
HAL Id: hal-01578617
https://inria.hal.science/hal-01578617

Submitted on 29 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Hardware Accelerator for Real Time Sliding Window
Based Pedestrian Detection on High Resolution Images

Asim Khan, Muhammad Khan, Muhammad Bilal, Chong-Min Kyung

To cite this version:
Asim Khan, Muhammad Khan, Muhammad Bilal, Chong-Min Kyung. A Hardware Accelerator for
Real Time Sliding Window Based Pedestrian Detection on High Resolution Images. 23th IFIP/IEEE
International Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2015,
Daejeon, South Korea. pp.46-66, �10.1007/978-3-319-46097-0_3�. �hal-01578617�

https://inria.hal.science/hal-01578617
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Hardware Accelerator for Real Time Sliding Window
Based Pedestrian Detection on High Resolution Images

Asim Khan, Muhammad Umar Karim Khan, Muhammad Bilal, and
Chong-Min Kyung

Department of Electrical Engineering,
Korea Advanced Institute of Science and Technology (KAIST),

Daejeon, South Korea

{asimkhan, umar, bilalm, kyung}@kaist.ac.kr

Abstract. Pedestrian detection has lately attracted considerable interest from
researchers due to many practical applications. However, the low accuracy and
high complexity of pedestrian detection has still not enabled its use in
successful commercial applications. In this chapter, we present insights into the
complexity-accuracy relationship of pedestrian detection. We consider the
Histogram of Oriented Gradients (HOG) scheme with linear Support Vector
Machine (LinSVM) as a benchmark. We describe parallel implementations of
various blocks of the pedestrian detection system which are designed for full-
HD (1920x1080) resolution. Features are improved by optimal selection of cell
size and histogram bins which have been shown to significantly affect the
accuracy and complexity of pedestrian detection. It is seen that with a careful
choice of these parameters a frame rate of 39.2 fps is achieved with a negligible
loss in accuracy which is 16.3x and 3.8x higher than state of the art GPU and
FPGA implementations respectively. Moreover 97.14% and 10.2% reduction in
energy consumption is observed to process one frame. Finally, features are
further enhanced by removing petty gradients in histograms which result in loss
of accuracy. This increases the frame rate to 42.7 fps (18x and 4.1x higher) and
lowers the energy consumption by 97.34% and 16.4% while improving the
accuracy by 2% as compared to state of the art GPU and FPGA
implementations respectively.

Keywords: FPGA, Low Power, Object Detection, Real-Time

1 Introduction

Researchers in industry and academia have been striving for accurate and real-time
pedestrian detection (PD) for more than a decade owing to many commercial and
military applications. Industries such as surveillance, robotics, and entertainment will
be greatly influenced by appropriate application of PD. Advanced driver assistance
systems (ADAS) and unmanned ground vehicles (UGV) are merely a distant dream
without automated pedestrian detection. The fact that more than 15% of traffic

accidents include pedestrians [1] shows the importance of real-time pedestrian
detection for the modern society [2].
 Amid numerous applications, the search for an accurate yet fast PD algorithm is
ongoing. Researchers have shown great interest over the past few years in extracting
diverse features from an image and finding an appropriate classification method to
perform robust PD [10-14]. However, the histogram of oriented gradients (HOG)
approach has proven to be a groundbreaking effort, and has shown good accuracy in
various illumination conditions and multiple textured objects. Inspired from SIFT [5],
the authors in their seminal paper [4] present a set of features over a dense grid in a
search window. For training and classification, they used the linear support vector
machine (linSVM). Their work inspired many other researchers and is still used as a
benchmark PD scheme.
 Although HOG was presented many years back, it is surprising to see that very few
efforts have been made for an optimal hardware implementation of HOG. In fact, most
of the research has been targeting pedestrian detection on a high end CPU or GPU or
combination of both [24-29]. Field Programmable Gate Arrays (FPGA) and
Application Specific Integrated Circuits (ASIC) often provide better execution speed
and energy efficiency as compared to GPUs due to deep pipelined architectures.
Furthermore, in many embedded applications, such as surveillance, there are numerous
constraints on hardware cost, speed, and power consumption. For such applications, it
is more suitable to use task-specific (FPGA, ASIC) rather than general-purpose
platforms. Moreover, to meet such constraints, certain parameters of the algorithm
need to be tuned and an insight is required into how the change of parameters of PD
affects not only the accuracy but also the hardware complexity.

Efforts have been made in the research community to either improve the accuracy
of PD or reduce the hardware complexity of HOG. In [6] and [7], the computational
complexity of HOG is reduced with cell-based scanning and simultaneous SVM
calculation using FPGA and ASIC implementations for full HD resolution; however,
the implementations use the parameters as suggested in [4]. Various hardware

Fig. 1. Comparison of the state of the art in terms of frames per second and number of
scales.

optimizations are presented in [15-22] for an efficient pedestrian detection system.
However, for real-time PD with power and area constraints, it is imminent to find the
set of parameters of HOG that provide the best compromise in terms of computational
complexity and accuracy. Recently, a hardware architecture for fixed point HOG
implementation has been presented [8] where the bit-width has been optimized to
achieve significant improvement in power and throughput. We believe that in addition
to bit-width there are other parameters which need to be optimized to provide a holistic
understanding of the relationship between accuracy, speed, power, and complexity.
Moreover, sliding window based pedestrian detection requires detection to be
performed at multiple scales of image. It has been shown that the best detection
performance can be achieved with scale factor (the ratio to scale the image after each
detection) of at-least 1.09. This results in processing around 45 scales for full-HD
resolution. As shown in Fig. 1, a combination of the number of scales (=45) required
for maximum accuracy [8] - [9] and throughput for real-time pedestrian detection at
full-HD resolution has not been achieved before.

The key contributions of our work can be summarized as follows.

• We present parallel implementation of various blocks of HOG-based PD on an
FPGA. Parallel implementation has been used to improve the speed of PD.

• We derive the accuracy, speed, power, and hardware complexity results of HOG-
based PD with different choices of cell sizes and number of histogram bins.

• We show that by using the right choice of cell size and number of histogram bins, a
significant reduction in power consumption and increase in throughput can be
achieved with reasonable accuracy.

• Finally features are refined by removing insignificant gradients which results in not
only improvement of throughput and power consumption but also accuracy.

This chapter is an extension of our original paper [10] including more detailed
literature survey and hardware implementation details. The rest of the chapter is
organized as follows. Section 2 summarizes the state of the art in PD. In Section 3, a
brief overview of HOG is presented. The proposed hardware implementation is
discussed in Section 4. In Section 5, the accuracy, speed, power, and hardware
complexity results are shown for different choices of parameters and the optimal
choice of parameters under given constraints is described. Section 6 concludes the
work.

2 Literature Survey

Numerous efforts have been made in the past to perform PD efficiently. An extensive
survey of PD schemes is given in [9]. Generally, these approaches can be classified
into two categories: segmentation-based approaches [34] and sliding window-based
approaches [35]. A segmentation-based approach processes the whole frame at once
and extracts segments of the frame which include pedestrians. On the other hand,
sliding window-based approaches divide a frame into multiple, overlapping windows
and search pedestrians in each of these windows.

2.1 Sliding Window Based Pedestrian Detection

Recently, researchers have put more effort into sliding window approach as this
approach simplifies the problem of PD to binary classification in a given window.
Sliding window-based approaches can be further subdivided into rigid and part-based
methods. The rigid schemes consider the window holistically to identify a pedestrian.
Part-based schemes, such as [36, 37] identify different parts of a pedestrian in a
window, and decide the presence of a pedestrian based on the location and confidence
(accuracy) of detected parts. Part-based schemes have been shown to perform better
compared to rigid schemes as the decision in these methods is based on the aggregate
of decisions for different parts and these schemes can handle occlusion better
compared to rigid schemes. However, the higher computational complexity of part-
based methods makes them infeasible for real-time applications. Rigid schemes utilize
a single feature or multiple features to detect an object. We have categorized the
schemes depending on the feature and implementation platform.

Single Feature Pedestrian Detection. In [35], the authors use Haar-like features with
Support Vector Machines (SVM) to identify objects in a scene. Their method was
advanced in [38] for face detection, where the authors obtained an astounding
increase in speed by using integral images to compute Haar-like features. Furthermore,
cascaded boosted trees were used for classification. The method of [38] was used for
PD in [39]. However, using Haar-like features for PD detection did not show much
promise until recently [4] due to their low accuracy.

A set of rich and compact features was required to improve PD. Rich features were
needed to extract maximum information from a window and compactness was needed
to better generalize from training to testing. HOG [4] performed both these tasks by
including the complete (or rich) gradient information of a window into compact
histograms. They trained Linear Support Vector Machine (LinSVM) framework for
classification. Furthermore, they developed and used the INRIA pedestrian dataset,
which was the most extensive dataset for PD at that time. Resultantly, their method
achieved significant improvement in accuracy of PD compared to the previous
schemes.

Since its inception, HOG has influenced most of the modern PD methods. In [40],
gradients in local patches, similar to HOG, are used to represent shape descriptors.
These shape descriptors are combined to create a single feature which is classified
using boosted trees. The method is used for PD as well as detection of other objects.
Edgelets, used in [41] and [42], have been used to learn and classify body parts with
boosted trees. Other variations include distance transform and template hierarchy [43]
to match images with templates, granularity-tunable gradients partition to define
spatial and angular uncertainty of line segments [44] and its extension to
spatiotemporal domain [45], shape features [46] and finally motion based features
[47]-[48].

Multiple Feature Pedestrian Detection. To further enhance the PD accuracy of
HOG, researchers have complimented HOG with other features. Local Binary Pattern

(LBP) is a very simple feature based on magnitude comparison of surrounding pixels,
and has typically been used for texture classification [49] and face detection [50]. It
has also been used in PD [51]. In [52], the authors present a feature combining both
HOG and LBP and use linSVM for classification. They show that this combination
improves the PD performance under partial occlusion. In [53], the authors use implicit
segmentation and divide the image into separate foreground and background,
followed by HOG. HOG, LBP and local ternary patterns were combined in [54] for
pedestrian and object detection. Gradients information and HOG, textures (co-
occurrence matrices), and color frequency are combined in [55]. Partial least squares
are used to reduce the dimensions of the feature and SVM is used for classification.
HOG has been combined with Haar-like [56], shapelets [40], color self-similarity and
motion [57] features as well. Note that none of these features when used
independently from HOG has been able to outperform HOG.

2.2 Real Time Pedestrian Detection

Numerous applications require PD at fast rates. For such applications, it is more
suitable to use task-specific (GPU, FPGA, ASIC) rather than general-purpose
platforms. A fine grain parallel ASIC implementation of HOG-based PD is presented
in [7]. In [15], simplified methods are presented for division and square root operations
for use in HOG. However, by employing their methods, the accuracy of PD is severely
degraded. A multiprocessor system on chip (SoC) based hardware accelerator for HOG
feature extraction is described in [16]. In [17], the authors reuse the features in blocks
to construct the HOG features of overlapping regions in detection windows and then
use interpolation to efficiently compute the HOG features for each window.

In [18], the authors developed an efficient FPGA implementation of HOG to detect
traffic signs. In [19], a real-time PD framework is presented which utilizes an FPGA
for feature extraction and a GPU for classification. A deep-pipelined single chip FPGA
implementation of PD using binary HOG with decision tree classifiers is discussed in
[20]. A heterogeneous system is presented in [22] to optimize the power, speed and
accuracy.

 From the discussion above, we notice that HOG is integral to most PD
algorithms. Efforts have been made in the research community to either improve the
accuracy of PD or reduce the hardware complexity of HOG. In our study, we are yet
to find an effort which analyzes the effects of reducing hardware costs on accuracy of
HOG. For real-time PD with power and area constraints, it is imminent to find the set
of parameters of HOG that provide the best compromise in terms of computational
complexity and accuracy.

Fig. 2. Block Diagram of HOG based Pedestrian Detection

3 Overview of HOG

In this section, we present a brief overview of the HOG algorithm for PD. Although
HOG can be used in a part-based PD scheme, we limit our discussion to the rigid HOG
as described in the original paper [4]. A block diagram showing functional blocks of
the algorithm is shown in Fig. 2.

In HOG, a search window is divided into multiple overlapping blocks which are
further divided into cells as shown in Fig. 3.,where 𝑤! , ℎ! , 𝑤!, ℎ! , 𝑤! , ℎ! ,
𝑤! , ℎ! , are the frame, window, block and cell (width, height) respectively. 𝑁!"# is

the number of histogram bins. The blocks have an overlap of 50%, creating a dense
grid over the search window. So a single 𝑤!×ℎ! window has 𝑛! = 𝑤!/𝑤! ×ℎ!/
ℎ! cells and 𝑛! = !!!!!

!!
 × !!!!!

!!
 blocks. Gradient features are extracted from

these blocks and cells, and are concatenated to create a single feature vector for the
whole window.

A filter with coefficients [-1, 0, 1] is applied to the window in horizontal and
vertical directions, creating the images 𝐺! and 𝐺!, respectively. These images are used
to generate the gradient magnitude image, 𝐺!, and the gradient orientation image, 𝐺!,
for each pixel 𝑥, 𝑦 as follows.

 𝐺! 𝑥, 𝑦 = 𝐺 𝑥, 𝑦 = 𝐺! 𝑥, 𝑦 ! + 𝐺! 𝑥, 𝑦 ! (1)

 𝐺! 𝑥, 𝑦 = tan!! !! !,!
!! !,!

 (2)

Fig. 3. A depiction of image division for sliding window based
object detection. An input image (wF × hF) is divided into
overlapping windows. The window is divided into overlapping
blocks which are further divided into cells. A histogram is
generated for every cell.

The histogram used in the feature accumulates the orientation information of an
image. Each histogram has multiple bins, where each bin represents a specific
orientation in the interval [0, π). The value 𝐺!(𝑥, 𝑦) is added to the bin of the
histogram which corresponds to 𝐺!(𝑥, 𝑦). Such histograms are developed for every cell
of the window, as shown in Fig. 3.

The cell histograms belonging to a single block are concatenated to form block
histogram of length 𝑀 = 4 ×𝑁!"#, where, 𝑁!"# is the number of bins in each cell
histogram. Block histograms are further L2-normalized using (3), and then added to
the feature vector. L2-norm for an un-normalized feature vector v, is given by,

 𝑥!! = !!
!

! !
!! !!

. (3)

where 𝑖 = 1,… ,𝑀 , 𝑏 = 1,… , 𝑛! , 𝑣 !
! = 𝑣!! + 𝑣!! +⋯+ 𝑣!! and 𝜀 is a small

constant to avoid division by zero. L2-normalization is performed to improve
robustness against illumination changes.

For classification, LinSVM is used. From an implementation perspective, a weight
vector is obtained after the training stage. During classification, a dot product of the
feature extracted from the window and the weight vector is compared against a
threshold. If the dot product is greater than the threshold, then a pedestrian is
identified.

4 Hardware Architecture

The hardware implementation of HOG presents a unique challenge, which is quite
distinct from the software implementation. First, we cannot store and access a
complete frame, and read and write from multiple addresses at once as this will require
unrealistically large hardware resources. Second, floating point operations are quite
costly in hardware, as they use more FPGA area and runs at a lower frequency;
therefore, we avoid them in hardware implementation. Finally, the choice of
parameters affects hardware complexity significantly compared to software
implementation.

Fig. 4. Block Diagram of Hardware Architecture. Gradient is
computed over input pixels stored in Pixel Line buffer, cell
histograms are then built using gradients, SRAM is used to store
intermediate cell histograms. Next steps are normalization of
histograms generated and finally classification.

Our key objectives in this implementation are to maintain the maximum accuracy
and minimum power consumption while performing real time PD by controlling local
features. Hardware/memory optimization is done using optimal values of these
features. The optimized architecture thus obtained results in a reduced workload and
low bandwidth.

The conceptual block diagram of the proposed HOG Accelerator (HOG-Acc) is
shown in Fig. 4. In the following we present a description of the major functional
blocks shown in Fig. 4.

4.1 Gradient Computation

To compute the gradient magnitude and orientation, the horizontal and vertical
gradient images, i.e., 𝐺! and 𝐺!, need to be generated. Gradient is computed over the
3x3 neighborhood of each pixel; therefore, two line buffers are required to store two
consecutive scan lines of the image to maintain a 3x3 neighborhood of every pixel.
 A straight forward computation of the gradient magnitude, as given in (1), will
require the implementation of the square root operation, which will consume
significant hardware resources; thereby, delay and power consumption will increase. In
order to reduce the computational complexity, the following approximations from [15]
have been used to compute the gradient magnitude and orientation.

 𝐺! 𝑥, 𝑦 ≈ max 0.875𝑎 + 0.5𝑏 , 𝑎 , (4)

where,

 𝑎 = max 𝐺! 𝑥, 𝑦 ,𝐺! 𝑥, 𝑦 , (5)

and

 𝑏 = min 𝐺! 𝑥, 𝑦 ,𝐺! 𝑥, 𝑦 . (6)

Fig. 5. Gradient Magnitude Computation Module. (a) Simply
subtract the horizontal and vertical neighboring pixels to
compute the horizontal and vertical gradients. (b) Gradient
magnitude is computed by shift and compare operations to
implement (4) - (6)

 The circuitry for gradient magnitude computation is shown in Fig. 5. Equation (5)
and (6) are implemented using a single compare operation, while (4) requires four shift
operations yielding 0.875a and 0.5b, then an adder and one more comparator is used to
give the final gradient magnitude.
Similarly, a direct implementation of (2) for computing the gradient orientation will
require two costly hardware operations: the inverse tangent and division. To reduce the
complexity, (2) can be rewritten as

 𝐺! 𝑥, 𝑦 tan 𝐺! 𝑥, 𝑦 = 𝐺! 𝑥, 𝑦 . (7)

 The problem of identifying the gradient orientation can be solved using (7) as:
multiplying the horizontal gradient value with the values of the right column of table I;
the product which best matches against the vertical gradient indicates the gradient of
the pixel. Note that even the multiplication operation is not required, as the product
with the values in the right column of Table I can be performed by simple arithmetic
shifting.
 The circuit to compute the histogram bin is shown in Fig. 6. It consists of two
parts, one deals with the quadrant decision and other decides the bin. Comparing
horizontal and vertical neighboring pixels sets the Q-flag value which indicates
whether the bin lies in first or second quadrant. Once we know the quadrant, we have
to decide which histogram bin the orientation value lies in. By using Table I to
approximate the value of tangent function at different orientations, complex

Fig. 6. Bin Computation Module: Bin quadrant is
decided using a Q-flag, which is computed by
comparing horizontal and vertical pixels, histogram bin
is then decided implementing (7) using comparators
and AND gate.

TABLE I
APPROXIMATED VALUES OF TANΘ

Tangent Approximated Value

𝑡𝑎𝑛0° 0
𝑡𝑎𝑛10° 2!! + 2!!
𝑡𝑎𝑛20° 2!! + 2!!
𝑡𝑎𝑛30° 2!! + 2!! + 2!!
𝑡𝑎𝑛40° 2!! + 2!! + 2!!

operations such as inverse tangent and division can be avoided. The hardware utilizes
only comparators, shifters and adders, hence reducing the complexity significantly.
 It has been shown in [8] that bit-width assigned to magnitude has a significant
impact on accuracy, throughput and power consumption as it affects the data sizes at
all the next stages. In [8] fixed-point implementation is considered and bit width of
gradient magnitude is optimized as 13 bits (9:4 (integer: fractional)). We argue that
using only integer values of gradient magnitude can further improve the accuracy,
throughput and power consumption. The details are given in Section IV. The key
insight is that by using integer values for gradient magnitudes, we can remove the
histogram values which are less significant. The advantages are twofold. 1) It reduces
the hardware complexity due to reduced bit width and integer operations. 2) It
improves the accuracy because removing these petty gradient magnitudes enhances the
feature vector for training and classification.

4.2 Cell Histogram Generation

We propose a parallel Cell Histogram Generation (CHG) module as shown in Fig. 7.
Gradient magnitudes and orientation bins for every 𝑤!×ℎ! pixels are given as input to
CHG. Decoders and adders are used to build the histogram. Each bin value is given as
input to the decoder. Only one output is set to ‘1’ corresponding to the specific bin;
gradient magnitude for that bin hence propagates to the input of adder, where all the
magnitudes of the same bin are added.

The decoder size is dependent on the number of bits required to represent single
bin, i.e. if number of histogram bins increase the size of decoder increases. On the
other hand, the cell size (𝐶!"#$ = 𝑤!× ℎ!) affects the number of decoders as the total
number of decoders required equals 𝐶!"#$. Multipliers required for CHG are dependent
on both 𝑁!"# and 𝐶!"#$. Multipliers in each stage depend on 𝑁!"# while number of
stages depends on 𝐶!"#$. Finally, the number of adders is equivalent to the 𝑁!"# chosen.

Fig. 7. Cell Histogram Generation (CHG) Engine: Histogram bins and gradient magnitudes are
given as input and cell histograms are generated.

Adder size, however, varies according to 𝐶!"#$. We can clearly see that the complexity
of CHG is strongly dependent on 𝑁!"# and 𝐶!"#$.

Since pixels are coming row by row, we have to maintain cell histograms for
multiple blocks and windows as each row has multiple windows. Therefore, the
gradient magnitudes and orientations computed for every 𝑤! pixels (one cell) are
concatenated and stored in memory. Pixels of row index which is a multiple of ℎ!
indicate the completeness of cell. This row is directly stored into registers. At the start
of every such row, respective values of previous rows for the particular cell are read
into registers from block RAM every clock cycle. As we have considered 𝑤! = ℎ! the
cell completes in horizontal and vertical directions simultaneously. Hence, the number
of shift registers required is equivalent to ℎ! . Each shift register stores magnitudes and
bins for 𝑤! pixels. After 𝑤! cycles the data of one cell is completed so it is shifted to
the memory, which in turn writes the data for the previous row in the next register.
The resultant cell histogram is given to the next stage for processing. This is done
every time the new cell is completed. i.e; when the row index is a multiple of ℎ! and
column index is a multiple of 𝑤! . The cell histograms for multiple windows in a frame
are stored in memory while they are shifted to registers for each active window (the
window whose cells histograms are completed).

4.3 Block Histogram Normalization

Cell histograms are maintained in the memory till four neighboring cells are completed
and a block is obtained. Note that the memory required to store the cell histograms
increases with smaller cells (more cells per row and column) and larger number of
histogram bins for every cell (more data per cell). In other words, 𝐶!"#$ affects the
memory locations required while 𝑁!"# influences the width of each location.

 The histogram is normalized using the Block Histogram Normalization Engine
(BHN) shown in Fig. 8. Normalization is performed every time a new block is
completed. Each histogram value in a block is squared and added. The sum is given as
input to inverse square root module which is approximated using “fast inverse square
root” algorithm [30]. In summary, logical shifting, subtraction and finally one iteration
of Newton’s method approximates the inverse square root. Finally, the result of inverse

Fig. 8. Block Histogram Normalization (BHN) Engine: Un-normalized Block histograms
(concatenated cell histograms) are used as inputs to generate normalized block histograms.

square root is multiplied with each histogram value to generate the normalized block
histogram.

It is seen that the number of multipliers in BHN depends on the size of the block
histogram, which is related to number of bins assigned to each cell histogram. Adding
a single bin to cell histogram adds eight multipliers to the hardware. The adder size
also increases proportionately.

4.4 SVM Classification

The normalized histograms obtained from the BHN block are again stored in the
memory. Once normalized histograms for the whole window are available
classification can be performed which can consume a fair amount of memory.
Performing classification for the whole window at once also requires a large number of
multipliers and adders. The situation gets worse as the feature vector size increases
with smaller cell sizes or large number of bins. Therefore, we have opted for partial
classification by dividing the classification for the whole window into multiple stages.
The hardware shown in Fig. 9. is reused at every stage. The strategy behind reusing
the hardware is very straightforward. Since it takes 𝑤! cycles to completely process a
cell, we have reused the same hardware over these 𝑤! cycles doing partial
classification every 𝑁! 𝑤! blocks. So the number of partial classification stages is
equal to 𝐶!. The results of each stage are accumulated to get the final classification
result.

The key observation is that the cell size effects the hardware complexity in two
ways. First, it has a direct impact on feature vector size. Second, larger the cell size,
more cycles will be available to perform classification, thereby, smaller hardware is
required for partial classification.

Fig. 9. Partial Classification Engine (PCE), single stage
of LinSVM classification to be performed for whole
window. Inputs are normalized histograms while output
is the partial classification result.

5 Results and Discussion

In this section, we evaluate our hardware implementation for multiple cell sizes and
histogram bins to obtain optimal set of these parameters. Results are presented for
full-HD (1920x1080) resolution videos. Window size is considered to be 64x128.
Block size is 2x2 cells, while block and window step size is one cell for both
horizontal and vertical directions. Scale factor to rescale images is set to 1.05. This
results in 45 scales to be processed per frame. Other parameters depend on the choice
of cell size and histogram bins.

Here, we first present our experimental setup then we analyze the effect of different
cell sizes and histogram bins on accuracy, throughput and power. Using these results,
parameters yielding least power and maximum throughput with negligible loss in
accuracy are selected. Finally, using these parameters comparison with the state of the
art object detection implementations is presented.

5.1 Experimental Setup

We have implemented our system on Xilinx Virtex 7 (XC7VX485T) FPGA. There are
75,900 slices, 607,200 Configurable Logic Blocks (CLBs) and 485,760 logic cells in
this FPGA. Moreover, 37,080 Kb block RAM and 2,800 DSP slices are present. Image
rescaling and window sampling is done for positive and negative images and then sent
to HOG-Acc for processing which returns the detection result. Processing 45 scales
requires a large amount of memory and pipelined stages so we have utilized the time
multiplexing approach of [21]. The host software is written using Visual Studio 2012
and Verilog is used for HOG-Acc design. Design is synthesized using Xilinx ISE 14.7
and along with Modelsim 10.2, a hardware/software co-simulation is performed to
verify the implementation functionality.

Fig. 10. Accuracy Analysis, miss rate generally reduces with increas-
ing cell sizes and decreasing number of bins

5.2 Accuracy Analysis

We have used INRIA dataset [31], to evaluate our HOG implementation. There are
several other datasets available for pedestrian detection evaluation like Caltech [32],
ETH [33], and Daimler [3]. We have, however, restricted our results to INRIA
because it provides us with a reasonable variety of images with different poses and
backgrounds so these results can be generalized to other datasets and real life
scenarios.

All detection results are collected, and afterwards recall is calculated from number
of true positives (TP) and false negatives (FN) as shown in (8).

 𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"!!"

 (8)

A false positive per window (FPPW) of 10-4 is mostly considered in literature for
pedestrian detection results. We also present the Miss Rate (1- Recall) results for
FPPW = 10-4 for multiple cell sizes and number of bins. The results are shown in Fig.
10. It is seen that generally larger histogram bins gives better detection rates. This is
obvious, as more histogram bins allow fine division gradient orientations, hence better

(a) Percentage of slice utilization for multiple cell sizes and fixed 𝑁!"#=9.

(b) Percentage of slice utilization for multiple histogram bins and fixed 𝐶!"#$=8x8

Fig. 11. Hardware Utilization Comparison. Breakdown of usage of multiple slices of
Xilinx FPGA with varying cell size and histogram bins. Increasing any one of them
results in increased hardware complexity.

feature vector for training and classification. On the other hand, improvement is seen
in detection rates by increasing cell size up to a certain value and it drops increasing
cell sizes too much. Smaller cell sizes provide a dense grid of blocks and windows in
a frame, therefore, using smaller cells would improve accuracy. However, using too
small cell sizes results in degraded performance because there are not enough
distinguishing features within the cells. Minimum miss rate of 12% is achieved at
(𝐶!"#$,𝑁!"#) = (7x7, 11).

5.3 Throughput and Power Consumption Analysis

Power consumption and throughput are directly related to the hardware resources used.
In the previous section it is seen that the cell size and histogram bins has significant
impact on hardware complexity. The effect on different hardware components for
different cell sizes and number of bins for a single core is shown in Fig. 11. We see a
significant reduction in hardware resources by increasing cell size or reducing number
of bins. The reasons being discussed in previous section for independent blocks.

Number of frames processed per second (fps) is dependent on the maximum
frequency at which the hardware can operate. In our hardware architecture it is mainly
dependent on the size of partial classification engine and the block normalization
engine. As discussed in previous section, the complexity of PCE is heavily dependent
on 𝐶!"#$
while that of BHN depends on both 𝐶!"#$ and 𝑁!"#. Fig. 12 shows the results. We get
the maximum frequency at the point where both PCE and BHN have overall minimal
hardware complexity. Specifically, the (𝐶!"#$,𝑁!"#) = (11x11, 6).

We have used Xilinx Xpower analyzer (XPA) 14.7 to estimate the deviations in
power consumption by varying the parameters. We have simulated the hardware and
created ‘Value Change Dump’ (vcd) files are used to set the toggle rates of all signals.
Post place and route results are obtained and are shown in Fig. 13. Power consumption
increases by reducing the cell size or increasing the histogram bins. This is fairly

Fig. 12. Throughput Analysis, an increase in throughput is seen
for bigger cell sizes and histogram bins.

understandable due to the fact that both these parameters increase the hardware
complexity due to increase in the feature vector size. Minimum power consumption is
9.98 W with (𝐶!"#$,𝑁!"#) = (12x12, 6), the maximum cell size and minimum histogram
bins as expected.

5.4 Choice of Parameters

We have seen from the previous analysis that there does not exist a set of parameters
which give us best accuracy, power and throughput. Improving the accuracy worsens
the power and throughput while maintaining minimum power and maximum
throughput severely degrades the accuracy. Similarly, trying to improve throughput
may degrade power consumption significantly and vice versa. However, accuracy is
changing very slightly at certain regions in Fig. 9. Similarly, there are more than one
sets of parameters which give almost the same power consumption. This allows us to
select the best of one of these metrics while slightly compromising on another metric.
We can achieve best results by selecting (𝐶!"#$,𝑁!"#) = (9x9, 10). Further we obtained
results for miss rate by changing bit-width for this optimal parameter set. The results
are shown in Fig. 14. Bit-width is hence set to eight bits as it gives maximum accuracy
and minimum hardware complexity. Note that this further results in reduced bit-width
in all the next blocks.

Parameters optimized for low power and high speed are shown in Table II & III
comparing the throughput and energy consumption results with the other state of the art
FPGA and GPU implementations. We have presented three results. 1) HOGCONV, which
shows the results for conventionally used parameters. We can achieve 32 fps for full-
HD while dissipating 0.656 J/frame and 15% miss rate. 2) HOGOCB, presents results for
optimized cell size and histogram bins. Frame rate achieved by optimizing cell size and
histogram bins is 39.2 fps with energy consumption of 0.484 J/frame while
maintaining a miss rate at 15%. Gradient magnitude bit-width is considered to be 13
bits. 3) Finally, HOGOCB-RF, in which features are further refined by removing
insignificant gradients, is presented. This results in a frame rate of 42.7 fps while
energy consumption is 0.45 J/frame at 13% miss rate.

Fig. 13. Power Consumption Analysis, Large cell size and small-
er number of histogram bins results in low power consumption.

6 Conclusion

We have presented fully parallel architectures for various modules of pedestrian
detection system utilizing Histogram of oriented gradients (HOG). HOG has shown
high detection accuracy but the detection speed and power consumption are major
bottlenecks for real time embedded applications. We have optimized parameters, cell
size and histogram bins, to achieve low power and high throughput while maintaining
the detection accuracy. Feature refinement is done to further improve the results.

Fig. 14. Variation in miss rate for (𝐶!"#$,𝑁!"#) = (9x9, 10).

TABLE II
COMPARISON OF PARAMETERS AND THROUGHPUT FOR VARIOUS GPU AND FPGA

IMPLEMENTATIONS

 Cell
Size

Histogram
Bins

Win.
Stride

scales Resolution Windows/frame FPS

GPU Implementation

[22], [24] 8x8 9 8 37 1024x768 - 17
[25] 8x8 - - >1 640x480 4,096 57
[26] 8x8 8 2 >1 640x480 50,000 23.8
[27] 8x8 9 8 1 640x480 - 32
[28] 8x8 9 4 >1 1280x960 150,000 2.4
[29] 8x8 9 - >1 640x480 - 5.6

FPGA Implementation

[18] 8x8 8 4 >1 320x240 3,615 38
[19] 8x8 9 - 1 800x600 1000 >10
[20] 8x8 8 9 1 640x480 1,540 62.5

[21] 8x8 9 8 18 1920x1080 27,960 64 (esti-
mated)

[22] 8x8 9 8 13 1024x768 20,868 13

[23] 8x8 8 4 >1 640x480 56,466 30 (esti-
mated)

[6] 8x8 9 8 1 800x600 5,580 72
[8] 8x8 9 4 34 640x480 121,210 68.18

[8] 8x8 9 4 34 1600x1200 1,049,886 10.41
(estimated)

HOGCONV 8x8 9 8 45 1920x1080 264,062 32
HOGOCB 9x9 10 8 45 1920x1080 264,062 39.2

HOGOCB-RF 9x9 10 8 45 1920x1080 264,062 42.7

Combination of optimal parameters and our hardware accelerator results in a frame
rate of 42.7 fps for full-HD resolution and lowers the energy consumption by 97.34%
and 16.4% while improving the accuracy by 2% as compared to state of the art GPU
and FPGA implementations respectively. This work can be extended to use multiple
cores on a single FPGA or using multiple FPGAs to further increase throughput while
an ASIC implementation would greatly reduce the power consumption. It can also be
extended to include other features and classifiers or combinations of those to optimize
for objects other than pedestrians.

7 Acknowledgments

This work was supported by the Center of Integrated Smart Sensors funded by
Ministry of Science, ICT & Future Planning as Global Frontier Project (CISS-
2013M3A6A6073718).

References

1. U. Shankar, “Pedestrian roadway fatalities,” Department of Transportation Tech. Rep.,

2003.
2. D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey on pedestrian detection for

advanced driver assistance systems,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 32, no. 7, pp. 1239–1258, 2010. 1, 2, 10, 16, 18

3. A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “A mobile vision system for robust
multi-person tracking,” in Computer Vision and Pattern Recognition (CVPR), IEEE Conf.
on, 2008, pp. 1–8.

4. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc.
IEEE Conf. Comput. Vision Pattern Recog., Jun. 2005, vol. 1, pp. 886–893.

5. D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–
110, 2004

6. K. Mizuno, Y. Terachi, and K. Takagi, “Architectural study of HOG feature extraction
processor for real-time object detection,” in Proc. IEEE Workshop Signal Process. Syst.,
Oct. 2012, pp. 197–202.

7. K. Takagi et al. A sub-100-milliwatt dual-core HOG accelerator VLSI for real-time
multiple object detection. In ICASSP, 2013.

8. Xiaoyin Ma, Walid A. Najjar, Amit K. Roy-Chowdhury, “Evaluation and Acceleration of
High-Throughput Fixed-Point Object Detection on FPGAs”. IEEE Trans. Circuits Syst.
Video Techn. 25(6): 1051-1062 (2015)

9. P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of the
TABLE III

COMPARISON OF PARAMETERS AND ENERGY CONSUMPTION FOR VARIOUS GPU
AND FPGA IMPLEMENTATIONS

 Cell
Size

Histogram
Bins

Win.
Stride

scales Resolution Windows/frame Power

(W)
Energy

(J/Frame)

[8] (GPU) 8x8 9 4 34 640x480 121,210 225 17
[8](FPGA) 8x8 9 4 34 640x480 121,210 37 0.54

HOGCONV 8x8 9 8 45 1920x1080 264,062 21 0.656
HOGOCB 9x9 10 8 45 1920x1080 264,062 19 0.485

HOGOCB-RF 9x9 10 8 45 1920x1080 264,062 19.276 0.451

state of the art,” Pattern Analysis and Machine Intelligence, IEEE Trans. on, vol. 34, no. 4,
pp. 743–761, 2012.

10. Asim Khan, Muhammad Umar Karim Khan, Muhammad Bilal, Chong-Min Kyung,
“Hardware architecture and optimization of sliding window based pedestrian detection on
FPGA for high resolution images by varying local features”. VLSI-SoC 2015: 142-148

11. C. Papageorgiou and T. Poggio, “A trainable system for object detection,” Int. J. Comput.
Vision, vol. 38, no. 1, pp. 15–33, Jun. 2000.

12. M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, “Pedestrian detection using
wavelet templates,” in Proc. IEEE Conf. Comp. Vision Pattern Recog., Jun. 1997, pp.
193–199.

13. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput.
Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

14. H. Cheng, N. Zheng, and J. Qin, “Pedestrian detection using sparse Gabor filter and
support vector machine,” in Proc. IEEE Intell. Veh. Symp., Jun. 2005, pp. 583–587.

15. P. Y. Chen, C. C. Huang, C. Y. Lien, and Y. H. Tsai, "An Efficient Hardware
Implementation of HOG Feature Extraction for Human Detection," IEEE Trans. Intell.
Transp. Syst., vol. 15, NO. 2, pp. 656-662, 2014.

16. S. E. Lee, K. Min, and T. Suh, “Accelerating histograms of oriented gradients descriptor
extraction for pedestrian recognition,” Comput. Elect. Eng., vol. 39, no. 4, pp. 1043–1048,
May 2013.

17. Y. Pang, Y. Yuan, X. Li, and J. Pan, “Efficient HOG human detection,” Signal Process.,
vol. 91, no. 4, pp. 773–781, Apr. 2011.

18. M. Hiromoto and R.Miyamoto, “Hardware architecture for high-accuracy real-time
pedestrian detection with CoHOG features,” in Proc. IEEE ICCVW, 2009, pp. 894–899.

19. S. Bauer, S. Kohler, K. Doll, and U. Brunsmann, “FPGA-GPU architecture for kernel
SVM pedestrian detection,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010 IEEE Comp. Soc. Conf. on, June 2010, pp. 61–68.

20. K. Negi, K. Dohi, Y. Shibata, and K. Oguri, “Deep pipelined one-chip FPGA
implementation of a real-time image-based human detection algorithm,” in Proc. Int. Conf.
FPT, Dec. 12–14, 2011, pp. 1–8.

21. M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA based real-time
pedestrian detection on high-resolution images,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2013 IEEE Conf. on, June 2013, pp. 629–635.S

22. C. Blair, N. Robertson, and D. Hume, “Characterizing a heterogeneous system for person
detection in video using histograms of oriented gradients: Power versus speed versus
accuracy,” Emerging and Selected Topics in Circuits and Systems, IEEE J. on, vol. 3, no.
2, pp. 236–247, 2013.

23. R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y. Nakamura,
“Hardware architecture for HOG feature extraction,” in Intelligent Information Hiding and
Multimedia Signal Processing (IIHMSP), 5th Int. Conf. on, 2009, pp. 1330–1333.

24. OpenCV: http://opencv.org/
25. P. Sudowe and B. Leibe, “Efficient use of geometric constraints for sliding-window object

detection in video,” in Int. Conf. on Computer Vision Systems (ICVS’11), 2011
26. T. Machida and T. Naito, “GPU & CPU cooperative accelerated pedestrian and vehicle

detection,” in Computer Vision Workshops (ICCV Workshops), IEEE Int. Conf. on, 2011,
pp. 506–513.

27. C. Yan-ping, L. Shao-zi, and L. Xian-ming, “Fast HOG feature computation based on
CUDA,” in Computer Science and Automation Engineering (CSAE), IEEE Int. Conf. on,
vol. 4, 2011, pp. 748–751.

28. B. Bilgic, B. K. P. Horn, and I. Masaki, “Fast human detection with cascaded ensembles
on the GPU,” in Intelligent Vehicles Symp. (IV), 2010 IEEE, 2010, pp. 325–332.

29. V. Prisacariu and I. Reid, “fastHOG - a real-time GPU implementation of HOG,”
Department of Engineering Science, Oxford University, Tech. Rep. 2310/09, 2009.

30. http://en.wikipedia.org/wiki/Fast_inverse_square_root
31. INRIA Person Dataset. http://pascal.inrialpes.fr/data/human/
32. P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,” in

Computer Vision and Pattern Recognition (CVPR), IEEE Conf. on, 2009, pp. 304–311.eth
33. M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey and experiments,”

Pattern Analysis and Machine Intelligence, IEEE Trans. on, vol. 31, no. 12, pp. 2179–
2195, 2009.

34. C. Gu, J. J. Lim, P. Arbelaez, and J. Malik, “Recog. using regions,” in IEEE Conf. Com-
puter Vision and Pattern Recognition, 2009.

35. C. Papageorgiou and T. Poggio, “A trainable system for object detection,” Intl. Journal of
Computer Vision, vol. 38, no. 1, pp. 15–33, 2000.

36. P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, multiscale,
deformable part model,” in IEEE Conf. Computer Vision and Pattern Recognition, 2008.

37. P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan “Object detection
with discriminatively trained part based models,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 99, no. PrePrints, 2009.

38. F. M. Porikli, “Integral histogram: A fast way to extract histograms in cartesian spaces,” in
IEEE Conf. Computer Vision and Pattern Recognition, 2005.

39. P. A. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using patterns of motion
and appearance,” Intl. Journal of Computer Vision, vol. 63(2), pp. 153–161, 2005.

40. P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning shapelet features,” in
IEEE Conf. Computer Vision and Pattern Recognition, 2007.

41. B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans in a single im-
age by bayesian combination of edgelet part det.” in IEEE Intl. Conf. Computer Vision,
2005. 6, 10, 11

42. B. Wu and R. Nevatia. Cluster boosted tree classifier for multi-view, multi-pose object
detection. In ICCV, 2007.

43. D. M. Gavrila, “A bayesian, exemplar-based approach to hierarchical shape matching,”
IEEE Trans. Pattern Analysis and Machine Intelligence, 2007.

44. Y. Liu, S. Shan, W. Zhang, X. Chen, and W. Gao, “Granularitytunable gradients partition
descriptors for human det.” in IEEE Conf. Computer Vision and Pattern Recognition,
2009.

45. Y. Liu, S. Shan, X. Chen, J. Heikkila, W. Gao, and M. Pietikainen, “Spatial-temporal
granularity-tunable gradients partition descriptors for human det.” in European Conf.
Computer Vision, 2010

46. D. M. Gavrila and V. Philomin, “Real-time object det. for smart vehicles,” in IEEE Intl.
Conf. Computer Vision, 1999, pp. 87–93

47. N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented histograms of flow
and appearance,” in European Conf. Computer Vision, 2006.

48. C. Wojek, S. Walk, and B. Schiele, “Multi-cue onboard pedestrian detection,” in IEEE
Conf. Computer Vision and Pattern Recognition, 2009.

49. T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution grayscale and rotation invari-
ant texture classification with local binary patterns,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 7, pp. 971–987, Jul. 2002.

50.] Y. Rodriguez, “Face Detection and Verification Using Local Binary Patterns,” PhD the-
sis, EPF Lausanne, 2006

51. Y. Zheng, C. Shen, R.I. Hartley, and X. Huang, “Effective pedestrian detection using cen-
ter-symmetric Local Binary/Trinary Patterns”, in CoRR, 2010.

52. X. Wang, T. X. Han, and S. Yan, “An hog-lbp human detector with partial occlusion han-
dling,” in IEEE Intl. Conf. Computer Vision, 2009.

53. P. Ott and M. Everingham, “Implicit color segmentation features for pedestrian and object
detection,” in IEEE Intl. Conf. Computer Vision, 2009.

54. S. Hussain and B. Triggs, “Feature sets and dimensionality reduction for visual object
det.” in British Machine Vision Conf., 2010.

55. W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis, “Human detection using partial
least squares analysis,” in IEEE Intl. Conf. Computer Vision, 2009.

56. C. Wojek and B. Schiele, “A performance evaluation of single and multi-feature people
detection,” in DAGM Symposium Pattern Recognition, 2008.

57. S. Walk, N. Majer, K. Schindler, and B. Schiele, “New features and insights for pedestrian
detection,” in IEEE Conf. Computer Vision and Pattern Recognition, 2010.

