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Abstract

Semi-parametric approaches based on generalized estimating equation (GEE) are widely
used to analyse correlated outcomes. Most available softwares had been developed for
longitudinal settings. In this paper, we present a R package CRTgeeDR for estimating
parameters in marginal regression in cluster randomized trials (CRTs). Theory for ad-
justing for missing at random outcomes by inverse-probability weighting methods (IPW)
based on the use of a propensity score had been largely studied and implemented. We
exhibit that in CRTs most of the available softwares use an implementation of weights
that lead to a bias in estimation if a non-independence working correlation structure is
chosen. In CRTgeeDR, we solve this problem by using a different implementation while
keeping the consistency properties of the IPW. Moreover, in CRTs using an augmented
GEE (AUQG) allow to improve efficiency by adjusting for treatment-covariate interactions
and imbalance in baseline covariates between treatment groups using an outcome model.
In CRTgeeDR, we extend the abilities of existing packages such as geepack and geeM
to allow such data augmentation. Finally, one may want to combine IPW and AUG in
a Doubly Robust (DR) estimator, which lead to consistent estimation when either the
propensity score or the outcome model corresponds to the true data generation process
(Prague, Wang, Stephens, Tchetgen Tchetgen, and De gruttola 2015). The DR approach
is implemented in CRTgeeDR. Simulations studies demonstrate the consistency of IPW
implemented in CRTgeeDR and the gains associated with the use of the DR for analyzing
a binary outcome using a logit regression. Finally, we reanalyzed data from a sanitation
CRT in developing countries (Guiteras, Levinsohn, and Mobarak 2015a) with the DR
approach compared to classical GEE and demonstrated a significant intervention effect.

Keywords: Augmentation, Cluster randomized trial, Correlated data, CRTgeeDR, Doubly Ro-
bust, geeM, Generalized Estimating Equation, geepack, inverse probability weighting (IPW),
MAR, marginal effect, missing data, R.
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1. Introduction

We describe the R (R Core Team 2015) package CRTgeeDR, for estimating coefficients of
regression in a marginal mean model. The methods is designed to analyze data collected in
cluster randomized trials (CRTs) where 1) observations within a cluster may be correlated,
2) observations in separate clusters are independent, 3) a monotone transformation of ex-
pectation of the outcome is linearly related to the explanatory variables, 4) the variance is
a function of the expectation, and 5) treatment is randomized at a cluster level. The esti-
mation approach generalizes the Generalized Estimating Equation (GEE) (Zeger and Liang
1986) for fitting marginal generalized linear models to clustered data with possibly informa-
tive missingness of the outcome. It combines existing methods for accommodating missing
data that use inverse probability weighting (IPW) (Robins, Rotnitzky, and Zhao 1995) and for
increasing precision of estimation by appropriate use of baseline covariates (AUG) (Stephens,
Tchetgen Tchetgen, and DeGruttola 2012). We have developed a method that combines the
IPW and the AUG that is doubly robust (DR), which implied that the resulting estimator is
consistent if either the outcome model or missing data model are correctly specified — that is,
they reflect the true data generation processes Prague et al. (2015). Below we illustrate the
use of the software on a real dataset and clarify its benefits.

The package CRTgeeDR not only implements the DR estimator but also the standard GEE,
the IPW and the AUG. Regarding IPW, our package differs from most of those currently
available in that it avoids the bias that can result from conventional implementation applied
to CRTs. Lin, Rodriguez, and SAS (2015) pointed out that implementation of GEE for
complete longitudinal data in the current version of SAS (GENMOD procedure) requires use
of an independence correlation structure if the observation of the outcome at one time point
depends on covariates obtained at another time point; this problem had been corrected in
the new GEE procedure in SAS/STAT 13.2 (SAS Institute Inc. 2015) but not in R to date.
Tchetgen Tchetgen, Glymour, Weuve, and Robins (2012) made a similar comment regarding
the analysis of incomplete longitudinal data in which time-varying covariates and previous
outcome values are needed to model the missingness process. This article clarifies this issue for
CRTs and propose an implementation that allows for unbiased IPW (and thus DR) estimation
with non-independence working correlation structure.

GEE-based approaches for estimating the coefficients in marginal models, in particular the
marginal effect of an intervention, have been implemented in only a limited number of software
and R packages for general use. Of note, most of these software have initially been developed
to deal with correlated longitudinal data rather than data from CRTs. There are three
R packages on CRAN, which will solve GEEs and produce standard errors: whereas gee
(Carey, Lumley, and Ripley 2012) and geepack (Halekoh, Hgjsgaard, and Yan 2006) are
computationally demanding, the package geeM allows a fast estimation through the use of
sparse matrix representation (McDaniel, Henderson, and Rathouz 2013). When interest lies
in adjusting for MAR outcomes using the IPW, all the packages mentioned above require
specification of weights. These weights can be computed using packages such as ipw (van der
Wal and Geskus 2011) or directly plugged from a user-defined function. These approaches
require that the missing data process be correctly specified. Some packages, such as drgee
(Zetterqvist and Sjolander 2015), implement doubly robust approaches for uncorrelated data
arising from observational studies. These packages provide estimates that are doubly robust
in the sense that the consistency of the parameter estimator from the marginal models is
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guaranteed if the model linking the outcome and covariates or the model linking the treatment
assignment and covariates correctly reflects the true data generation process. These methods
have been extended to deal with missing data with IPW approaches CausalGAM (Glynn and
Quinn 2010), but these packages are intended for analysis of observational studies, not CRT's.
Finally, targeted maximum likelihood estimation (tMLE) method also allows estimation of
the marginal additive effect of a treatment. It is implemented in the package tmle (van der
Laan 2010). A discussion about the differences between GEE-based and tMLE estimation in
longitudinal data can be found in Porter, Gruber, van der Laan, and Sekhon (2011). However,
the two approaches for CRTs are conceptually different, therefore, the comparison between
the two will not be discussed in this article where the focus is on software implementation.

The paper is organized as follows. Section 2 introduces the theory of the Doubly robust
estimator and section 3 describes the features of the CRTgeeDR and the estimating function
denoted GeedrEstimation. Section 4 compares the performance of CRTgeeDR to geepack
and geeM for the IPW in CRT's and illustrates that the DR is also consistent and more efficient
than the IPW. Section 5 illustrates the analysis of a dataset on sanitation in developing
countries (Guiteras et al. 2015a) and illustrates the benefit of using the DR approach compared
to standard GEE. Section 6 presents a discussion.

2. IPW in CRTs and Doubly Robust Estimation

2.1. Notation

Consider a CRTs comprised of n clusters or communities, each with n; individuals. The
cluster sample sizes are assumed fixed and non-informative. Let Y; = [Yjj];=1, . n, denote
the outcome vector for cluster ¢, some elements of which may be unobserved. Let R;; = 1 if
Y;; is observed and R;; = 0 otherwise. Let X;; = [Xz,j]jzlw.’ni;r:l’“wp denote the P baseline
covariates for subject j in cluster 4, which is fully observed. Let A; be the treatment assigned
to cluster 7; the indicator for treated condition is A; = 1, and that for control condition
is A; = 0. We assume that the probability of treatment assignment is known and fixed to
7o = P(A; = 1). The conditional mean of Yj; is denoted p;; = E(Y;;| X5, Ai), and we let
n, = [Mz‘j] j=1,....n; denote the full vector of means in the it cluster. We assume the mean
structure of Y;; depends on the covariate vector for subject j in cluster ¢ (Robins, Greenland,
and Hu 1999), and consider a model for the mean of the form:

9(pij) = X4jBx + Aifa,

where ¢(.) is a monotone differentiable link function and 8 = (84,8yx) isa (P+1) x 1 vector
of regression coefficients of interest. In this article, we focus on estimation of the marginal
effect of an intervention B4 for a binary outcome using the logit link. We assume the variance
is v;; = var(Y;;|Xi;, Ai) = dh(pij), where h(.) is the variance function and ¢ is the dispersion
parameter. Thus for our specific example, v;; = ¢pu;;(1 — p155) We assume a restricted version
of the missing at random (rMAR) assumption, which implies that the missingness indicator
R;; is a function only of covariates including treatment condition. Although all the theory
would hold for classical MAR assumption, we often need to be more stringent in CRT's because
it is difficult to specify the function linking missingness and the observed outcome of other
individuals in the same cluster. Thus, the probability of being missing 7;;, which we call the
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4 Doubly Robust Generalized Estimating Equations in Cluster Randomized Trials.

Propensity Score (PS), can be expressed as: m;;(X;, Ai,nw) = P(Rij = 1/X,j5, A;). The
parameters ny are nuisance parameters and must be estimated.

2.2. IPW in CRTs

In presence of rMAR outcome, as in Robins et al. (1995), we want to estimate 3 by using
Inverse Probability Weighted Generalized Estimating Equation (IPW-GEE). Therefore, we
must include a weight matrix W; to the usual GEE, that is:

1
WX i, Ais ) = ding ) '
( J ) Wij(Xij7Ai777W) j=1,...,n;

This matrix W;(X;, Ai;, 7w ), denoted simply as W, adjusts the contribution of each indi-
vidual in a given cluster by upweighting the contribution of individuals who are less likely to
be observed. Thus, if the propensity score is correctly specified, i.e. correspond to the true
missingness process, the IPW-GEE equation 1 provides consistent estimates:

0=> DiVI'WiY;—p,). (1)
i=1

where D; = 0p,; /0B is a derivative matrix and V/; is the working covariance matrix for the
response Y;. In particular, V; = gf)F%ﬂC(a)F;/Q7 where Fg/Q = diag(h(pij)) =y, _,, and
C(a) is the working correlation structure with non-diagonal terms «. For exampl’e,yfzor an
independence correlation structure « is zero; for exchangeable structure, all the elements of
« are identical. Parameters a could also depend on the treatment assignment C(a(A;)) but
we do not consider this possibility in our implementation. In the package CRTgeeDR, we
estimate the a and ¢ parameters using moment estimators from the Pearson residuals and
the Pearson Chi-Square statistic as in McDaniel et al. (2013). In the absence of missing data,
W, = I is set to identity, and the standard GEE is performed by CRTgeeDR.

In existing packages such as geepack and geeM, the Equation 1 is implemented as 0 =
S D VINY, — ), with Vi = ¢F12W2C ()W F}/? to ensure the invertibility
of V;. It is easy to verify that when an mdependence correlation structure is used C(a) = I,
the two implementations are identical. Therefore, one can always use geepack and geeM
with an independence working correlation structure. On the contrary, if a non-independence
working correlation structure is used the IPW consistency do not hold. Let’s denote [M]s
the non-diagonal term located on the s** row and t** column of the matrix M. Then, in the
implementation V ;- L ¢F1/2W1/2C'(a)W§/2F3/2, one can write:
i 1/2 1/2 1/2 1/2
[V' ]St = ¢[F ]SS[F }tt[c(a)]st[w ]tt[W' ]ss-

3 K3

As demonstrated in Prague et al. (2015), the proof of consistency for the IPW relies on the
fact that, when the PS is correctly modeled, i.e. m;; = P(R;;|Xij, Ai):

M = E[¢F*C(a)F) — oF*W2C(a)W ! F)?| X, A)) =
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The st row and t*" column of the matrix M can be rewritten as:

B{M|XA| = B|9lFVLF (Ol [1 - W2 W) X A
Y
= NE|1— WP WP X, A

~E m%fﬂX“Ai =0 if s=t

’YE \/ﬁ\/ﬂ'ﬁitvais\/Riit‘Xi.’ Az

N # 0 otherwise

When s # ¢, E[[M]St\Xi‘, AZ} = 0 if and only if:

- either 7 = 0, which is always the case when C(a) is the independence matrix,

1/2]

- or Y(s,t) [W;ﬂ]ss = [W, |, i.e. ms = m; which means that the weights are defined

at a cluster level and not individual-specific, which is usually not the case in CRTs.

Implementation in CRTgeeDR, as in Equation 1, allows the use of non-independence working
correlations structure for the IPW while retaining consistency of estimators. Indeed:

E[pF*C(a)F* - 6F*C() FY*W | X, , A))
—oF*CF/"B] =W, XA

2 )]:1,,7’1/1

diag ( Trijw_zﬁ

2.3. Augmentation and Doubly Robust Estimation

Recent advances in methods for analysis of data from CRTs have used augmented GEE to
improve efficiency of inferences by incorporating baseline covariates to adjust for imbalance
arising by happenstance (Stephens et al. 2012); we denote this estimator the AUG. They have
also been extended to accommodate missing data using an approach based on the IPW; we
denote this estimator the DR, whose properties are described in Prague et al. (2015). The
DR estimating equation is given by :

M
0 = > |DIV'W,(Y; - Bi(Xyj, Ai.np))
=1
+ Z 1_7TG« 1 aDTV ( (X’LJvA avnB)_uz(IBaAl:a)>] (2)
a=0,1

= ®Y,;, R, A, Xij, B0, nB)-

Each element of the vector B;(X;, A; = a,np) = [Bi;( X, A; = a,np)]j=1,. n, is an arbitrary
function linking Y;; with X;; for each treatment arm. The npg are nuisance parameters. The
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6 Doubly Robust Generalized Estimating Equations in Cluster Randomized Trials.

estimator in Equation 2 is most efficient if B;;(X;, A; = a,ng) = E(Yi;|Xj, A; = a) (Zhang,
Tsiatis, and Davidian 2008). In that case we call B;;(X;, A; = a,mp) the outcome model
(OM) and say that it is correctly specified. If the OM is not correctly specified, i.e. does not
correspond to the true data generation process, the estimation remains consistent but one
may have a loss in efficiency. Without missing data, W; = I is set to identity, and the AUG
is performed by CRTgeeDR. Figure 1 is a flowchart that describes in which situation each
estimator should be used.

Data from CRT

T
Missing outcomes?
[

| ! !

No or MCAR rMAR or MAR MNAR
! ¥
ine ? Imbalance at baseline ?
Imbalance at baseline | GEE, AUG, IPW and DR
No Yes No € > Yes  implemented in CRTgeeDR
\1, \1, \1, &, are not adequate
GEE AUG IPW R
Gain in efficiency if OM is correct ~ PS has to be correct PS or OM has to be correct

Gain in efficiency if the OM is correct
Treatment-covariate interaction terms can be omitted in the PS

Figure 1: Flowchart describing how to select a consistent and efficient estimator in the pack-
age CRTgeeDR depending on the presence of missing data (MCAR: missing completely at
random, (r)MAR: (restricted) missing at random and MNAR: missing not at random) and
imbalance in baseline covariates.

3. The R package CRTgeeDR

The R package CRTgeeDR contains the functions described below. Examples and description
are also available in the package documentation.

e geeDREstimation to estimate the regression coefficients in the mean marginal models,

e getPSPlot and getOMPlot, to plot the distribution of inverse probability weights and
the adjustment of outcome model in each treatment group,

e summary, to summarize results,

e fitted and predict to extract fitted or predicted values into a new dataset.

Package CRTgeeDR also contains the simulated datasets data.sim mimicking the data from
a CRT in HIV risk reduction after STI/HIV intervention and documented code to analyse
these data.

3.1. The main function for estimation in the package CRTgeeDR

The call function for performing estimation is geeDREstimation:

http://biostats.bepress.com/harvardbiostat/paper200
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R> geeDREstimation(formula, id, data = parent.frame(), family = gaussian,
corstr = "independence", Mv = 1, corr.mat = NULL
init.beta = NULL, init.alpha = NULL, init.phi = 1, scale.fix = FALSE,
maxit = 20, tol = 1le-05, print.log = FALSE,
nametrt = "TRT", nameMISS = "MISSING", nameY = "OUTCOME",
sandwich = TRUE,sandwich.nuisance = FALSE,
fay.adjustment = FALSE, fay.bound = 0.75,

aug = NULL, pi.a = 1/2, model.augmentation.trt = NULL,
model .augmentation.ctrl = NULL, stepwise.augmentation = FALSE,

weights = NULL, typeweights = "VW", model.weights = NULL,
stepwise.weights = FALSE)

In this call, the first group of parameters is related to the standard GEE and computation
of the variance options, the second group is related to the PS description and IPW options,
and finally the third group is related to the OM description and AUG options. The marginal
model, to be estimated on the R dataframe data, is given in formula. The link function,
g, depends on the nature of the outcome, which is specified in the attribute family. The
name of the outcome nameY, the clustering variable id, the binary treatment nameTRT (with
the convention 1 is treated and 0 is control), and the missing indicator nameMISS must be
specified if they differ from default values. The algorithm iterates between the estimation of
nuisance parameters and regression parameters with a stopping rule based on stabilization of
estimates (tolerance can be set by the user; default is tol= 107> or max.iter=20). Depending
on the specification or not of the PS and the OM, geeDREstimation allows to perform the
standard GEE, the IPW, the AUG and the DR approaches. The algorithm is defined as
follow:

1. Determine the PS: Wij(Xiiji,"?W) = P(Rij‘Xij,Ai), Tij for short. Either the jj are
known from prior analysis or by design and the weights can be specified directly in the
weights attribute. Alternatively one can fit internally a logistic regression of R;; on
(X5, Ai) to compute the PS. In this case, the PS regression formula can be directly
entered in model.weights. Then a glm with logit link function is internally processed
with or without variables selection, depending on the value of the stepwise.weights
attribute. If all of the above are set to NULL or default, no IPW adjustment will be
performed. Finally, if despite our cautionary note about the implementation of weights,
one wants to use the same implementation as in packages geepack and geeM or proc
GENMOD in SAS, then one can set typeweights="GENMOD".

2. Determine group-specific OM: B;;(X;j, A; = a) = E[Y;j|A; = a, X;j]. Either the B;
are know from prior analysis and can be directly entered in aug=c(ctrl=B;;(X;;, A; =
0),trt=B;;(X;;, A; = 1)). Or regression of Y;; on X;; can be fit within each treat-
ment group. In this case, the OM regression formulas can be directly entered in
model .augmentation.trt and model.augmentation.ctrl. Then a glm is internally
processed with or without variable selection depending on the value of the attribute
stepwise.augmentation. If all of the above are set to NULL or default, no AUG ad-
justment will be performed. The probability of treatment assignment which is known
in CRT's must be specified in the attribute pi.a.
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8 Doubly Robust Generalized Estimating Equations in Cluster Randomized Trials.

3. Determine the working correlation structure. Available structures are independence,
exchangeable, M-dependent (using Mv), unstructured, or user-defined (using corr.mat).
Using the scale.fix attribute, the dispersion parameter ¢ can be either estimated or
held fixed to a specified value. The implementation of estimation of parameters ¢ and
« is the same as in geeM and is described in (McDaniel et al. 2013).

4. Obtain initial values. Either specified by the user (init.beta, init.alpha, and init.phi)

or internally defined by fitting a glm under independence to obtain initial value for B(O)
and by setting ¢(°) =1 and a® = 0.

5. Enter/Continue the iterative procedure :

(a) Use the fit from B(n) to compute Pearson residuals. Use Pearson residuals based
formulas to compute ¢("+1) the scale parameter (except if scale.fix=TRUE) and
") the parameters in the working correlation matrix.

(b) Construct the augmented equation given in Equation 2 and solve it numerically

using Newton-Raphson algorithm for B(n+1).

B(n+1) :B(n)_ a@(YiyRi7AiuXija/67nW7nB) -
19J6} é(m

(1)
(Y, R, Ai, X5, 8, nw,mp)

(c) If |B(n+1) - B(n)| > tol and n + 1 < max.iter go back to 5 else go to 6.

6. Compute the requested variances of B(n+1). If, sandwich and sandwich.nuisance are
set to TRUE, classical and nuisance-adjusted (for the estimation of parameters ny in
the PS and 7np in the OM) sandwich estimator of the variance are provided, see Prague
et al. (2015) for their definition. The nuisance-adjusted version is recommended if the
AUG, the IPW or the DR estimator are considered. Finally, a small-sample-adjusted
sandwich estimator of the variance can also be computed using Fay’s adjustment (Fay
and Graubard 2001) setting the attribute fay.adjustment to TRUE and specifying the
boundary in fay.bound.

3.2. Adequacy of the PS and the OM to data

Consistency and efficiency of the DR estimator depend on the correct specification of the
PS and the OM, see Prague et al. (2015) for theoretical demonstrations. User may want to
check the adequacy of the selected OM model to the data by using the function getOMPlot,
which provide plots to check the glm model assumption. The "Residuals vs. Fitted” and
the "Scale-location” graphics allow verification of the homogeneity of the variance and the
adequacy of the link function. The "Normal Q-Q” checks for the normal distribution of the
residuals. The "Residuals vs Leverage” plot allows detection of points that have high leverage
on the regression coefficients and that should be investigated as outliers. In the same spirit,
the "Cook’s distance” and the "Cook’s distance vs leverage” provide measures of the effect
of deleting a given observation. Of note these graphs are only interpretable for continuous
outcome. In addition, for the PS model the function getPSPlot provides a histogram of the
weights. If weights are too large then the IPW approach is likely to be unstable. Thus,
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the user should compute weights externally using, for example, stabilized weights with the
associated package ipw (van der Wal and Geskus 2011) or other approaches such as described
in Wang and Paik (2011). Finally, the user can access the glm objects created during the
PS and OM steps as outputs named ps.model, om.model.trt and om.model.ctrl from the
main function geeDREstimation.

4. Simulations

The properties of DR to accommodate complex correlation structure, rMAR outcomes, and
presence of imbalance in baseline covariates have already been demonstrated in Prague et al.
(2015). In this article, we focus on the superiority of implementation of weights in the pack-
age CRTgeeDR compared to package geepack and geeM. We focus on a simple example to
illustrate that, even in very simple cases, consistency of estimators can be achieved when
using exchangeable working correlation structure in existing implementations in R, which
use V1 = ¢F3/2W3/2C(a)W§/2F3/2 recall Section 2.2. We simulate data from a cluster
randomized trial with 100 communities of 90, 100, or 110 individuals with probability 1/3
for each. The treatment A is randomly assigned with probability m4 = 1/2. One covariate
is of interest: X;; ~ N(2,1). We simulate correlated outcome with exchangeable structure,
and correlation between individuals is set to 0.05. This is done by using a cluster-level bridge
distribution b; ~ B(0.05). Data generation process is as follow:

logit[P(Ri; = 1]A;, X;;)] = 4.0 —0.34; — 0.8X;; — 0.8X;;A;

We simulated R=10,000 replicates. The observed average proportion of missing observations
is around 25% and the observed average intraclass correlation is 0.08. The missingness is
associated strongly with individual covariates and, thus, the weights differ between individuals
in the same cluster. The true value of the odd-ratio for the marginal effect of treatment is
computed for each dataset k£ without missing data by obtaining the counterfactual values with
and without treatment under this model:

E(Yi; = 1[Ai = 1)/E(Yi; = 0[A; = 1)

ORy, = ‘
" T B, = 1|A=0)/E(Y; = 0]4; = 0)

Then, the true OR is given by % ZkR:1 ORy=2.56 with associated parameter for marginal
intervention effect in the marginal regression 4 = 0.941. For each dataset, we first ran the
analysis on the dataset without missing data for the standard GEE and the AUG using CRT-
geeDR. Then, we ran the analysis on the dataset with missing data for the IPW using geepack
and geeM and for the standard GEE, the IPW, the AUG and the DR using CRTgeeDR.. T'wo
types of DR are presented here, DR1 is the estimator using the correct models for the OM
and the PS and Table 1 shows the bias, empirical standard error, sandwich standard error and
coverages for each analysis using independence (-I) and exchangeable (-E) working correlation
structure. The code to replicate this experiment is available in Web-Supplementary material.
The models for the PS and OM for analysis are described in the Table 1. They both can be
considered as correctly specified, except for DR2 for which the PS omits treatment-covariate
interaction terms and in that sense is misspecified.

The results for standard GEE are unbiased on the datasets without missing data (<0.003 for
GEE-I and GEE-E with all packages) and biased in presence of rMAR outcomes (-0.257 for
GEE-T and GEE-E with package CRTgeeDR and for the other packages as well) implying that
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10 Doubly Robust Generalized Estimating Equations in Cluster Randomized Trials.

Independence (-I) Exchangeable (-E)

Method Bias Emp. SE SE Cov. Bias Emp. SE SE  Cov.
No missing data:
GEE CRTgeeDR  0.002 0.102 0.099 94.3 0.002 0.108 0.099 93.2
GEE geepack 0.003 0.102 0.101 94.6 0.003 0.102 0.101 94.6
GEE geeM 0.002 0.102 0.099 94.3 0.002 0.108 0.099 93.2
AUG CRTgeeDR 0.002 0.101 0.099 94.3 0.002 0.109 0.114 95.8
With missing data:
GEE CRTgeeDR -0.257 0.103 0.177 82.0 -0.256 0.104 0.081 18.1
AUG CRTgeeDR 0.249 0.092 0.109 35.7 0.307 0.115 0.139 37.1
IPW CRTgeeDR  0.003 0.108 0.106 95.0 0.003 0.118 0.110 93.7
IPW geepack 0.008 0.107 0.104 94.8 0.582 0.577 0.357 194
IPW geeM 0.003 0.108 0.106 95.0 0.098 0.116 0.113 83.5
DR CRTgeeDR 0.003 0.107 0.104 94.5 0.004 0.120 0.125 96.1
DR2 CRTgeeDR  0.003 0.105 0.102 94.4 0.004 0.118 0.123  96.0
Marginal mean model:

logit(p1;5) = Bo + Badi
PS used for IPW and DR (true):

logit(P(Rij‘Ai, ij)) =+ v44; + X + ’YIXiin
PS used for DR2 (omitting interactions in PS):

IOgit(P(Rij‘Ai, ij)) =0+ v44; + ’)/Xij
OM used for AUG and DR (fitted for each group a):

logit (P (Yij|Ai = a, Xij)) = £+ §aAi +£Xij

Table 1: Comparison of the standard GEE, the IPW, the AUG and the DR analysis with
the package CRTgeeDR, geepack and geeM using independence and exchangeable working
correlation structure. True value for the parameter 54 is 0.91 (OR=2.56). The bias, the
empirical and the estimated standard errors (SE) and the coverages for parameter BZ are
computed over 10000 replicates. The true data generation process for outcome and missing-
ness is provided in Equation 3. The PS and OM models for analysis are correctly specified
and given in the footnote of the table.

the missingness is informative. Using the IPW-I corrects for this bias regardless of the package
used for estimation (0.003 for CRTgeeDR and geeM and 0.008 for geepack). All packages give
a similar estimated standard error leading to acceptable coverage close to their nominal value
of 95%. When using an exchangeable correlation structure, the coverage (93.7%) remains close
to the nominal value for IPW-E using CRTgeeDR, but it drops to 19.4% using geepack and
83.5% using geeM. This is mainly driven by an increase in the bias from 0.003 for CRTgeeDR
to 0.098 for geeM and 0.582 for geepack for IPW-E. Using the DR version of CRTgeeDR also
provides consistent estimates(bias < <0.004 for -I and -E). The coverage for the DR is close
to or greater than 95% and its use leads most commonly to gains in efficiency. For example,
the empirical standard error is 0.108 for IPW-I and 0.107 for DR-I. As demonstrated by DR2,
which omits the term Xj;A; in the PS, the doubly robust estimator remains consistent and
efficient when the treatment-covariate interactions are not explicitly specified in the PS. As
implied by the Prague et al. (2015), DR and DR2 have identical properties. But, avoiding
the need for treatment-covariate interaction terms in the PS will tend, as demonstrated here,
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to have lower standard error leading to more efficiency.

5. Illustration on the sanitation data

In this section, we present a step-by-step analysis of actual CRT data. The data comes from
a CRT to investigate the efficacy of alternatives policies on the investment in hygienic latrines
in developing countries. A total of 380 communities in rural Bangladesh were assigned to
different marketing interventions - community motivation, subsidies, supply side-market, a
combination of the three and a control group. Results of this study were published in Science
(Guiteras et al. 2015a). All the code and data associated with this study are available on
dataverse, see url in Guiteras, Levinsohn, and Mobarak (2015b).

Side-Market supply Control All
Cluster structure
M 36 (n = 1651) 66 (n = 3186) 100 (n = 4837)
N; 49 (15) 48 (16) 48 (16)
Outcome Y;; Mean Missing % Mean Missing % Mean Missing %
Hygienic Latrine Ownership 34.8% 4.2% 30.3% 3.1% 31.8% 3.5%
Individual-level X E-\ID Mean Missing % Mean Missing % Mean Missing %
Report diarrhea 4.3% 0% 4.8% 0% 4.6% 0%
Male 91.1% <0.01% 90.0% <0.01% 90.1% <0.01%
Education 49.2% 0% 45.8% 0% 46.9% 0%
Muslim 83.2% <0.01% 86.3% <0.01% 85.2% <0.01%
Bengali 85.6% <0.01% 88.5% <0.01% 87.6% <0.01%
Agricultor 75.0% <0.01% 70.2% <0.01% 71.9% <0.01%
Stoves 58.2% <0.01% 62.9% <0.01% 61.3% <0.01%
Water Pipes 89.9% <0.01% 91.3% <0.01% 90.8% <0.01%
Phone 64.1% <0.01% 57.2% <0.01% 59.5% <0.01%
Age 30 (13)  <0.01% 39 (14)  <0.01% 39 (14)  <0.01%
Cluster-level X g Mean Missing % Mean Missing % Mean Missing %
Village size 230 (120) 0% 270 (190) 0% 256 (170) 0%
Nb doctors 7(7) 0% 9 (18) 0% 8 (15) 0%
% Landless 41.6 (12) 0% 34.4 (15) 0% 36.9 (15) 0%
% Almost Landless 19.3 (11) 0% 24.0 (8) 0% 22.4 (9) 0%
% Access electricity 59.9 (26) 0% 59.1 (20) 0% 59.4 (22) 0%

Table 2: Description of the Sanitation dataset from (Guiteras et al. 2015a) considering only the
Side-Market supply and the Control group. Percentages are given for qualitative covariates.
Means and standard deviations in parentheses are provided for continuous covariates.

We consider only the comparison of a supply side-market versus control. The published
analysis, Guiteras et al. (2015a) which used a mixed effect model, showed that the supply
side-market alone did not increase the hygienic latrine ownership (40.3 percentage points,
p-value=0.90). Because we want to take advantages of a doubly-robust approach, which
is impossible with mixed effect models, we reanalyzed the dataset using GEE approaches.
Description of the outcome and variables for adjustment are available in Table 2. Because
covariates were missing in less than 0.01% of the observations, we assumed that covariates are
MCAR and excluded individuals with missing covariates. The final dataset contains 4774 indi-
viduals and 100 clusters. We assume the outcome are rMAR, and conduct the IPW analyses.
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As there is some evidence of imbalance in baseline covariates across arms, i.e. the descriptive
distributions of covariates in Table 2 are different between treated and control groups, we
use the DR approach. We assume that the correlation between any pair of individuals in the
same cluster is the same, thus we use an exchangeable working correlation structure. Table 3
presents the PS and OM for analysis, the estimates, the nuisance-adjusted sandwich estimates
of the variance, the confidence intervals for the odd-ratios, the p-values, and the computation
times for each of these analysis. The PS and OM are fitted using a logistic regression with
a linear combination of all the individual-level and cluster-level covariates described in Table
2. Variables for these models are selected using a forward stepwise regression. Inclusion of
treatment-covariate interactions in the PS was considered for the IPW but did not affect the
results for estimates and is not necessary for DR as demonstrated by (Prague et al. 2015).
The code for analysis is available in Web-Supplementary material. To illustrate the use of
the package CRTgeeDR, we provide instructions for the DR estimator:

R> DR<-geeDREstimation(OUTCOME~TRT, id=CLUSTER, data = Sanitation,
family = binomial("logit"), corstr = "exchangeable", typeweights = "VW",
model.weights = MISSING TRT+DIARRHEA+...+ELEC_ACCESS,
model . augmentation.trt = OUTCOME"DIARRHEA+...+ELEC_ACCESS,
model.augmentation.ctrl = OUTCOME DIARRHEA+...+ELEC_ACCESS,
stepwise.weights = TRUE, stepwise.augmentation = TRUE,
sandwich.nuisance = TRUE)

R> summary (DR)

Sandwich Nuisance-adjusted exp(54) time

Ba SE SE OR I1Chin IChar p-value (sec.)
GEE 0.19 0.171 - 1.21 0.87 1.69 0.262 1
IPW 0.19 0.182 0.219 1.21 0.79 1.86 0.386 32
AUG 045 0.141 0.176 1.57 1.12 2.22 0.010 11
DR 0.44 0.143 0.183 1.55 1.08 2.21 0.016 20

Marginal mean model: logit(u;;) = Bo + Sadi
PS: logit(P(Rij|Ai, XINP, X 5) = 70+ vadi + Y0l NP XINP + 301 95 X8,

OM: logit(P(Y;;|A; = a, X3P, XT) = & + SO0 EeND XIND o §20 eeCxC

ik ix (for each group a)

Table 3: Effects of the supply side-market vs. control on the probability of hygienic latrine
ownership in the sanitation data analysis (Guiteras et al. 2015a) using the standard GEE,
the IPW adjustment (IPW and DR), and the augmentation for imbalance (AUG and DR)
assuming outcomes are rMAR.

For DR the computation time is 20 seconds, which is mainly driven by the computation
of the nuisance-adjusted sandwich estimator of the variance (the estimation is < 3 seconds
otherwise). Whereas GEE and IPW lead to non-significant effect of supply side-market,
augmented approaches do demonstrate effects that are significant at the 0.025 level. Using
the DR, we can conclude that there is 55% [8% - 121%)]| greater change of being a hygienic
latrine owner after one year if there is a supply side-market. This effect is significant even
using a nuisance-adjusted SE, which is generally larger than the standard sandwich SE due
to incorporation of additional variability in estimating nuisance parameters in the PS and
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the OM (nw and npg). Information about the PS and the OM can be obtained by using the
following command lines:

R> summary (DR$ps.model)

R> summary(DR$om.model.trt)
R> summary (DR$om.model.ctrl)
R> getPSPlot (DR)

PS m;; (observed)  OM Supply ~ OM Control
Sign Signif. Sign Signif. Sign Signif.
Individual-level covariates (X E;-\ID)
Supply side-market -

Report diarrhea + *x

Male + * + . + kokk
Education 4 *k + Kok
Muslim + koK
Bengali + Kok

Agricultor + Hokk

Stoves + + Kok + *kk
Water Pipes +

Phone + oAk + *okok + ok
Age + Hokok + Kok + soksk
Cluster-level covariates (X g)

Village size ‘ 4 . + *%
Nb doctors - Hokok + Kok ok

% Landless - Hokk + ook ) ok
% Almost Landless + ok
% Access electricity + *

Signif. codes: 0 *** 0.001 ** 0.01 "*’ 0.05°.7 0.1’ 1

Table 4: Description of covariates from Table 2 selected in the stepwise selection for the PS
and the OM (in treated and control) models. Directions of the association and significance
of the coefficients are provided.

As noted in Table 3, the estimates for IPW are close to the estimates for GEE. This is because
the correction for missingness does not have much impact because only 3.5% of data rare
missing, and, as shown in Figure 2, all the non-null weights are close to 1 (mean is 1.035 [1.02;
1.04]). The increased significance of the intervention in the DR analysis compared to GEE
is mainly driven by the augmentation. Table 4 displays the covariates among (X E-VD,X 8)
that are selected by the stepwise procedure for the OM and their significance level. In both
groups, households with higher education and economic status (as evidenced by stoves, water
pipes, phone, and other factors) are more likely to have a hygienic latrine. For cluster-
level covariates the patterns differ more by group; for example, a high number of doctors
is positively associated with the hygienic latrine ownership only in the intervention group
indicating a potential synergism between the number of doctors and the presence of side-
supply markets.

6. Conclusion
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Summary: Q1=1.02 Q2=1.03 Q3= 1.04 max= 1.62

count
4000 -
4000
3000 -
= 3000
3
o 2000 - 2000
1000 - 1000
0 - || . 0
| | | |
0.0 0.5 1.0 1.5
weights

Figure 2: Histogram of weights, which are the diagonal terms of W, from the regression used
for the PS.

We have demonstrated that the IPW can be biased in CRTs if the weights are not implemented
as described in Robins et al. (1995) and a non-independence working correlation structure is
chosen. In particular we raised concerns about the package geeM and geepack implemented
in R. These concerns apply not only for outcome data in CRTs but also to longitudinal
outcome data, when the probability that an observations is missing at a given time may
depend on time-varying covariates (Tchetgen Tchetgen et al. 2012) measured at other times.
The CRTgeeDR package protects against this bias and allows for adjustment in imbalance in
baseline covariates in CRTs. The package can accommodate for a wide range of outcome types,
link functions, and working correlation structures. The CRTgeeDR package is easy to use
and does not require extensive programming. It therefore makes the augmented GEE (AUG)
and the Doubly robust (DR) methodology for CRTs (Prague et al. 2015) more accessible
to applied researchers. Compared to existing packages for GEE approaches, users only need
specify two more attributes: a model for the propensity score linking the missingness indicator
(Ri;) with baseline covariates (X;;) and the treatment (A;), and a model for the outcome
linking the outcome (Y;;) with baseline covariates (X;;). In presence of rMAR outcomes, if
one of these two models is correct regarding the true data generation process, our estimator
implemented in CRTgeeDR is consistent (unlike GEE and AUG) and generally more efficient
than IPW. If the true data generation process linking the missingness (R;;) and the observed
outcomes of other individuals in the same cluster (Y;;/, with j' # j) is known, the result above
is also valid for MAR outcomes. Finally, although the CRTgeeDR package had been designed
for CRTSs, it can also be used for analysis of correlated longitudinal data from a randomized
trial.
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