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Abstract. Pedestrian detection has lately attracted considerable interest from 
researchers due to many practical applications. However, the low accuracy and 
high complexity of pedestrian detection has still not enabled its use in 
successful commercial applications. In this chapter, we present insights into the 
complexity-accuracy relationship of pedestrian detection. We consider the 
Histogram of Oriented Gradients (HOG) scheme with linear Support Vector 
Machine (LinSVM) as a benchmark. We describe parallel implementations of 
various blocks of the pedestrian detection system which are designed for full-
HD (1920x1080) resolution. Features are improved by optimal selection of cell 
size and histogram bins which have been shown to significantly affect the 
accuracy and complexity of pedestrian detection. It is seen that with a careful 
choice of these parameters a frame rate of 39.2 fps is achieved with a negligible 
loss in accuracy which is 16.3x and 3.8x higher than state of the art GPU and 
FPGA implementations respectively. Moreover 97.14% and 10.2% reduction in 
energy consumption is observed to process one frame. Finally, features are 
further enhanced by removing petty gradients in histograms which result in loss 
of accuracy. This increases the frame rate to 42.7 fps (18x and 4.1x higher) and 
lowers the energy consumption by 97.34% and 16.4% while improving the 
accuracy by 2% as compared to state of the art GPU and FPGA 
implementations respectively. 
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1 Introduction 

Researchers in industry and academia have been striving for accurate and real-time 
pedestrian detection (PD) for more than a decade owing to many commercial and 
military applications. Industries such as surveillance, robotics, and entertainment will 
be greatly influenced by appropriate application of PD. Advanced driver assistance 
systems (ADAS) and unmanned ground vehicles (UGV) are merely a distant dream 
without automated pedestrian detection. The fact that more than 15% of traffic 



accidents include pedestrians [1] shows the importance of real-time pedestrian 
detection for the modern society [2].  
 Amid numerous applications, the search for an accurate yet fast PD algorithm is 
ongoing. Researchers have shown great interest over the past few years in extracting 
diverse features from an image and finding an appropriate classification method to 
perform robust PD [10-14]. However, the histogram of oriented gradients (HOG) 
approach has proven to be a groundbreaking effort, and has shown good accuracy in 
various illumination conditions and multiple textured objects. Inspired from SIFT [5], 
the authors in their seminal paper [4] present a set of features over a dense grid in a 
search window. For training and classification, they used the linear support vector 
machine (linSVM). Their work inspired many other researchers and is still used as a 
benchmark PD scheme. 
 Although HOG was presented many years back, it is surprising to see that very few 
efforts have been made for an optimal hardware implementation of HOG. In fact, most 
of the research has been targeting pedestrian detection on a high end CPU or GPU or 
combination of both [24-29].  Field Programmable Gate Arrays (FPGA) and 
Application Specific Integrated Circuits (ASIC) often provide better execution speed 
and energy efficiency as compared to GPUs due to deep pipelined architectures. 
Furthermore, in many embedded applications, such as surveillance, there are numerous 
constraints on hardware cost, speed, and power consumption. For such applications, it 
is more suitable to use task-specific (FPGA, ASIC) rather than general-purpose 
platforms. Moreover, to meet such constraints, certain parameters of the algorithm 
need to be tuned and an insight is required into how the change of parameters of PD 
affects not only the accuracy but also the hardware complexity.  

Efforts have been made in the research community to either improve the accuracy 
of PD or reduce the hardware complexity of HOG. In [6] and [7], the computational 
complexity of HOG is reduced with cell-based scanning and simultaneous SVM 
calculation using FPGA and ASIC implementations for full HD resolution; however, 
the implementations use the parameters as suggested in [4]. Various hardware 

 
Fig. 1. Comparison of the state of the art in terms of frames per second and number of 
scales. 



optimizations are presented in [15-22] for an efficient pedestrian detection system. 
However, for real-time PD with power and area constraints, it is imminent to find the 
set of parameters of HOG that provide the best compromise in terms of computational 
complexity and accuracy. Recently, a hardware architecture for fixed point HOG 
implementation has been presented [8] where the bit-width has been optimized to 
achieve significant improvement in power and throughput. We believe that in addition 
to bit-width there are other parameters which need to be optimized to provide a holistic 
understanding of the relationship between accuracy, speed, power, and complexity. 
Moreover, sliding window based pedestrian detection requires detection to be 
performed at multiple scales of image. It has been shown that the best detection 
performance can be achieved with scale factor (the ratio to scale the image after each 
detection) of at-least 1.09. This results in processing around 45 scales for full-HD 
resolution. As shown in Fig. 1, a combination of the number of scales (=45) required 
for maximum accuracy [8] - [9] and throughput for real-time pedestrian detection at 
full-HD resolution has not been achieved before. 

The key contributions of our work can be summarized as follows. 

• We present parallel implementation of various blocks of HOG-based PD on an 
FPGA. Parallel implementation has been used to improve the speed of PD. 

• We derive the accuracy, speed, power, and hardware complexity results of HOG-
based PD with different choices of cell sizes and number of histogram bins.  

• We show that by using the right choice of cell size and number of histogram bins, a 
significant reduction in power consumption and increase in throughput can be 
achieved with reasonable accuracy. 

• Finally features are refined by removing insignificant gradients which results in not 
only improvement of throughput and power consumption but also accuracy. 

This chapter is an extension of our original paper [10] including more detailed 
literature survey and hardware implementation details. The rest of the chapter is 
organized as follows. Section 2 summarizes the state of the art in PD. In Section 3, a 
brief overview of HOG is presented. The proposed hardware implementation is 
discussed in Section 4. In Section 5, the accuracy, speed, power, and hardware 
complexity results are shown for different choices of parameters and the optimal 
choice of parameters under given constraints is described. Section 6 concludes the 
work. 

2 Literature Survey 

Numerous efforts have been made in the past to perform PD efficiently. An extensive 
survey of PD schemes is given in [9]. Generally, these approaches can be classified 
into two categories: segmentation-based approaches [34] and sliding window-based 
approaches [35]. A segmentation-based approach processes the whole frame at once 
and extracts segments of the frame which include pedestrians. On the other hand, 
sliding window-based approaches divide a frame into multiple, overlapping windows 
and search pedestrians in each of these windows. 



2.1 Sliding Window Based Pedestrian Detection  

Recently, researchers have put more effort into sliding window approach as this 
approach simplifies the problem of PD to binary classification in a given window. 
Sliding window-based approaches can be further subdivided into rigid and part-based 
methods. The rigid schemes consider the window holistically to identify a pedestrian. 
Part-based schemes, such as [36, 37] identify different parts of a pedestrian in a 
window, and decide the presence of a pedestrian based on the location and confidence 
(accuracy) of detected parts. Part-based schemes have been shown to perform better 
compared to rigid schemes as the decision in these methods is based on the aggregate 
of decisions for different parts and these schemes can handle occlusion better 
compared to rigid schemes. However, the higher computational complexity of part-
based methods makes them infeasible for real-time applications. Rigid schemes utilize 
a single feature or multiple features to detect an object. We have categorized the 
schemes depending on the feature and implementation platform.  

Single Feature Pedestrian Detection. In [35], the authors use Haar-like features with 
Support Vector Machines (SVM) to identify objects in a scene. Their method was 
advanced in [38] for face detection, where the authors obtained an astounding 
increase in speed by using integral images to compute Haar-like features. Furthermore, 
cascaded boosted trees were used for classification. The method of [38] was used for 
PD in [39]. However, using Haar-like features for PD detection did not show much 
promise until recently [4] due to their low accuracy. 

A set of rich and compact features was required to improve PD. Rich features were 
needed to extract maximum information from a window and compactness was needed 
to better generalize from training to testing. HOG [4] performed both these tasks by 
including the complete (or rich) gradient information of a window into compact 
histograms. They trained Linear Support Vector Machine (LinSVM) framework for 
classification. Furthermore, they developed and used the INRIA pedestrian dataset, 
which was the most extensive dataset for PD at that time. Resultantly, their method 
achieved significant improvement in accuracy of PD compared to the previous 
schemes. 

Since its inception, HOG has influenced most of the modern PD methods. In [40], 
gradients in local patches, similar to HOG, are used to represent shape descriptors. 
These shape descriptors are combined to create a single feature which is classified 
using boosted trees. The method is used for PD as well as detection of other objects. 
Edgelets, used in [41] and [42], have been used to learn and classify body parts with 
boosted trees. Other variations include distance transform and template hierarchy [43] 
to match images with templates, granularity-tunable gradients partition to define 
spatial and angular uncertainty of line segments [44] and its extension to 
spatiotemporal domain [45], shape features [46] and finally motion based features 
[47]-[48]. 

Multiple Feature Pedestrian Detection. To further enhance the PD accuracy of 
HOG, researchers have complimented HOG with other features. Local Binary Pattern 



(LBP) is a very simple feature based on magnitude comparison of surrounding pixels, 
and has typically been used for texture classification [49] and face detection [50]. It 
has also been used in PD [51]. In [52], the authors present a feature combining both 
HOG and LBP and use linSVM for classification. They show that this combination 
improves the PD performance under partial occlusion. In [53], the authors use implicit 
segmentation and divide the image into separate foreground and background, 
followed by HOG. HOG, LBP and local ternary patterns were combined in [54] for 
pedestrian and object detection. Gradients information and HOG, textures (co-
occurrence matrices), and color frequency are combined in [55].  Partial least squares 
are used to reduce the dimensions of the feature and SVM is used for classification. 
HOG has been combined with Haar-like [56], shapelets [40], color self-similarity and 
motion [57] features as well. Note that none of these features when used 
independently from HOG has been able to outperform HOG. 

2.2 Real Time Pedestrian Detection 

Numerous applications require PD at fast rates. For such applications, it is more 
suitable to use task-specific (GPU, FPGA, ASIC) rather than general-purpose 
platforms. A fine grain parallel ASIC implementation of HOG-based PD is presented 
in [7]. In [15], simplified methods are presented for division and square root operations 
for use in HOG. However, by employing their methods, the accuracy of PD is severely 
degraded. A multiprocessor system on chip (SoC) based hardware accelerator for HOG 
feature extraction is described in [16]. In [17], the authors reuse the features in blocks 
to construct the HOG features of overlapping regions in detection windows and then 
use interpolation to efficiently compute the HOG features for each window.  

In [18], the authors developed an efficient FPGA implementation of HOG to detect 
traffic signs. In [19], a real-time PD framework is presented which utilizes an FPGA 
for feature extraction and a GPU for classification. A deep-pipelined single chip FPGA 
implementation of PD using binary HOG with decision tree classifiers is discussed in 
[20]. A heterogeneous system is presented in [22] to optimize the power, speed and 
accuracy.   

 From the discussion above, we notice that HOG is integral to most PD 
algorithms. Efforts have been made in the research community to either improve the 
accuracy of PD or reduce the hardware complexity of HOG. In our study, we are yet 
to find an effort which analyzes the effects of reducing hardware costs on accuracy of 
HOG. For real-time PD with power and area constraints, it is imminent to find the set 
of parameters of HOG that provide the best compromise in terms of computational 
complexity and accuracy.  

 
Fig. 2. Block Diagram of HOG based Pedestrian Detection 

 



3 Overview of HOG 

In this section, we present a brief overview of the HOG algorithm for PD. Although 
HOG can be used in a part-based PD scheme, we limit our discussion to the rigid HOG 
as described in the original paper [4]. A block diagram showing functional blocks of 
the algorithm is shown in Fig. 2. 

In HOG, a search window is divided into multiple overlapping blocks which are 
further divided into cells as shown in Fig. 3.,where 𝑤! , ℎ! , 𝑤!, ℎ! , 𝑤! , ℎ!  ,
𝑤! , ℎ! ,  are the frame, window, block and cell (width, height) respectively. 𝑁!"# is 

the number of histogram bins. The blocks have an overlap of 50%, creating a dense 
grid over the search window. So a single 𝑤!×ℎ!  window has 𝑛! =  𝑤!/𝑤!  ×ℎ!/
ℎ!  cells and  𝑛! =  !!!!!

!!
 ×  !!!!!

!!
  blocks. Gradient features are extracted from 

these blocks and cells, and are concatenated to create a single feature vector for the 
whole window. 

A filter with coefficients [-1, 0, 1] is applied to the window in horizontal and 
vertical directions, creating the images 𝐺! and 𝐺!, respectively. These images are used 
to generate the gradient magnitude image, 𝐺!, and the gradient orientation image, 𝐺!, 
for each pixel 𝑥, 𝑦  as follows. 

 𝐺! 𝑥, 𝑦 =  𝐺 𝑥, 𝑦 =  𝐺! 𝑥, 𝑦 ! +  𝐺! 𝑥, 𝑦 ! (1) 

 𝐺! 𝑥, 𝑦 =  tan!! !! !,!
!! !,!

 (2) 

Fig. 3. A depiction of image division for sliding window based 
object detection. An input image (wF × hF) is divided into 
overlapping windows. The window is divided into overlapping 
blocks which are further divided into cells. A histogram is 
generated for every cell. 



The histogram used in the feature accumulates the orientation information of an 
image. Each histogram has multiple bins, where each bin represents a specific 
orientation in the interval [0, π). The value 𝐺!(𝑥, 𝑦) is added to the bin of the 
histogram which corresponds to 𝐺!(𝑥, 𝑦). Such histograms are developed for every cell 
of the window, as shown in Fig. 3.  

The cell histograms belonging to a single block are concatenated to form block 
histogram of length 𝑀 = 4 ×𝑁!"#, where, 𝑁!"#  is the number of bins in each cell 
histogram. Block histograms are further L2-normalized using (3), and then added to 
the feature vector. L2-norm for an un-normalized feature vector v, is given by, 

 𝑥!! =   !!
!

! !
!! !!

. (3) 

where 𝑖 = 1,… ,𝑀 , 𝑏 = 1,… , 𝑛! , 𝑣 !
! = 𝑣!! + 𝑣!! +⋯+  𝑣!!  and 𝜀 is a small 

constant to avoid division by zero. L2-normalization is performed to improve 
robustness against illumination changes. 

For classification, LinSVM is used. From an implementation perspective, a weight 
vector is obtained after the training stage. During classification, a dot product of the 
feature extracted from the window and the weight vector is compared against a 
threshold. If the dot product is greater than the threshold, then a pedestrian is 
identified.  

4 Hardware Architecture 

The hardware implementation of HOG presents a unique challenge, which is quite 
distinct from the software implementation. First, we cannot store and access a 
complete frame, and read and write from multiple addresses at once as this will require 
unrealistically large hardware resources. Second, floating point operations are quite 
costly in hardware, as they use more FPGA area and runs at a lower frequency; 
therefore, we avoid them in hardware implementation. Finally, the choice of 
parameters affects hardware complexity significantly compared to software 
implementation.  

Fig. 4. Block Diagram of Hardware Architecture. Gradient is 
computed over input pixels stored in Pixel Line buffer, cell 
histograms are then built using gradients, SRAM is used to store 
intermediate cell histograms. Next steps are normalization of 
histograms generated and finally classification. 
 



Our key objectives in this implementation are to maintain the maximum accuracy 
and minimum power consumption while performing real time PD by controlling local 
features. Hardware/memory optimization is done using optimal values of these 
features. The optimized architecture thus obtained results in a reduced workload and 
low bandwidth.  

The conceptual block diagram of the proposed HOG Accelerator (HOG-Acc) is 
shown in Fig. 4. In the following we present a description of the major functional 
blocks shown in Fig. 4.   

4.1 Gradient Computation 

To compute the gradient magnitude and orientation, the horizontal and vertical 
gradient images, i.e., 𝐺! and 𝐺!, need to be generated. Gradient is computed over the 
3x3 neighborhood of each pixel; therefore, two line buffers are required to store two 
consecutive scan lines of the image to maintain a 3x3 neighborhood of every pixel. 
 A straight forward computation of the gradient magnitude, as given in (1), will 
require the implementation of the square root operation, which will consume 
significant hardware resources; thereby, delay and power consumption will increase. In 
order to reduce the computational complexity, the following approximations from [15] 
have been used to compute the gradient magnitude and orientation. 

 𝐺! 𝑥, 𝑦 ≈ max 0.875𝑎 + 0.5𝑏 , 𝑎 , (4) 

where, 

 𝑎 = max 𝐺! 𝑥, 𝑦 ,𝐺! 𝑥, 𝑦 , (5) 

and 

 𝑏 = min 𝐺! 𝑥, 𝑦 ,𝐺! 𝑥, 𝑦 . (6) 

 
Fig. 5. Gradient Magnitude Computation Module. (a) Simply 
subtract the horizontal and vertical neighboring pixels to 
compute the horizontal and vertical gradients. (b)  Gradient 
magnitude is computed by shift and compare operations to 
implement (4) - (6)  



 The circuitry for gradient magnitude computation is shown in Fig. 5. Equation (5) 
and (6) are implemented using a single compare operation, while (4) requires four shift 
operations yielding 0.875a and 0.5b, then an adder and one more comparator is used to 
give the final gradient magnitude. 
Similarly, a direct implementation of (2) for computing the gradient orientation will 
require two costly hardware operations: the inverse tangent and division. To reduce the 
complexity, (2) can be rewritten as 

 𝐺! 𝑥, 𝑦 tan 𝐺! 𝑥, 𝑦 = 𝐺! 𝑥, 𝑦 . (7) 

 The problem of identifying the gradient orientation can be solved using (7) as: 
multiplying the horizontal gradient value with the values of the right column of table I; 
the product which best matches against the vertical gradient indicates the gradient of 
the pixel. Note that even the multiplication operation is not required, as the product 
with the values in the right column of Table I can be performed by simple arithmetic 
shifting.  
 The circuit to compute the histogram bin is shown in Fig. 6. It consists of two 
parts, one deals with the quadrant decision and other decides the bin. Comparing 
horizontal and vertical neighboring pixels sets the Q-flag value which indicates 
whether the bin lies in first or second quadrant. Once we know the quadrant, we have 
to decide which histogram bin the orientation value lies in. By using Table I to 
approximate the value of tangent function at different orientations, complex 

 
Fig. 6. Bin Computation Module: Bin quadrant is 
decided using a Q-flag, which is computed by 
comparing horizontal and vertical pixels, histogram bin 
is then decided implementing (7) using comparators 
and AND gate. 

TABLE I 
APPROXIMATED VALUES OF TANΘ 

Tangent Approximated Value 

𝑡𝑎𝑛0° 0 
𝑡𝑎𝑛10° 2!! + 2!!  
𝑡𝑎𝑛20° 2!! + 2!! 
𝑡𝑎𝑛30° 2!! + 2!! +  2!! 
𝑡𝑎𝑛40° 2!! + 2!! +  2!! 
 



operations such as inverse tangent and division can be avoided. The hardware utilizes 
only comparators, shifters and adders, hence reducing the complexity significantly.  
 It has been shown in [8] that bit-width assigned to magnitude has a significant 
impact on accuracy, throughput and power consumption as it affects the data sizes at 
all the next stages. In [8] fixed-point implementation is considered and bit width of 
gradient magnitude is optimized as 13 bits (9:4 (integer: fractional)). We argue that 
using only integer values of gradient magnitude can further improve the accuracy, 
throughput and power consumption. The details are given in Section IV. The key 
insight is that by using integer values for gradient magnitudes, we can remove the 
histogram values which are less significant. The advantages are twofold. 1) It reduces 
the hardware complexity due to reduced bit width and integer operations. 2) It 
improves the accuracy because removing these petty gradient magnitudes enhances the 
feature vector for training and classification. 

4.2 Cell Histogram Generation 

We propose a parallel Cell Histogram Generation (CHG) module as shown in Fig. 7. 
Gradient magnitudes and orientation bins for every 𝑤!×ℎ!  pixels are given as input to 
CHG. Decoders and adders are used to build the histogram. Each bin value is given as 
input to the decoder. Only one output is set to ‘1’ corresponding to the specific bin; 
gradient magnitude for that bin hence propagates to the input of adder, where all the 
magnitudes of the same bin are added. 

The decoder size is dependent on the number of bits required to represent single 
bin, i.e. if number of histogram bins increase the size of decoder increases. On the 
other hand, the cell size (𝐶!"#$ =   𝑤!× ℎ!) affects the number of decoders as the total 
number of decoders required equals 𝐶!"#$. Multipliers required for CHG are dependent 
on both 𝑁!"# and 𝐶!"#$. Multipliers in each stage depend on 𝑁!"# while number of 
stages depends on 𝐶!"#$. Finally, the number of adders is equivalent to the 𝑁!"# chosen. 

 
 
Fig. 7. Cell Histogram Generation (CHG) Engine: Histogram bins and gradient magnitudes are 
given as input and cell histograms are generated.  



Adder size, however, varies according to 𝐶!"#$. We can clearly see that the complexity 
of CHG is strongly dependent on 𝑁!"# and 𝐶!"#$.  

Since pixels are coming row by row, we have to maintain cell histograms for 
multiple blocks and windows as each row has multiple windows. Therefore, the 
gradient magnitudes and orientations computed for every 𝑤!  pixels (one cell) are 
concatenated and stored in memory. Pixels of row index which is a multiple of ℎ!  
indicate the completeness of cell. This row is directly stored into registers. At the start 
of every such row, respective values of previous rows for the particular cell are read 
into registers from block RAM every clock cycle. As we have considered  𝑤! = ℎ!  the 
cell completes in horizontal and vertical directions simultaneously. Hence, the number 
of shift registers required is equivalent to ℎ! . Each shift register stores magnitudes and 
bins for 𝑤!  pixels. After 𝑤!  cycles the data of one cell is completed so it is shifted to 
the memory, which in turn writes the data for the previous row in the next register. 
The resultant cell histogram is given to the next stage for processing. This is done 
every time the new cell is completed. i.e; when the row index is a multiple of ℎ!  and 
column index is a multiple of 𝑤! . The cell histograms for multiple windows in a frame 
are stored in memory while they are shifted to registers for each active window (the 
window whose cells histograms are completed).  

4.3 Block Histogram Normalization 

Cell histograms are maintained in the memory till four neighboring cells are completed 
and a block is obtained. Note that the memory required to store the cell histograms 
increases with smaller cells (more cells per row and column) and larger number of 
histogram bins for every cell (more data per cell). In other words, 𝐶!"#$ affects the 
memory locations required while 𝑁!"# influences the width of each location.  

   The histogram is normalized using the Block Histogram Normalization Engine 
(BHN) shown in Fig. 8. Normalization is performed every time a new block is 
completed. Each histogram value in a block is squared and added. The sum is given as 
input to inverse square root module which is approximated using “fast inverse square 
root” algorithm [30]. In summary, logical shifting, subtraction and finally one iteration 
of Newton’s method approximates the inverse square root. Finally, the result of inverse 

 
Fig. 8. Block Histogram Normalization (BHN) Engine: Un-normalized Block histograms 
(concatenated cell histograms) are used as inputs to generate normalized block histograms. 
 



square root is multiplied with each histogram value to generate the normalized block 
histogram. 

It is seen that the number of multipliers in BHN depends on the size of the block 
histogram, which is related to number of bins assigned to each cell histogram. Adding 
a single bin to cell histogram adds eight multipliers to the hardware. The adder size 
also increases proportionately. 

4.4 SVM Classification 

The normalized histograms obtained from the BHN block are again stored in the 
memory. Once normalized histograms for the whole window are available 
classification can be performed which can consume a fair amount of memory. 
Performing classification for the whole window at once also requires a large number of 
multipliers and adders. The situation gets worse as the feature vector size increases 
with smaller cell sizes or large number of bins. Therefore, we have opted for partial 
classification by dividing the classification for the whole window into multiple stages. 
The hardware shown in Fig. 9.  is reused at every stage. The strategy behind reusing 
the hardware is very straightforward. Since it takes 𝑤!  cycles to completely process a 
cell, we have reused the same hardware over these 𝑤!  cycles doing partial 
classification every 𝑁! 𝑤!  blocks. So the number of partial classification stages is 
equal to 𝐶!. The results of each stage are accumulated to get the final classification 
result.  

The key observation is that the cell size effects the hardware complexity in two 
ways. First, it has a direct impact on feature vector size. Second, larger the cell size, 
more cycles will be available to perform classification, thereby, smaller hardware is 
required for partial classification.  

 
Fig. 9. Partial Classification Engine (PCE), single stage 
of LinSVM classification to be performed for whole 
window. Inputs are normalized histograms while output 
is the partial classification result. 
 



5 Results and Discussion 

In this section, we evaluate our hardware implementation for multiple cell sizes and 
histogram bins to obtain optimal set of these parameters. Results are presented for 
full-HD (1920x1080) resolution videos. Window size is considered to be 64x128. 
Block size is 2x2 cells, while block and window step size is one cell for both 
horizontal and vertical directions. Scale factor to rescale images is set to 1.05.  This 
results in 45 scales to be processed per frame. Other parameters depend on the choice 
of cell size and histogram bins.  

Here, we first present our experimental setup then we analyze the effect of different 
cell sizes and histogram bins on accuracy, throughput and power. Using these results, 
parameters yielding least power and maximum throughput with negligible loss in 
accuracy are selected. Finally, using these parameters comparison with the state of the 
art object detection implementations is presented. 

5.1 Experimental Setup 

We have implemented our system on Xilinx Virtex 7 (XC7VX485T) FPGA. There are 
75,900 slices, 607,200 Configurable Logic Blocks (CLBs) and 485,760 logic cells in 
this FPGA. Moreover, 37,080 Kb block RAM and 2,800 DSP slices are present. Image 
rescaling and window sampling is done for positive and negative images and then sent 
to HOG-Acc for processing which returns the detection result. Processing 45 scales 
requires a large amount of memory and pipelined stages so we have utilized the time 
multiplexing approach of [21]. The host software is written using Visual Studio 2012 
and Verilog is used for HOG-Acc design. Design is synthesized using Xilinx ISE 14.7 
and along with Modelsim 10.2, a hardware/software co-simulation is performed to 
verify the implementation functionality. 

 
Fig. 10. Accuracy Analysis, miss rate generally reduces with increas-
ing cell sizes and decreasing number of bins 



5.2 Accuracy Analysis  

We have used INRIA dataset [31], to evaluate our HOG implementation. There are 
several other datasets available for pedestrian detection evaluation like Caltech [32], 
ETH [33], and Daimler [3]. We have, however, restricted our results to INRIA 
because it provides us with a reasonable variety of images with different poses and 
backgrounds so these results can be generalized to other datasets and real life 
scenarios. 

All detection results are collected, and afterwards recall is calculated from number 
of true positives (TP) and false negatives (FN) as shown in (8). 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  !"
!"!!"

 (8) 

A false positive per window (FPPW) of 10-4 is mostly considered in literature for 
pedestrian detection results. We also present the Miss Rate (1- Recall) results for 
FPPW = 10-4 for multiple cell sizes and number of bins. The results are shown in Fig. 
10. It is seen that generally larger histogram bins gives better detection rates. This is 
obvious, as more histogram bins allow fine division gradient orientations, hence better 

 
(a) Percentage of slice utilization for multiple cell sizes and fixed  𝑁!"#=9. 

 
  

 
(b) Percentage of slice utilization for multiple histogram bins and fixed 𝐶!"#$=8x8 

 
Fig. 11. Hardware Utilization Comparison. Breakdown of usage of multiple slices of 
Xilinx FPGA with varying cell size and histogram bins. Increasing any one of them 
results in increased hardware complexity. 
 



feature vector for training and classification. On the other hand, improvement is seen 
in detection rates by increasing cell size up to a certain value and it drops increasing 
cell sizes too much. Smaller cell sizes provide a dense grid of blocks and windows in 
a frame, therefore, using smaller cells would improve accuracy. However, using too 
small cell sizes results in degraded performance because there are not enough 
distinguishing features within the cells. Minimum miss rate of 12% is achieved at 
(𝐶!"#$ ,𝑁!"#) = (7x7, 11).  

5.3 Throughput and Power Consumption Analysis 

Power consumption and throughput are directly related to the hardware resources used. 
In the previous section it is seen that the cell size and histogram bins has significant 
impact on hardware complexity. The effect on different hardware components for 
different cell sizes and number of bins for a single core is shown in Fig. 11. We see a 
significant reduction in hardware resources by increasing cell size or reducing number 
of bins. The reasons being discussed in previous section for independent blocks. 

Number of frames processed per second (fps) is dependent on the maximum 
frequency at which the hardware can operate. In our hardware architecture it is mainly 
dependent on the size of partial classification engine and the block normalization 
engine. As discussed in previous section, the complexity of PCE is heavily dependent 
on 𝐶!"#$  
while that of BHN depends on both 𝐶!"#$ and 𝑁!"#. Fig. 12 shows the results. We get 
the maximum frequency at the point where both PCE and BHN have overall minimal 
hardware complexity. Specifically, the (𝐶!"#$ ,𝑁!"#) = (11x11, 6).  

We have used Xilinx Xpower analyzer (XPA) 14.7 to estimate the deviations in 
power consumption by varying the parameters. We have simulated the hardware and 
created ‘Value Change Dump’ (vcd) files are used to set the toggle rates of all signals. 
Post place and route results are obtained and are shown in Fig. 13. Power consumption 
increases by reducing the cell size or increasing the histogram bins. This is fairly 

 
Fig. 12. Throughput Analysis, an increase in throughput is seen 
for bigger cell sizes and histogram bins. 
 



understandable due to the fact that both these parameters increase the hardware 
complexity due to increase in the feature vector size. Minimum power consumption is 
9.98 W with (𝐶!"#$ ,𝑁!"#) = (12x12, 6), the maximum cell size and minimum histogram 
bins as expected.   

5.4 Choice of Parameters 

We have seen from the previous analysis that there does not exist a set of parameters 
which give us best accuracy, power and throughput. Improving the accuracy worsens 
the power and throughput while maintaining minimum power and maximum 
throughput severely degrades the accuracy. Similarly, trying to improve throughput 
may degrade power consumption significantly and vice versa. However, accuracy is 
changing very slightly at certain regions in Fig. 9. Similarly, there are more than one 
sets of parameters which give almost the same power consumption. This allows us to 
select the best of one of these metrics while slightly compromising on another metric. 
We can achieve best results by selecting (𝐶!"#$ ,𝑁!"#) = (9x9, 10). Further we obtained 
results for miss rate by changing bit-width for this optimal parameter set. The results 
are shown in Fig. 14. Bit-width is hence set to eight bits as it gives maximum accuracy 
and minimum hardware complexity. Note that this further results in reduced bit-width 
in all the next blocks. 

Parameters optimized for low power and high speed are shown in Table II & III 
comparing the throughput and energy consumption results with the other state of the art 
FPGA and GPU implementations. We have presented three results. 1) HOGCONV, which 
shows the results for conventionally used parameters. We can achieve 32 fps for full-
HD while dissipating 0.656 J/frame and 15% miss rate. 2) HOGOCB, presents results for 
optimized cell size and histogram bins. Frame rate achieved by optimizing cell size and 
histogram bins is 39.2 fps with energy consumption of 0.484 J/frame while 
maintaining a miss rate at 15%. Gradient magnitude bit-width is considered to be 13 
bits. 3) Finally, HOGOCB-RF, in which features are further refined by removing 
insignificant gradients, is presented. This results in a frame rate of 42.7 fps while 
energy consumption is 0.45 J/frame at 13% miss rate. 

 
Fig. 13. Power Consumption Analysis, Large cell size and small-
er number of histogram bins results in low power consumption. 
 



6 Conclusion 

We have presented fully parallel architectures for various modules of pedestrian 
detection system utilizing Histogram of oriented gradients (HOG). HOG has shown 
high detection accuracy but the detection speed and power consumption are major 
bottlenecks for real time embedded applications. We have optimized parameters, cell 
size and histogram bins, to achieve low power and high throughput while maintaining 
the detection accuracy. Feature refinement is done to further improve the results.   

 
Fig. 14. Variation in miss rate for (𝐶!"#$ ,𝑁!"#) = (9x9, 10). 

TABLE II 
COMPARISON OF PARAMETERS AND THROUGHPUT FOR VARIOUS GPU AND FPGA 

IMPLEMENTATIONS  

 Cell 
Size 

Histogram 
Bins 

Win. 
Stride 

# 
scales Resolution Windows/frame FPS  

    
GPU Implementation 

[22], [24] 8x8 9 8 37 1024x768 - 17  
[25] 8x8 - - >1 640x480 4,096 57  
[26] 8x8 8 2 >1 640x480 50,000 23.8  
[27] 8x8 9 8 1 640x480 - 32  
[28] 8x8 9 4 >1 1280x960 150,000 2.4  
[29] 8x8 9 - >1 640x480 - 5.6  

         
FPGA Implementation 

[18] 8x8 8 4 >1 320x240 3,615 38  
[19] 8x8 9 - 1 800x600 1000 >10  
[20] 8x8 8 9 1 640x480 1,540 62.5  

[21] 8x8 9 8 18 1920x1080 27,960 64 (esti-
mated)  

[22] 8x8 9 8 13 1024x768 20,868 13  

[23] 8x8 8 4 >1 640x480 56,466 30 (esti-
mated)  

[6] 8x8 9 8 1 800x600 5,580 72  
[8] 8x8 9 4 34 640x480 121,210 68.18  

[8] 8x8 9 4 34 1600x1200 1,049,886 10.41 
(estimated)  

HOGCONV 8x8 9 8 45 1920x1080 264,062 32  
HOGOCB 9x9 10 8 45 1920x1080 264,062 39.2  

HOGOCB-RF 9x9 10 8 45 1920x1080 264,062 42.7  
  
         
         
         
         

         

         

         

         

         

         

         

         

         



Combination of optimal parameters and our hardware accelerator results in a frame 
rate of 42.7 fps for full-HD resolution and lowers the energy consumption by 97.34% 
and 16.4% while improving the accuracy by 2% as compared to state of the art GPU 
and FPGA implementations respectively. This work can be extended to use multiple 
cores on a single FPGA or using multiple FPGAs to further increase throughput while 
an ASIC implementation would greatly reduce the power consumption. It can also be 
extended to include other features and classifiers or combinations of those to optimize 
for objects other than pedestrians.  
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