover, those methods

are mainly based on distance functions to characterize the boundary and not on a

surface mesh.

To further increase the speed of the dynamic simulation, we enrich the IBM with

the corotational approach, preventing recomputations of the system matrices and

thus allowing for real-time computation. The stability of our approach is ensured

by the removal of elements that are only filled with a small portion of the complete

cube. Evaluations reveal the improved accuracy per degree of freedom of our ap-

proach when comparing to the conventional methods, particularly for objects with

complex geometries. Thus, our method has an improved efficiency which decreases

computational costs. Since the meshing with different resolutions is not an issue, it

can be adapted to the power of the device performing the computation. This under-

lines the importance for the simulation of surgical interventions.

Our paper is structured as follows: After a brief overview of the Immersed

Boundary Method from which we derived our approach, section 2 explains the core

of the method. Then we present a numerical comparison against other techniques in

section 3.1. Finally, we apply our method on a complex brain geometry to simulate

a brain shift (section 3.2), and conclude in section 4 discussing future extensions.
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Fig. 1 Overview of our method: general work flow (top) and the particular elements of our method

(middle) with focus on one of the main contributions: the integration

2 Method

This section explains an Immersed Boundary Method (IBM) [17, 20] for dynamic

simulations, which has been adapted using an extension of an efficient integration

method [11]. This approach allows to embed a discrete representation of complex,

high detailed surfaces into the hexahedral simulation mesh, that is potentially coarse

and sparse. With the corotational approach, the method keeps its computational ef-

ficiency over time. Image processing methods can be used to provide the surface

representation. Then our approach can transform this representation directly to a

fast, accurate, patient-specific biomechanical model. Circumventing cumbersome

and time-consuming volume meshing algorithms thus makes our approach a com-

petitive tool for medical simulations.

Figure 1 summarizes our approach, separating the theory (subsection 2.1) from

the algorithmic details and the numerical integration method (subsection 2.2).

2.1 From a continuous problem to a discrete formulation

In order to allow for reasonable computation times while providing accurate de-

formations, we consider the deformation of objects with initial geometry Ω on a

macroscopic scale, which is commonly referred to as the continuum approach. We

denote the displacement of a point X ∈ Ω to the point x by u(X ,τ) = x(X ,τ)−X

at a time τ ≥ 0. Using Cauchy’s stress tensor σ , the gravity g and density ρ of the
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considered material, one can state Cauchy’s equation of motion for the dynamic

scenario as div(σ(u))+ρg = ρ ü. Additionally, we define boundary conditions fix-

ing the displacement at u = u0 on ΓD ⊆ ∂Ω and the boundary force or traction at

t(u) = σ(u)n = t0 on ΓN = ∂Ω\ΓD, where n is the outer normal of our domain Ω .

The equation of motion is usually transformed to an integral equation, the so-called

weak formulation. In contrary to the standard approach, the IBM incorporates the

boundary terms, i.e. as well the Dirichlet boundary condition, in this form. Vio-

lations of the conditions are penalized by additional integral terms and using the

stabilization parameter γD. This is referred to as Nitsche approach [12]. Thus, we

search a displacement function u that satisfies

∫

Ω
ρ ü · vdV +

∫

Ω
σ(u) : ε(v)dV −

∫

Ω
ρg · vdV

−
∫

ΓN

t0 · vdA−
∫

ΓD

t(u) · vdA−
∫

ΓD

u · t(v)dA

+
∫

ΓD

u0 · t(v)dA− γD

∫

ΓD

(u0 −u) · vdA = 0

(1)

for all test functions v and all times τ ≥ 0. The terms in the first row and the first term

in the second row relate to Cauchy’s equation of motion and the remaining terms are

introduced as a result of the Nitsche approach. The linear elasticity theory defines

the linear relationship between the Cauchy stress tensor σ and the strain tensor ε .

Since the linearized Green-Lagrange strain is non-zero for rigid body motions such

as rotations, we use the corotated strain tensor ε(u) = S − I with the symmetric

stretch matrix S, which is obtained from the deformation tensor.

In order to discretize the object, the surface ∂Ω is replaced by polygons of arbi-

trary shape representing a closed, manifold surface ∂Ωh potentially of high resolu-

tion, that can be obtained by a marching cube algorithm or other image processing

methods. Likewise, we replace the boundary domains ΓD,ΓN by their discrete coun-

terpart ΓD,h,ΓN ,h. Then we overlap the object Ωh enclosed in ∂Ωh with a regular grid

of hexahedral elements Ωe s.t. Ωh ⊂
⋃

e Ωe, and call the hexaeder corner nodes Pi.

Note, that the standard Finite Element approach requires equality, i.e. Ωh =
⋃

e Ωe,

which is a strong restriction for the choice of the hexahedral elements. We define

the mesh size parameter as h = maxe(maxX1,X2∈Ωe
|X1 −X2|), which indicates the

deformation accuracy of the hexahedral mesh and is independent of the resolution

of the surface mesh. The element-wise tri-linear shape functions ϕi of the conven-

tional FEM allow to replace the displacement function by its discrete counterpart

u ≈ ∑i ϕiui, with the displacements ui at the node Pi, forming the vector of displace-

ments u(τ) that depends on time. With the Galerkin approach, the integral equation

transforms to the semi-discrete equation

ρMü(τ)+Du̇(τ)+Ku(τ)−BT
Du(τ)−BDu(τ)+ γDMDu(τ)

= MNt0 −BDu0 +ρMΩ g+ γDMDu0

(2)

where the terms with the matrix BD relate to the integral terms in (1) over the Dirich-

let boundary ΓD and are due to the method of Nitsche. The stiffness matrix K is



6 Christoph J. Paulus, Roland Maier, Daniel Peterseim, and Stéphane Cotin

constructed similarly to the conventional FEM, but integrals are computed over the

actual domain Ωh 6=
⋃

e Ωe. K relates to the second term in (1). Similarly, the mass

matrices are adapted to the IBM, i.e. MY,i j =
∫

Y ϕiϕ j for Y = ΓD,h,ΓN ,h,Ωh. Note

that the term Du̇(τ) in (2) is artificial and does not correspond to any term in (1).

However, the introduction of the damping term is reasonable in the context of dy-

namic simulation, as damping effects occur in dynamic motions. We choose the

damping term to be constant and obtain it using the mass and the stiffness matrix.

Such a representation is called modal or Rayleigh damping and can be expressed as

D = αM+βK.

In the general case, an experimental verification of the parameters α and β is essen-

tial for real applications [21].

Solving this system of linear equations yields the displacements ui(τ) for any

time τ ≥ 0 of the object Ω at the points Pi, which are propagated to the surface

∂Ω using the tri-linear shape functions and the initial barycentric coordinates of

the surface in the hexahedral mesh. Since (2) is still a continuous formulation with

respect to time, the next step to obtain a fully discrete model consists in applying a

time-stepping scheme with step size ∆τ . Here, we use the implicit Euler scheme

u̇n+1 = u̇n +∆τ ün+1,

un+1 = un +∆τ u̇n+1.
(3)

Inserting the scheme into (2) leads to a system of linear equations that has to be

solved in every time step. For better readability, we only state the equation for the

(n+1)th time step under the additional assumption u0 ≡ 0.

(

ρM+∆τD+∆τ2(K−BT
D −BD + γDMD)

)

u̇n+1

= ∆τf0 +
(

ρM−∆τ (K−BT
D −BD + γDMD)

)

un,
(4)

where f0 = ρMg+MNt0. Finally, un+1 can be calculated using the equations in (3).

2.2 Numerical considerations

The construction of the matrices in the system of linear equations (2) is one of the

key challenges of the IBM. To integrate, the domain is split into the volumes of

the hexahedral elements. For completely filled elements with Ωe ∩ ∂Ω = /0, Gauss

points commonly yield the integral value. For elements intersecting with the bound-

ary, standard integration techniques do not work as the integration domain might

have an arbitrary complexity: the integration domains are either the boundaries in-

tersected with an element, i.e. ΓD,h∩Ωe or ΓN ,h∩Ωe, or the intersection of the object

with the hexahedral elements, i.e. Ωh∩Ωe. We integrate exactly over these domains,

by using an integration approach depicted in figure 1(bottom), which has been pro-

posed for polynomials up to degree two [11]. The integrands in the last subsection
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are polynomial functions where the sum of the polynomial degrees is maximally six,

due to the multiplication ϕiϕ j of the tri-linear shape functions ϕi and ϕ j to compute

the mass matrices. In the following we use the space of polynomials PM(Rn) that

acts on R
n, constructed with monomials, whose sum of degrees is smaller than or

equals M. Thus the tri-linear shape functions fulfill ϕi ∈ P3(R
3) and we need to cal-

culate integrals for P6(R
3). For this we extend [11] to arbitrary polynomial degrees:

first, the divergence theoreom transforms the volume integral to a sum of integrals

of P7(R
3) over polygons in 3D. Then these integrals are projected onto the plane

with the biggest surface and one needs to calculate P7(R
2) over polygons in 2D.

Finally, these integrals are simplified using Greens’ theorem to P8(R
2) over lines in

2D, which can be integrated analytically using binomial coefficients and the posi-

tions of the line start and end. For the boundary matrices, the first step is left out but

the subsequent steps stay the same with the polynomial degree reduced by one.

Regarding the constitutive model, we use a corotational approach rather than a

simple linear strain tensor. This also permits to expand the range of applications of

the method. Identically to the conventional approach a rotation matrix Rn is calcu-

lated based on the deformed configuration un of each hexahedral element and incor-

porated into the system of equations by using Kn = RnK0RT
n , but it is not applied

to the other matrices in (2). The rotation matrix in the undeformed configuration

equals the identity matrix and is updated when the system of linear equations yields

new positions at a time step. In contrary to hyperelastic approaches, the stiffness

matrix does not have to be recalculated for every time step, but is updated by multi-

plying the rotation matrices from both sides. Note that partially filled elements can

result in elevated computational costs when integrating for a recalculated matrix,

while the calculation of the rotation matrix and the multiplication on the stiffness

matrix from both sides is computationally cheap. Thus, the corotational approach is

particularly interesting for contexts where the speed of calculation matters, e.g. for

simulations in real-time. Moreover, the corotational approach combines nonlinear

characteristics with the simplicity of the stress-deformation relationship. However,

despite our choices for the corotational approach, we want to emphasize that the

IBM we propose is not limited to small strain problems.

Finally, we maintain the numerical stability by ignoring hexahedral elements

which are only partially inside the domain. For that, we remove elements where

the volume of the integration domain is under 5% of the volume of the hexahedral

element. Ignoring these elements has nearly no impact on the end result, improves

stability and leads to a slightly smaller system of linear equations.

In summary, the construction of the system matrices and thus the choice of the

integration method impacts the initialization time of our algorithm, while the corota-

tional approach reuses the system matrices in order to prevent such time consuming

procedures in every time step. To conclude, our method allows for

1. a fast initialization depending upon the number of edges in the high resolution

surface mesh, and

2. a fast and stable simulation that depends upon the size and the quality of the

linear system of equations which is based on the coarse simulation grid.
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3 Results

Here, we present the results of an implementation of our approach into the open

source framework SOFA [4]: First, we perform a convergence analysis that com-

pares our algorithm to the classical FEM in beam compression and bending scenar-

ios. Then, we apply the method to simulate a brain shift, a deformation of the brain

often observed during neurosurgery.

3.1 Cylinder compression and bending scenarios

To numerically compare our method against the classical FEM, we simulate the

compression and bending of beams under gravity while being fixed at one end.

The classical bending test results in a deflection, which requires a geometrically

nonlinear model of deformation. Thus this example shows one of the motivations to

use the corotational approach presented in the previous section.

We consider different cross sections (see figure 2): a circle and a cross section that

has convolutions that are similar to the the surface of a brain, see figure 4 bottom.

The beam cross sections of the compression example have a radius r = 0.06 m,

which is expanded l = 0.1 m in the length, while for the bending example we have

r = 0.02 m and l = 0.2 m. We choose a Young’s modulus of E = 3000 Pa and

a Poisson’s ratio of ν = 0.49 for the compression example and E = 1 MPa and

ν = 0.4 for the bending to represent deformations close to the application in a brain

shift.

We compare our method to the conventional FEM using tetrahedral elements, ob-

tained using the open source meshing library GMSH [5]. For tetrahedral elements

with four nodes, incompressible behaviour can yield stiff behaviour, called volumet-

ric locking [1]. Thus, we also compare to the conventional FEM using non-cuboid

irregular hexahedral elements in the compression example. Since, to the best of our

knowledge, available meshing algorithms can not provide hexahedral meshes, we

first mesh a circle with quadrilaterals using GMSH (see figure 3) and then extrude

them to hexahedral elements. To show the effect of regular partially filled elements,

we compare as well to a sparse regular hexahedral grid: Similarly to our idea, a

surfacic structure is overlaid by a regular grid and elements outside of the topol-

ogy are removed. Contrary to our approach, all elements are filled completely, even

elements that are filled only to a small part (see figure 4).

The different results are compared by computing the relative error d = | p̄ref,n −
p̄n|/|p̄ref,n − p̄0|, where | · | is the Euclidean norm, p̄ref,n is the reference beam tip

in the middle of the beam, and p̄n is the tip position for a given simulation after a

few simulation steps n (we use subscript 0 for the initial position). The points are

depicted as turquoise crosses in figure 2.

The compression example uses a reference solution composed of hexahedra

(40887 and 46242 degrees of freedom), while the bending example uses a tetra-

hedral reference solution (592899 and 514047 degrees of freedom). The high reso-

lution of the chosen reference solutions allows to neglect possible locking error. The
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Fig. 2 Compression (top) and bending (bottom) example with different cross sections (left/right):

Top: Setup of the example in front (left) and top (right) view with the initial (grey) and final (red)

configuration of the beam and the point at which we measure the distance in turquoise; Bottom:

Convergence analysis, with the comparison of only the z values as dashed curves and the dashed

black line depicts a relative error of 2%.

Fig. 3 Cross section of the first example meshed with quadrilaterals of different resolutions.
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Fig. 4 Bending example: Several chosen resolutions of simulations with a regular hexahedral

topology, showing the two-dimensional cross section with the grid: for the sparse grid, all dis-

played elements are simulated as completely filled, while for the IBM green elements are deleted

(since they have less than 5% of the hexahedral volume) and boundary elements are partially filled.

results are summarized in a convergence analysis depicted in figure 2. As expected,

our approach yields a higher accuracy per degree of freedom than the existing ap-

proaches. For the complex geometry with the convolutions in the cross section, the

effect is amplified in the second example. When comparing to tetrahedral meshes,

our method is particularly interesting for a small number of degrees of freedom. The

convergence analysis of the compression example shows for our approach, that the

error in the z direction depicted as a dashed line and the relative error are approx-

imately the same. Thus, despite the potentially asymmetric (see figure 4) removal

of elements for the immersed boundary method, the impact on the complete mesh

stays reasonable low and the deformation is symmetric.

Example Degrees of freedom Factor Dofs IBM vs.

Tetrahedra Hexahedra IBM Tetrahedra Hexahedra

Compression − − 4956 − −
Compression with convolutions − 22892 4368 − 22892

4368
≈ 5.2

Compression - only z direction − 18984 4809 − 18984
4809

≈ 3.9

Compression with convolutions - only z direction 8363 22326 3578 8363
3578

≈ 2.3 22326
3578

≈ 6.2

Bending 15924 − 1969 15924
1969

≈ 8.1 −

Bending with convolutions 28871 − 5813 28871
5813

≈ 5 −

Table 1 Comparison of the number of degrees of freedom for an accuracy of 2%.

3.2 Brain shift simulation

In order to assess our method in the medical context, it has been applied to simulate

a brain deformation, frequently occuring after a craniotomy, see figure 5. The brain

surface mesh is highly detailed, with 88,580 triangles and 44,261 points, and con-

tains a lot of anatomical details due to the presence of sulci and gyri. The bounding

box of the surface mesh is then simply subdivided into a regular grid with 9, 11 and

11 points in each principal direction, resulting in a sparse grid with 675 nodes Pi.

Dirichlet boundary conditions are then applied to the actual surface (and not to the

nodes of the grid) as explained in section 2 and depicted in figure 5 (left). Other

interactions such as collision between the scull and the brain are disregarded. The

convolutions are in most cases inside one element or two neighboring elements that
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are connected, which allows to handle auto collisions without external algorithms,

iff the elements should not invert themselves. Since Dirichlet boundary conditions

in the standard FEM are applied to the nodes and not on a part of a face as in our

approach, no comparisons to existing approaches were performed. Using a Young’s

modulus E = 3000Pa, a Poisson’s ratio of 0.49 and a mass density of 1027kg/m3

the computation of the brain shift did not involve complex volumetric meshing and

has been performed using the damping parameters α = β = 0.1.

Fig. 5 Simulation of brain shift using a detailed surface mesh embedded into an hexahedral grid.

Boundary conditions are applied onto the exact surface, not the grid (left).

4 Conclusion and Perspectives

In this paper, we have introduced an adaptation of the Immersed Boundary Method,

generally used for fluid dynamics problems, to the context of patient-specific simu-

lation of soft tissue deformation. The benefit of our method over conventional Finite

Element Methods lies in the ability to handle complex geometries while using a reg-

ular, relatively coarse, hexahedral, unfitted mesh. In particular, no auxiliary mesh is

required. The complexity of the non-standard numerical integration over the cut

elements remains proportional to the number of surface elements. The number of

degrees of freedom and thus the size of the linear system in every time step is only

proportional to the number of coarse elements and independent of the number of

geometric features of the boundary. In contrast to the standard Finite Element ap-

proach, fixed displacement boundary conditions can be applied to the high resolu-

tion surface mesh and are propagated to the potentially coarse hexahedral simulation

mesh. These different advantages make the method a promising approach for build-

ing patient-specific coarse simulations in an automated way.

Yet, we believe this is only a first step towards a new way of constructing Fi-

nite Element simulations over complex domains defined in medical images. As the

underlying integration can deal with holes in the surface, the approach has the built-

in potential to compensate for incomplete surface reconstruction due to missing or

wrong data. This could make the method even more robust and adapted to medical

images. Furthermore, the fact that dynamic simulations are directly obtained from

surface meshes segmented from medical images and do not require dedicated volu-
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metric meshing techniques could make the method a very valuable and user-friendly

tool in the context of medical simulation.
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