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Summary: Semi-parametric methods are often used for the estimation of intervention effects on

correlated outcomes in cluster-randomized trials (CRTs). When outcomes are missing at random

(MAR), Inverse Probability Weighted (IPW) methods incorporating baseline covariates can be used

to deal with informative missingness. Also, augmented generalized estimating equations (AUG)

correct for imbalance in baseline covariates but need to be extended for MAR outcomes. However,

in the presence of interactions between treatment and baseline covariates, neither method alone

produces consistent estimates for the marginal treatment effect if the model for interaction is not

correctly specified. We propose an AUG-IPW estimator that weights by the inverse of the probability

of being a complete case and allows different outcome models in each intervention arm. This estimator

is doubly robust (DR), it gives correct estimates whether the missing data process or the outcome

model is correctly specified. We consider the problem of covariate interference which arises when the

outcome of an individual may depend on covariates of other individuals. When interfering covariates

are not modeled, the DR property prevents bias as long as covariate interference is not present

simultaneously for the outcome and the missingness. An R package is developed implementing the

proposed method. An extensive simulation study and an application to a CRT of HIV risk reduction-

intervention in South Africa illustrate the method.

Key words: Augmentation; Cluster-randomized trials; Generalized estimating equation (GEE);

Interactions; Interference; Inverse probability weighting (IPW); Missing at random (MAR); Out-

come Model; Propensity Score; R package; Semi-parametric methods.
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Marginal treatment effect in CRTs with missing outcomes 1

1. Introduction

In clustered randomized clinical trials (CRTs), the unit of treatment assignment is a cluster

of subjects, which we also refer to as community. In such settings, outcomes are likely to

be correlated among subjects within the same cluster. Often used for estimation, gener-

alized estimating equations (GEE) based on semi-parametric methods (Zeger and Liang,

1986) target marginal effects of treatment. Within clusters, dependence can be modeled

using a working correlation structure. Compared to mixed effects models, this approach has

the advantage of focusing on population average effects rather than cluster specific effects

(which are equal for continuous outcomes) and requires fewer parametric assumptions on

the outcome distribution (Hubbard et al., 2010). Moreover, because both the outcome and

the missing data mechanism can be modeled, this approach allows doubly robust estimation,

which is impossible with mixed effect models. Finally, this approach to estimation is robust

to misspecification of the correlation structure. However, challenges arise in developing a

consistent and efficient estimator of marginal treatment effects; these include the need to

adjust for missing data and accommodate covariate interference (wherein a subject’s outcome

may be affected by covariates of other subjects) and interactions (wherein the effect of

treatment varies by covariate-defined subgroups). We propose a method that addresses these

issues and is practical to implement for evaluating novel interventions in CRTs.

In CRTs, covariates may be fully observed even if the outcome is missing. When data are

assumed missing completely at random (MCAR) – i.e. the observed process is independent

of observed and unobserved information (Rubin, 1976) – the standard GEE approach pro-

vides consistent and asymptotically normal (CAN) estimators. If the pattern of missingness

depends on observed information but not on missing data, the data are said to be Missing

at Random (MAR). In this setting, the standard GEE may yield biased estimates although

likelihood-based approaches, such as mixed effect models, can provide unbiased estimators.

http://biostats.bepress.com/harvardbiostat/paper193
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Imputation (Paik, 1997) or reweighing (Robins et al., 1995) methods can correct for this bias.

Although useful if the missingness mechanism is not completely known, multiple imputation

requires correct specification of the joint distribution of the outcomes, which is especially

difficult when they are correlated and the cluster sizes are large (Beunckens et al., 2008).

In this article, we consider the Inverse Probability Weighting (IPW) approach to analyze

incomplete data. If the model for the missingness mechanism represents the MAR data

generating process, the IPW estimation provides CAN estimators of treatment effects by

reweighing complete cases according to the probability of being observed (Liang and Zeger,

1986; Robins et al., 1994).

Recent methodological developments improve estimation efficiency by leveraging baseline

covariates; they may be based on targeted maximum likelihood (Moore and van der Laan,

2009) and on augmentation (Robins et al., 1994; Robins, 2000; Tsiatis et al., 2008; Zhang

et al., 2008). Stephens et al. (2012) developed the augmented GEE (AUG) methods in the

setting of dependent outcomes such as in CRTs. The AUG adds a term to the standard GEE

which relates the outcome to covariates and treatment. Randomization assures that the

AUG is CAN even in the case of OM misspecification. However in the case of outcome data

that are MAR but not MCAR, the AUG may be biased. There exists theory for extending

these methods to MAR data for individual randomized Trials (RTs) with possibly correlated

data (Van der Laan and Robins, 2003; Glynn and Quinn, 2010), we focus on the details of

implementing the methods in CRTs.

The term interference can refer to different types of relationships among exposures, out-

comes and covariates. Interference in RTs arises when one subject’s treatment may impact

the outcomes of other subjects (Rosenbaum, 2007; Vansteelandt, 2007; Tchetgen Tchetgen

and VanderWeele, 2012; Hudgens and Halloran, 2012). A similar phenomenon, confounding

by clusters, has been discussed in the context of observational studies (Seaman et al., 2014);
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Marginal treatment effect in CRTs with missing outcomes 3

we will refer to such confounding as exposure interference. In CRTs all subjects within a

cluster receive the same treatment; hence if the clusters are independent as typically assumed

in practice, there is no exposure interference measured at the cluster level. Therefore, any

choice of working correlation structure for the standard GEE will give a consistent estimator

of the marginal treatment effect (Pepe and Anderson, 1994). We will investigate covariate

interference among individuals nested within clusters: the setting in which one subject’s

covariate may impact the outcomes of other subjects.

The IPW and the AUG can be combined in a doubly-robust method we refer to as the

DR; we investigate its properties regarding robustness to misspecification of the missing data

and outcome generating process. By considering a variety of data generating mechanisms, we

investigate settings in which the DR has advantageous properties (consistency and precision)

compared to the IPW and the AUG, and discuss the impact of covariate interference and

treatment-covariate interactions. This paper is organized as follows. Section 2 introduces

notation and assumptions for the IPW and the AUG GEE approaches. Section 3 describes the

DR approach, investigates CAN properties and discusses the issue of covariate interference.

Section 4 provides a motivating example with data arising from a CRT of an HIV / Sexually

Transmitted Infection (STI) risk reduction intervention in South Africa (Jemmott III et al.,

2014). Simulation studies regarding bias, relative efficiency and coverage are described in

Section 5, and concluding remarks are made in Section 6.

2. Notation, basic models and assumptions

2.1 Notation for CRTs and marginal treatment effect

We consider a study design in which a vector of P baseline covariates X ij = (X1
ij, . . . , X

P
ij )

and outcome Yij are recorded for each subject j = 1, . . . , ni in community i = 1, . . . ,M .

The sample size within each community is assumed fixed by design and non-informative.

http://biostats.bepress.com/harvardbiostat/paper193
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Our setting compares two arms (treated Ai = 1 and control Ai = 0); the probability of

treatment assignment is known and given by p = P (Ai = 1); extension to a greater number

of treatments is straightforward but complicates the notation. In this article, the outcome

Y i = [Yij]j=1,...,ni
is assumed to be continuous, but extension to other types of outcomes is

straightforward. The vector Ri = [Rij]j=1,...,ni
is the indicator of missingness; Yij is observed

when Rij = 1. The matrix of covariates X i = [X ij]j=1,...,ni
is assumed to be fully observed

and consists only of pre-exposure covariates measured at baseline.

Interest lies in estimating the marginal effect of the treatment given byM∗
E = E(E(Yij|Ai =

1,X i) − E(Yij|Ai = 0,X i)). For estimating M∗
E, we make inference about the parameters

β = (β0, βA)T indexing the marginal model g(µij(β, Ai)) = g(E(Yij|Ai)) = β0 + βAAi,

where µi(β, Ai) = [µij(β, Ai)]j=1,...,ni
and g is a one-to-one link function, which is an identity

function in this article. Of particular interest, βA is equal to M∗
E. Of note, extension to binary

outcome Yij using a logistic function for g and considering odd-ratios is based on the same

reasoning.

When the outcome is believed to be MCAR, the missingness process is independent of X i,

Ai, and Y i. If one assumes MAR and the missingness pattern is monotone, the probability of

missingness can be estimated by a multistep approach by decomposing a monotone missing

pattern into multiple uniform missing data models (Robins et al., 1994; Li et al., 2011). In

CRTs, any component of Y i can be missing; hence the missingness pattern is non-monotone.

Therefore, we make a stronger assumption than MAR that we refer to as restricted MAR

(rMAR): the probability that the outcome for one individual is missing is independent of

all outcomes in the cluster, conditional on baseline exposure Ai and cluster characteristics

X i. The conditional probability that the outcome is observed is denoted πij(X i, Ai) =

P (Rij = 1|X i, Ai) and is called the propensity score (PS). When data are rMAR, ignoring

missing data leads to biased inference if missingness depends both on X i and Ai. This is

Hosted by The Berkeley Electronic Press
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because the presence of missing data no longer assures balance on average of confounding

factors between treatment arms. Therefore, analysis must include adjustment for missing

data; appropriate models for this adjustment may require treatment-covariate interactions,

which may be difficult to specify and require many parameters. Combining the IPW and

the AUG, which this paper proposes, makes it possible to obtain consistent estimates of

the marginal effect of treatment without explicitly specifying interaction terms while also

improving efficiency.

2.2 Inverse Probability Weighted Generalized Estimating Equations (IPW)

In order to account for missing data, semi-parametric estimators based on the IPW are found

by solving the estimating equation 1:

0 =
M∑
i=1

DT
i V

−1
i W i(X i, Ai,ηW ) [Y i − µi(β, Ai)]︸ ︷︷ ︸

ψi(Y i,Ri,Ai,β,ηW )

, (1)

whereDi = ∂µi(β,Ai)

∂βT is the design matrix, V i is the covariance matrix equal toU
1/2
i C(α)U

1/2
i

with U i a diagonal matrix with elements var(yij) and C(α) is the working correlation

structure with non-diagonal terms α. For example, for an independence correlation structure

α are zero; for exchangeable all the elements of α are identical. Parameters α could also

depend on the treatment group C(α(Ai)) but we do not consider this possibility in our

implementation. In this article, we estimate the α parameters using moment estimators

from the Pearson residuals as in McDaniel et al. (2013). The ni × ni matrix of weights is

W i(X i, Ai,ηW ) = diag [Rij/πij(X i, Ai,ηW )]j=1,...,ni
, where the PS is derived by fitting a

binary response model to the indicator Rij regressed on Ai and a subset of X i – say using

a logistic regression. The ηW are nuisance parameters estimated in the PS. A necessary

assumption for this method is that probabilities for the PS are bounded away from zero.

Several authors have noted the instability that may arise from small probabilities of observa-

tion (i.e. large weights) and proposed use of stabilized or truncated weights; see Seaman and

http://biostats.bepress.com/harvardbiostat/paper193
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White (2013) for a review. To ensure that the IPW provides a CAN estimator, the PS must

include all covariates that are associated simultaneously with the missingness and outcome

(Brookhart et al., 2006), including those that involve interaction with treatment (Belitser

et al., 2011).

2.3 Augmented Generalized Estimating Equations (AUG)

For settings with complete data, Stephens et al. (2012) proposed the AUG estimator which

can improve efficiency relative to the standard GEE by incorporating baseline covariates.

The AUG is constructed by subtracting from the set of GEEs the orthogonal projection

of the standard estimating function onto the span of scores corresponding to all smooth

parametric models for the treatment assignment mechanism given covariates. The AUG is

given in Equation 2:

0 =
M∑
i=1

[
DT

i V
−1
i (Y i − µi(β, Ai))︸ ︷︷ ︸
ψ̃i(Y i,Ai,β)

+
∑
a=0,1

pa(1− p)1−aDT
i V

−1
i

(
B(X i, Ai = a,ηB)− µi(β, Ai = a)

)]
. (2)

The term ψ̃i(Y i, Ai,β) is similar toψi(Y i,Ri, Ai,β,ηW ) in Equation 1 for the IPW except

that W i is set to identity because there is no adjustment for missing data. Definitions for

Di and V i remain the same. The function B(X i, Ai = a,ηB) is an arbitrary function of

X i given for each treatment arm. The ηB are nuisance parameters that must be estimated.

The estimator in Equation 2 is most efficient if B(X i, Ai = a,ηB) models the outcome and

is equal to E(Yij|X i, Ai = a) (Robins et al., 1994; Zhang et al., 2008). Thus, B(X i, Ai =

a,ηB) is called the outcome model (OM). In the absence of missing data, the AUG remains

consistent even if the OM is not correctly specified (B(X i, Ai = a,ηB) 6= E(Yij|X i, Ai =

a)). Correct specification can lead to substantial efficiency gains compared to the standard

GEE. Moreover, in presence of treatment-covariate interactions, it is useful to fit a different

regression model for the OM for each treatment group, e.g. B(X i, Ai = a,ηB) = γa0 +

Hosted by The Berkeley Electronic Press
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∑P
r=1 γ

a
rX

r
ij with ηB = (γ01 , . . . , γ

0
P , γ

1
1 , . . . , γ

1
P ), thereby obviating the need to fit covariate-

treatment interactions terms. In presence of rMAR, the AUG does not ensure consistent

estimation; instead, one must combine the AUG with the IPW as we show below.

3. Methods to accommodate missing data, treatment-covariate interactions

and covariate interference in CRTs

3.1 Doubly Robust Augmented IPW Generalized Estimating Equations (DR)

We extend the AUG in Equation 2 to account for missing data using the IPW in Equation

1 by subtracting from the set of GEEs the orthogonal projection of ψi(Y i,Ri, Ai,β,ηW )

onto the span of scores corresponding to all smooth parametric models for the missing data

process and the treatment assignment mechanism given covariates (Tsiatis, 2006). This gives

the following estimating equation (see Web-Supplementary Material B for details):

0 =
M∑
i=1

[
DT

i V
−1
i W i(X i, Ai,ηW ) (Y i −B(X i, Ai,ηB))

+
∑
a=0,1

pa(1− p)1−aDT
i V

−1
i

(
B(X i, Ai = a,ηB)− µi(β, Ai = a)

)]
, (3)

=
M∑
i=1

Φi(Y i,Ri, Ai,X i,β,ηW ,ηB).

The Di, V i and the PS are defined such as in Equation 1, the OM denoted B(X i, Ai =

a,ηB) is defined for each treatment group such as in Equation 2. The estimator denoted

β̂aug is found by solving the estimating equation given in equation 3. Although analytic

solutions sometimes exist, coefficient estimates are generally obtained using an iterative

procedure such as the Newton-Raphson method. To get β̂aug we use the estimated PS

(W i(X i, Ai, η̂W )) and estimated OM (B(X i, Ai, η̂B)). As mentioned above, treatment-

covariate interactions can be accounted for by fitting OM regressions separately by treatment

group. One could also estimate parameters of the PS model separately by treatment groups.

This approach, however, may provide less stable results due to variability in the calculation

http://biostats.bepress.com/harvardbiostat/paper193



8 Biometrics, December 2015

of weights. In this paper, η̂W in W i(X i, Ai, η̂W ) are obtained using a logistic regression and

η̂B in B(X i, Ai, η̂B) are obtained using a linear regression. Thus, we treat Rij and Rij′ as

conditionally independent given Ai and X i. In the presence of correlation of Rij and Rij′ ,

one might be able to improve efficiency of estimation of πij and therefore of the marginal

treatment effect by accounting for this correlation. Of note, estimation procedures other

than generalized linear models could also be used to compute the OM and the PS values.

The DR estimator is doubly robust in the sense that it is CAN under correct specification

of either the OM (i.e. B(X i, Ai, η̂B) = E(Yij|Ai,X i)) or the PS (i.e. πij(X i, Ai, η̂W ) =

P (Rij = 1|X i, Ai)) (see Web-Supplementary Material Section C1). Implementation in R is

available on the CRAN in the package ’CRTgeeDR’. Source code had been made available

as Web-Supplementary material. We note that in contrast with several existing software

packages (for example proc GENMOD in SAS (2015)), our implementation of the weighted

GEE, which uses V −1i W i(X i, Ai,ηW ) instead of W
1/2
i (X i, Ai,ηW )V −1i W

1/2
i (X i, Ai,ηW ),

guarantees consistency for all choices of working correlation structure (see details in Web-

Supplementary Material Section C2 and D).

3.2 Variance of the DR estimator

The variance of β̂aug is estimated by the sandwich variance estimator. There are two external

sources of variability that need to be accounted for: estimation of ηW for the PS and of ηB

for the OM. We denote Ω = (β,ηW ,ηB) the estimated parameters of interest and nuisance

parameters. We can stack estimating functions and score functions for Ω:

U i(Ω) =


Φi(Y i,Xi, Ai,β,ηW ,ηB)

SW
i (Xi, Ai,ηW )

SB
i (Xi, Ai,ηB)

 ,

where SWi and SBi represent the score equations for patients in cluster i for the estimation

of ηW and ηB in the PS and the OM. A standard Taylor expansion paired with Slutzky’s

theorem and the central limit theorem provide the sandwich estimator adjusted for nuisance

parameters estimation in the OM and PS. We refer to this as the nuisance-adjusted sandwich

Hosted by The Berkeley Electronic Press



Marginal treatment effect in CRTs with missing outcomes 9

estimator:

V ar(Ω) = E

[
∂U i(Ω)

∂Ω

]−1T
E
[
U i(Ω)UT

i (Ω)
]︸ ︷︷ ︸

∆adj

E

[
∂U i(Ω)

∂Ω

]−1
︸ ︷︷ ︸

Γ−1
adj

. (4)

The variance estimator v̂ar(β̂aug) is obtained by estimating unknown quantities upon sub-

stituting empirical means for expectations and Ω̂ = (β̂, η̂W , η̂B) for Ω. Thus, the term ∆̂adj

is given by 1
M

∑M
i=1 Û i(Ω̂)Û i(Ω̂)T and Γ̂adj is given by 1

M

∑M
i=1

∂Û i(Ω̂)
∂Ω

.

In small sample settings, it is likely that this estimator of the variance of β̂aug is bi-

ased. We implemented Fay’s bias-correction approach, which is particularly suitable for

M-estimators (Fay et al. 2001). The term ∆̂adj in Equation 4 is replaced by ∆̂fay given

by 1
M

∑M
i=1

[
Ĥ iÛ i(Ω̂)

(
Ĥ iÛ i(Ω̂)

)T]
, where Ĥ i is a diagonal matrix with diagonal terms

Ĥ i[jj] =
[
1−min(q, (∂Û i(Ω̂)

∂Ω
Γ̂i
adj)[jj]

]
, q = 0.75 is a frequently-used bound.

3.3 Definition of covariate interference and implication for analysis

In previous sections, we discussed covariates measured on the index subject (j), but other

subjects’ (j′) covariates may also impact the outcome for the index subject. An example of

a potentially interfering covariate is described by Kaiser et al. (2011) who found a positive

association between age of partner and infection with HIV. Similarly, the characteristics of

subgroups to which the index case belongs (household, neighborhoods, . . . ), whether known

or not, may be interfering covariates (Brumback and He, 2011). In this paper, we consider the

phenomenon of covariate interference where there exists at least one individual j′ 6= j such

that E(Yij|X ij) 6= E(Yij|X ij,X ij′), where X ij represent the vector of all measured baseline

covariates. That is, even after all covariates for the index subject j have been included in

the model, the covariates of individuals other than the index subject still affect the outcome

of the index subject j; we refer to such covariates as interfering covariates. See Pepe and

Anderson (1994) for a similar definition in longitudinal data and see Seaman et al. (2014);

Liu and Hudgens (2014) for an analogous definition in non-randomized clustered data in the

http://biostats.bepress.com/harvardbiostat/paper193



10 Biometrics, December 2015

context of confounding by cluster and interference. Refer to Web-Supplementary Material

Section A for a causal interpretation of covariate-interference.

When interfering covariates affect either the outcome (E(Yij|X ij) 6= E(Yij|X ij,X ij′)) or

the missingness process (E(Rij|X ij) 6= E(Rij|X ij,X ij′)), but not both, the DR estimator is

CAN even if the interfering covariates are not included in the models, provided that either

the PS (P (Rij|X ij, Ai)) or the OM (E(Yij|X ij, Ai = a)) is correctly specified; that is, either

the PS or the OM includes all the covariates X ij involved in the same functional form as

in the data generation processes. Accounting for covariates interference in the OM increases

efficiency if and only if they predict the outcome. When interfering covariates impact both

the outcome and the missing data generating processes, they must be included in either

the OM or the PS models in a way that correctly represents the data generation processes.

Thus, it will ensure that the DR estimator will be CAN if a correct model for either the OM

(E(Yij|X i, Ai = a)) or the PS (P (Rij|X i, Ai)) is specified, where the X ij are replaced with

X i in the formulas above. We acknowledge that this model for interfering covariates is not

likely to be known and can be difficult to identify. Different cluster sizes and sub-clustering

structures (such as households) may make infeasible the use of regression techniques in the

OM or the PS because of the potentially different dimensions of the individual and interfering

covariates. Cluster summary measures such as the mean or maximum of individual covariates

in the cluster (or sub-groups in each cluster) may nonetheless be useful in incorporating

interference covariates in models (Brumback et al., 2010).

4. Application

4.1 Description of the SAM study

We analyze data from the “South African Men” (SAM) study which randomized 22 pair-

matched clusters to a health-promotion intervention (control) and an HIV/STI risk-reduction

Hosted by The Berkeley Electronic Press



Marginal treatment effect in CRTs with missing outcomes 11

intervention in a CRT design; the study included 1181 South African men who have sex

with women. A complete description of the study design can be found in (Jemmott III

et al., 2014). We focus on a cross-sectional analysis of these data after one year and ignore

matching. The primary outcome of our analysis is the overall percentage of acts of protected

intercourse among the total number of acts of intercourse. When the total number of acts of

intercourse is zero, we set the percentage to 100%, as no exposure implies no risk. Secondary

outcomes are the percentages of protected acts of intercourse by type of partnership and type

of intercourse (vaginal and anal sex with main and casual partners). Descriptive statistics

for these outcomes, including proportion of missing observations by type of partner and

intercourse are provided in Table 1. Slightly more observations are missing in the HIV/STI

intervention group (20.8% versus 17.5%). The overall protection percentage after one year

are about 64% for the HIV/STI intervention compared to 60% for the control group.

As the proportion of missing baseline covariates was less than 0.1%, we consider them to be

MCAR and exclude observation with missing covariates from the analysis. No community

sub-structure, such as household or neighborhood structures, was described in the SAM

study. Here we consider potential interfering covariates at a cluster level by taking the

mean (or mode for qualitative variables) of baseline measures in the community: Xk
i. =

1
ni

∑
j=1,...,ni

Xk
ij. For example Hawkes et al. (2013) demonstrated that the mean religiosity

score for a community, defined as the mean of individual religiosity score in the community,

may have an impact on each individual outcome and missingness in particular regarding

sexual behaviors. Table 1 describes socio-demographical individual-level variables and inter-

fering covariates. We provide p-values for Wald tests testing the association of covariates

and treatment-covariate interactions with the outcome and the missingness indicator. In

this study, there is evidence of interactions of individual covariates with treatment for both

the outcome and the missing data generation processes. However, the interfering covariates

http://biostats.bepress.com/harvardbiostat/paper193
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defined here do not appear to be significantly associated with both the outcome and the

missing data generation process.

[Table 1 about here.]

4.2 Results

We analyze these data with the GEE, the AUG, the IPW and the DR using both indepen-

dence (-I) and exchangeable (-E) working correlation structures. Variables for the PS, and the

OM were selected using a forward stepwise regression (separately for each treatment group)

from among all the individual covariates X ij presented in Table 1. We did not include the

interfering covariates (Xi.) in the analysis as none impacted both outcome and missingness

processes (Table 1). We used the step function in R based on the AIC criterion. Results of

these selections are given in Web-Supplementary Material F. We describe here the results for

the primary outcome. The amount of missingness is larger in the treated arm and increases

with age; it decreases with religiosity, good health score, and exercise. The OM patterns are

substantially different for treated and control; the only common variable is the CAGE score.

In both arms lower alcohol consumption is associated with a greater percentage of protected

acts of intercourse. Results are presented in Table 2 for primary and secondary outcomes.

With the DR-E, we observe a significant difference of 7.4% (sd=2.9%, p=0.01) in the overall

percentage of protected intercourse in the HIV/STI intervention group compared to the

control group. Analyses of the secondary outcomes suggest that this result is mainly driven

by condom use during vaginal intercourse with a marital partner. The HIV/STI intervention

has no significant impact on other outcomes. Using the DR rather than the standard GEE

or the AUG has an impact on the treatment effect estimates and associated standard errors

(SE). The difference between these approaches is apparent in the magnitude and direction

of the marginal treatment effect estimate. For example, the analysis for the GEE-I (3.8 [-

1.0; 8.5]) does not demonstrate a significant effect of the HIV/STI intervention on overall

Hosted by The Berkeley Electronic Press



Marginal treatment effect in CRTs with missing outcomes 13

percentage of protected intercourse, whereas this effect is stronger and significant for the

DR-I (7.3 [1.6; 13.0]). Both the GEE-I and the AUG-I (5.4 [2.2; 8.7]) are probably biased

due to missing data. Using the DR instead of the IPW leads to an increased magnitude of

the treatment effect and an increased level of statistical significance: for example, the DR-E

(7.4 [1.73; 13.0]) compared to the IPW-E (3.4 [-1.4; 8.3]).

[Table 2 about here.]

5. Simulation Studies

5.1 Properties of the DR estimator

We consider a setting with continuous outcome Y ij and assignment of treatment Ai at a

cluster level with probability p = 1/2. We generate a normally distributed covariate X1ij

(independent of Ai) with mean 1 and a standard deviation of 5. For each individual, we

define a covariate X1i. which is the mean of X1 for all the subjects in the same cluster:

X1i. = 1
ni

∑ni

j=1X1ij. Similarly, we generate X2ij ∼ N (2, 5) and X3ij ∼ N (3, 5); X2i. and

X3i. are defined as wasX1i. and are possible interfering covariates. The model for simulation

is given in Equation 5:

 Yij = βO0 + βOAAi + βO1 X1ij + βOI1X1i. + βOA1AiX1ij + εOi + εOij

logit(P (Rij = 0)) = βM0 + βMA Ai + βM1 X1ij + βMI1X1i. + βMA1AiX1ij

. (5)

The parameters βO = (βO0 , β
O
A , β

O
1 , β

O
I1, β

O
A1) are the regressors associated with intercept,

treatment, covariate, interfering covariate, treatment-covariate interaction for the outcome

model. Parameters βM are the same for the missing data generating process. Scenarios with

low correlation among cluster (0.05) were simulated with εOi ∼ N (0, 0.05) and εOij ∼ N (0, 1.0)

for cluster and individual random errors; scenarios with high correlation (0.2) were simulated

with εOi ∼ N (0, 0.25) and εOij ∼ N (0, 1.0). True correlation structure is exchangeable. We

investigate small sample (M = 10 and ni = (10, 20, 30) with probability 1/3 each) and large
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sample (M = 100 and ni = (90, 100, 110) with probability 1/3 each) properties. In each

scenario, we generate 1000 replicates of datasets.

We evaluate the double robustness of the DR estimator in the setting of large and small

sample with low correlation, but similar results are observed for large correlation. We inves-

tigate models of analysis with OM and PS correctly specified (TRUE), misspecified (MISS)

and partially specified omitting treatment-covariate interactions (NONE). Table 3describes

the data generation process, provides the formulations of the models of analysis, and shows

the results from analysis; on average, 26% of outcomes were missing and the average ICC

was 0.08. When there is no missing data, the traditional GEE is consistent because of

randomization. When outcome data are MAR but not MCAR, the GEE and the AUG

analysis are biased (-1.7 for the GEE-I and -1.8 for the AUG-I). When either the OM or

the PS models or both are correctly specified there is negligible estimated bias for the DR

- a finding that confirm consistency. In small samples, this bias is bigger when only the PS

is correct because the weights are estimated with lower accuracy. Using the more common

choice of implementation for the weighted GEE W
1/2
i (ηW )V −1i W

1/2
i (ηW ) leads to very high

bias if an exchangeable correlation structure is used (0.374 if the OM is correct and 858 if it is

not, for large sample). When the OM is correct the coverage remains around 95% (see Table

2 in Web-Supplementary Material E). Using V −1i W i(X i, Ai,ηW ) in the implementation

of weights addresses this problem and permits the use of correlation structures other than

independence. The IPW with correct PS also corrects the bias (-0.01) but is less efficient

than the DR approach; coverage is close to the nominal value of 95%. In small samples,

the empirical SE are underestimated. By contrast, in the large sample setting, using the

nuisance-adjusted sandwich estimator for the DR leads to good estimates of the asymptotic

SE (0.0263) compared to the empirical SE (0.0266) over 1000 replicates. Moreover, we observe

that the coverage using the DR is comparable to that of the GEE with complete data.
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Finally, we note that when the treatment-covariate interactions are ignored in the PS and

only accounted for in the OM by fitting a different regression in each treatment group, the

DR approach is also consistent and achieve same precision as when both the PS and the

OM are correct (0.0014 and SE=0.027 for OM.TRUE.PS.NONE and 0.0013 SE=0.029 for

OM.TRUE.PS.TRUE).

[Table 3 about here.]

Table 4 presents the results of analyses with the GEE, the IPW, the AUG and the DR

that investigate the impact of correlation of the outcome in the data with small and large

sample. The average percentage of missing outcomes is 23%; the average ICC is 0.04 for

low correlation and 0.21 for high correlation. We analyzed the data using a PS and an OM

model that was fit using a stepwise variable selection from among all of the individual and

interfering covariates described above. The GEE and the AUG estimates are systematically

biased because there is no correction for missing data. The IPW is also biased because the PS

is incorrect in that it omits treatment-covariate interactions. The DR estimates are consistent

in all analyses. In small sample settings, the empirical SE is underestimated even when

using nuisance-adjusted SE, but estimation is improved by Fay’s correction. Nonetheless,

the coverage remained lower than 86%, but it improves for large samples. Finally, when

there is low correlation in the outcome, the robust SE better approximate the empirical SE.

[Table 4 about here.]

5.2 Simulations mimicking the SAM Study

To consider more complex settings, we mimic the SAM study (see Section 4). We simulate

the following individual-level covariates: employment (EMP ∼ B(0.25)), marital status

(MARI ∼ B(0.23)), age (AGE ∼ N (27; 7)), religiosity (REL ∼ N (0, 0.8)), the CAGE score

(from a multinomial of probabilities CAGE ∼M(0.3; 0.1; 0.1; 0.2; 0.3) for modalities 0,1,2,3
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and 4), the HIV score (HIV ∼ N (14; 4)) and the condom knowledge score (CDM ∼ N (3; 1)).

Interfering covariates are generated as means for quantitative variables or modes for qualita-

tive variables of the individual-level variables in each of the community (as was done for X1,

X2 and X3 in Section 5.1). We generate data from the model in Equation 6. In simulating

the outcome, we add cluster random errors to create an exchangeable correlation structure

with εOi ∼ N (0, 5) and an individual random effects εOij ∼ N (0, 4). This provides an outcome

correlation among clusters of 0.07. We analyzed the data using a PS and an OM composed of

all the covariates described above with a stepwise variable selection. Table 5 shows the bias,

SE, and coverage of the methods we consider based on 1000 replicates for the estimation

of the parameter M∗
E = 5.73. The percentage of missing outcomes is 21% and the average

empirical ICC is 0.06.



Yij = 60+40Ai−9.0EMPij−8.0MARIij+1.0CDMij+5.0RELij

+ Ai[−2.0AGEij+8.5EMPij+3.5MARIij+1.5HIVij−2.0CAGEij+2.0RELij ]︸ ︷︷ ︸
Interactions

−0.5AGEi.−7.0CDMi.−5RELi.+1.0HIVi.︸ ︷︷ ︸
covariate interference

+εOi +εOij

logit[P (Rij=0)] = −3.0+2.0Ai+0.01AGEij−0.1HIVij+Ai[−0.1AGEij−0.2HIVij ]︸ ︷︷ ︸
Interactions

+ 0.02AGEi.+0.2CDMi.+0.2CAGEi.︸ ︷︷ ︸
covariate interference

(6)

Table 5 provides the estimates the marginal treatment effect for small sample and for the

same sample size as that of the SAM data. The GEE, the AUG and the IPW yield biased

results whereas the DR has small bias justifying its use to analyse the data even ignoring

covariate interference. Fay’s correction with coverage around 92% in small sample and 95% in

large sample achieve good accuracy. Figure 2 in Web-Supplementary Material C3 represents

the histograms of estimates over the 1000 replicates together with the true value of marginal

treatment effect. It displays the bias of the GEE, the AUG and the IPW estimators compared

to the DR and supports the approximate normal distribution of the DR estimator.
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[Table 5 about here.]

6. Discussion

We propose a doubly robust method for the estimation of the marginal effect of treatment in

CRTs with continuous data subject to rMAR - an assumption that arises because missingness

is non-monotone in CRTs. Extension to binary or other outcomes is straightforward, provided

that there is a one-to-one link function h such that: µij = h(X i, Ai). We extend the IPW

approach proposed by Robins et al. (1995) and the AUG approach for CRTs proposed

by Stephens et al. (2012). To be CAN, the DR estimator requires that either the OM or

PS model be correctly specified regardless of the choice of the working correlation matrix.

Interfering covariates can be ignored if either the OM or the PS is correctly specified. In

presence of treatment-covariate interactions, if the PS is not correctly specified, covariates

that interact with treatment on the outcome must be included in the OM. We accommodate

these treatment-covariate interactions by modeling the OM separately for each treatment

group. Covariates for the OM and the PS may be selected using automatic variable selection

procedures such as a stepwise procedure, and may be at the cluster level or individual level.

We recommend using V −1i W i(X i, Ai,ηW ) to ensure consistency of the IPW and the DR

for CRTs, rather than the conventional implementation, W
1/2
i (ηW )V −1i W

1/2
i (ηW ), available

in several software packages of the weighted GEE. See Tchetgen Tchetgen et al. (2012)

for a similar result for longitudinal data with observation-specific weights. If a working

independence correlation structure is used, then the two implementations lead to the same

result. When W
1/2
i (ηW )V −1i W

1/2
i (ηW ) and an arbitrary correlation structure is used in

the DR, estimation of marginal treatment effect is consistent only if the OM is correctly

specified. We provide an R package called CRTgeeDR that implements the proposed DR

estimator. The application of our methods to data from the SAM study showed an effect of

HIV/STI intervention on the percentage of protected intercourse (Jemmott III et al., 2014)
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that reached a 0.05 level of significance. Moreover, results of the analysis that distinguishes

among different types of partners and of sexual behavior may be useful in targeting future

interventions. Our approach allows a situation that we denoted covariate interference in

CRTs, and thus extends ideas of adjustment of time-varying covariates in longitudinal

responses (Pepe and Anderson, 1994; Tchetgen Tchetgen et al., 2012). Since treatment is

randomized at a cluster level and we consider a marginal mean model which only includes

treatment, the covariate interference have a different implication for analysis than exposure

interference in causal framework (Liu and Hudgens, 2014) or confounding by cluster in

observational studies (Berlin et al., 1999; Huang and Leroux, 2011). However, when there

are interactions between Xr
ij and Ai exposure and covariate interference are related; in this

case, individual ij may be seen as receiving pseudo-treatment AiX
r
ij. For such a setting, our

work may be seen as extending the notion of exposure interference in RTs to CRTs and

is related to the work of Ogburn and VanderWeele (2014). In any case, modeling covariate

interference may lead to substantial gains of efficiency if they predict the outcome. Therefore,

it may be profitable to develop methods that make use of contact network information to

inform the selection of interfering covariates. Finally, an IPW sensitivity analysis to address

outcome MNAR as in Rotnitzky et al. (1998); Vansteelandt et al. (2007) would be useful to

developed.

7. Web-Supplementary Materials

Web Appendices, Tables, Figures, simulated data and, R sources implementing the estimators

referenced in Sections 3.1, 3.3 and 5.2 are available with this paper at the Biometrics website

on Wiley Online Library.
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Table 1: Descriptive statistics of outcomes, sociodemographic individual covariates and
interfering covariates by intervention group in SAM study.

Descriptive Statistics of the outcomes
HIV/STI Control group

Mean [IQR] % missing Mean [IQR] % missing
Primary outcome for percentage of protection (Y )
Overall 64% [26; 100] 20.8% 60% [22; 100] 17.5%
Secondary outcomes for percentage of protection (Y 1, Y 2, Y 3 and Y 4)
Main partner vaginal sex 61% [22; 100] 10.2% 56% [ 0; 100] 9.3%
Casual partners vaginal sex 68% [33; 100] 19.7% 68% [33; 100] 17.1%
Main partner anal sex 37% [ 0; 68] 11.2% 52% [ 0; 100] 8.6%
Casual partners anal sex 35% [ 0; 100] 15.1% 31% [ 0; 100] 12.8%

Descriptive Statistics of the covariates
p-value for association with

HIV/STI Control group Y∗ P(Y observed)∗∗

Mean [IQR] Mean [IQR] ηO2 6= 0 ηO3 6= 0 ηM2 6= 0 ηM3 6= 0
Individual covariates Xij

Age 26 [21; 30] 26.5 [21; 31] 0.41 0.13 0.03 0.18
Employment Yes 23% 26% 0.04 0.17 0.01 <0.001
Married Yes 23% 24% 0.05 0.76 0.68 0.50
Education Yes 46% 42% 0.58 <0.001 0.76 0.05
Number of children 1.5 [0; 2] 1.7 [0 ;2] 0.21 0.12 0.25 0.31
Wealth 5.3 [4; 7] 5.3 [4; 7] 0.77 0.96 0.25 0.54
Social desirability 3.4 [3.2; 3.4] 3.4 [3.2; 3.4] 0.87 0.33 0.04 0.34
Religiosity 0.01 [-0.7 ;0.7] 0.00[-0.7 ;0.6] 0.46 0.25 0.07 0.69
HIV/STI Knowledge 14.3 [12; 17] 14.1 [12; 17] 0.13 0.93 0.37 0.03
Condom Behaviors 3.7 [3.3 ;4] 3.7 [3.3 ;4.1] <0.001 0.36 0.16 0.33
Condom Knowledge 3.1 [3; 4] 3.1 [3; 4] 0.41 0.57 0.21 0.06
Condom Efficacy 3.9 [3.7 ;4.2] 3.9 [3.7 ;4.2] 0.01 0.31 0.97 0.42
Condom Peer norm 3.7 [3.4 ;4.1] 3.7 [3.4 ;4] <0.001 0.71 0.49 0.32
Never had HIV test 20% 21% 0.61 0.80 0.74 0.34
Sexual Activity Yes 84% 84% 0.71 0.06 0.53 0.77
Eating attitude 4.2 [4 ;5] 4.2 [3.7 ;5] 0.76 0.01 0.74 0.53
Exercise Yes 43% 42% 0.99 0.04 0.12 0.46
CAGE >= 2 62% 58% 0.22 0.41 0.18 0.08
Health Knowledge 10.8 [9; 12] 10.6 [9; 13] 0.51 0.38 0.59 0.83

Interfering covariates Xi. = 1
ni

∑
j=1,...,ni

Xij

Mean Age 26 [25 ;27] 27 [26 ;28] 0.39 0.96 0.05 0.10
Mean Education Yes 27% 8% 0.58 0.61 0.72 1.00
Mean Number of children 1.6 [1.2; 2.1] 1.7 [1.1 ;2.1] 0.81 0.67 0.14 0.59
Mean Wealth 5.4 [4.4 ;6.2] 5.2 [4.4 ;6.1] 0.45 0.38 0.23 0.92
Mean Social desirability 3.4 [3.3 ;3.4] 3.4 [3.3 ;3.4] 0.16 0.44 0.60 0.85
Mean Religiosity 0.00 [-0.1 ;0.1] 0.00 [-0.1 ;0.1] 0.84 0.70 0.18 0.94
Mean HIV/STD Knowledge 14.2 [14; 15] 13.9 [13 ;14] 0.37 0.23 0.01 0.45
Mean Condom Behaviors 3.7 [3.6 ;3.8] 3.7 [3.7 ;3.8] 0.37 0.40 0.02 0.95
Mean Condom Knowledge 3.1 [2.9 ;3.3] 3.1 [2.9 ;3.2] 0.52 0.21 0.15 0.32
Mean Condom Efficacy 3.9 [3.7 ;4.0] 3.9 [3.8 ;4.0] 0.23 0.38 0.21 0.58
Mean Condom peer norm 3.7 [3.6 ;3.8] 3.7 [3.6 ;3.7] 0.23 0.52 <0.001 0.01
Mean Eating attitude 4.2 [4.1;4.3] 4.2 [4.0 ;4.3] 0.71 0.15 0.25 0.07
Mean Exercise Yes 76% 82% 0.43 0.53 0.10 0.82
Mean CAGE>=2 63% 37% 0.99 0.79 0.71 0.41
Mean Health Knowledge 10.7 [10.5 ;11] 10.6 [10.3 ;10.8] 0.10 0.10 0.15 0.73
∗ Wald test for ηO2 and ηO3 in the regression Y = ηO0 + ηO1 A+ ηO2 X + ηO3 AX
∗∗ Wald test for ηM2 and ηM3 in the regression logit[P (R = 1)] = ηM0 + ηM1 A+ ηM2 X + ηM3 AX
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Table 2: Analysis of effect of STI/HIV intervention on overall percentage of protected
intercourses during the last 3 months one year after intervention (primary outcome) and
stratified by intercourse types (secondary outcomes) in SAM study with the GEE, the IPW,
the AUG and the DR.

Independence (-I) Exchangeable (-E)

β̂A SE p-value β̂A SE p-value
Overall percentage of protected intercourse (Y )
GEE 3.751 2.419 0.121 3.738 2.361 0.113
IPW 3.445 2.558 0.178 3.429 2.488 0.168
AUG 5.414 1.665 0.001 5.478 1.633 0.001
DR 7.341 2.923 0.012 7.386 2.885 0.010
Percentage of protected vaginal intercourse with marital partner (Y 1)
GEE 5.805 2.689 0.031 5.761 2.67 0.031
IPW 5.660 2.720 0.037 5.626 2.698 0.037
AUG 6.550 1.811 <0.001 6.518 1.794 <0.001
DR 7.254 2.542 0.004 7.273 2.50 0.004
Percentage of protected vaginal intercourse with casual partner (Y 2)
GEE -0.621 4.180 0.882 -0.497 4.164 0.905
IPW -1.500 4.182 0.720 -1.356 4.17 0.745
AUG -1.191 2.638 0.652 -1.121 2.624 0.669
DR -2.103 4.077 0.606 -2.018 4.058 0.619
Percentage of protected anal intercourse with marital partner (Y 3)
GEE -0.983 1.083 0.364 -0.972 1.081 0.369
IPW -0.934 1.087 0.390 -0.921 1.085 0.396
AUG -0.951 0.684 0.164 -0.954 0.684 0.163
DR -0.835 1.005 0.406 -0.819 1.003 0.414
Percentage of protected anal intercourse with casual partner (Y 4)
GEE 0.013 1.201 0.991 -0.002 1.204 0.998
IPW -0.003 1.181 0.998 -0.019 1.184 0.987
AUG -0.467 0.834 0.576 -0.476 0.837 0.570
DR -0.963 1.207 0.425 -0.971 1.208 0.421
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Table 3: Properties for the Doubly robust estimator (DR) compared to the GEE, the
IPW and the AUG using the data generation mechanism from Equation 5 with covariate
interference for the outcome and missing data generation process. Misspecified (.MISS),
correctly specified (.TRUE) and partially specified without treatment-covariate interactions
(.NONE) OM and PS are investigated. Statistics for 1000 replicates are the bias compared to
M∗

E = 2.0, the empirical standard errors over the replicates, the mean asymptotic nuisance-
adjusted standard error

and the coverage with independence (-I) and exchangeable (-E) working correlation matrix.
Standard Error (SE) Coverage

Bias Empirical Robust 95%
M∗

E -I -E -I -E -I -E -I -E
Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each, Low correlation
GEE (no missing) 2.0 0.0186 0.0171 0.6553 0.6598 0.5629 0.5682 93.0 92.9
GEE 2.0 -1.7186 -1.7166 0.5717 0.5724 0.5074 0.4306 12.8 7.2
IPW.PS.TRUE 2.0 -0.1623 -0.1689 1.1447 1.1473 0.7987 0.8161 83.9 84.7
AUG.OM.TRUE 2.0 -1.8142 -1.8134 0.4530 0.4148 0.8751 0.8699 39.4 38.0
DR.OM.MISS.PS.TRUE 2.0 -0.0127 -0.0366 2.7327 2.6793 1.4029 1.3985 92.0 92.0
DR.OM.TRUE.PS.MISS 2.0 0.0011 0.0001 0.1544 0.1545 0.1287 0.1330 86.0 87.5
DR.OM.TRUE.PS.TRUE 2.0 -0.0017 -0.0022 0.1881 0.1838 0.1413 0.1447 86.9 87.4
DR.OM.TRUE.PS.NONE 2.0 0.0006 -0.0003 0.1612 0.1608 0.1330 0.1368 85.8 87.8

Large sample M = 100, ni = (90, 100, 110) with probability 1/3 each, Low correlation
GEE (no missing) 2.0 0.0042 0.0043 0.1156 0.1157 0.1155 0.1156 94.3 94.5
GEE 2.0 -1.7335 -1.7321 0.1015 0.1013 0.0994 0.0994 0.0 0.0
IPW.TRUE 2.0 -0.0113 -0.0108 0.2626 0.2621 0.2507 0.2510 93.5 93.9
AUG.TRUE 2.0 -1.8021 -1.8024 0.0694 0.0664 0.2556 0.2550 0.0 0.0
OM.MISS.PS.TRUE 2.0 -0.0089 -0.0079 0.3127 0.3105 0.3937 0.3940 99.3 99.1
OM.TRUE.PS.MISS 2.0 0.0013 0.0014 0.0259 0.0259 0.0256 0.0257 95.2 95.7
OM.TRUE.PS.TRUE 2.0 0.0013 0.0014 0.0284 0.0284 0.0285 0.0285 95.8 96.0
OM.TRUE.PS.NONE 2.0 0.0014 0.0014 0.0266 0.0266 0.0263 0.0263 95.2 95.1
Marginal model for the GEE:

µ(β, Ai) = β0 + βAAi

OM is fitted for each treatment group Ai = a:
OM.TRUE B(Xi, Ai = a) = γa

0 + γa
1X1ij + γa

2X1i.

OM.MISS B(Xi, Ai = a) = γa
0 + γa

1X2ij

PS is fitted for the whole dataset:
PS.TRUE πij(Xi, Ai) = expit

(
γM
0 + γM

A Ai + γM
1 X1ij + γM

2 X1i. + γM
3 AiX1ij

)
PS.MISS πij(Xi, Ai) = expit

(
γM
0 + γM

A Ai + γM
1 X2ij

)
PS.NONE πij(Xi, Ai) = expit

(
γM
0 + γM

A Ai + γM
1 X1ij + γM

2 X1i.

)
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Table 4: Sample size effect and correlation magnitude effects for data generation mechanism
given in Equation 5 with βO = (1, 1, 1, 1, 1) and βM = (−3, 1/2, 1/2, 1/2, 1/2). Statistics
for 1000 replicates are the bias compared to M∗

E, the empirical standard errors over the
replicates, the mean asymptotic nuisance-adjusted standard errors and the coverage for the
GEE, the IPW, the AUG and the DR with independence (-I) and exchangeable (-E) working
correlation matrix.

Standard Error (SE) Coverage
Bias Empirical Robust Fay’s Robust Fay’s

M∗
E -I -E -I -E -I -E -I -E -I -E -I -E

Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each, Low correlation
GEE 2.0 -1.7473 -1.7479 0.4351 0.4360 0.3963 0.3256 0.4559 0.4603 0.8 2.3 3.9 4.9
IPW 2.0 -1.0130 -1.0130 0.6793 0.6842 0.5538 0.5591 0.6735 0.6766 49.0 49.2 59.8 59.9
AUG 2.0 -1.8099 -1.8111 0.3371 0.3269 0.8362 0.8353 0.8834 0.8817 29.7 29.1 40.1 39.2
DR 2.0 0.0008 0.0006 0.1552 0.1586 0.1127 0.1140 0.1190 0.1201 84.8 83.8 86.0 86.2
Large sample M = 100, ni = (90, 100, 110) with probability 1/3 each, Low correlation

GEE 2.0 -1.7335 -1.7321 0.1015 0.1013 0.0985 0.0727 0.0994 0.0994 0.0 0.0 0.0 0.0
IPW 2.0 -0.9955 -0.9952 0.1514 0.1517 0.1559 0.1563 0.1588 0.1592 0.2 0.2 0.2 0.2
AUG 2.0 -1.8019 -1.8022 0.0695 0.0664 0.2556 0.2550 0.2569 0.2563 0.0 0.0 0.0 0.0
DR 2.0 0.0016 0.0017 0.0265 0.0265 0.0262 0.0263 0.0264 0.0264 95.1 95.0 95.1 95.2
Small sample M = 10, ni = (10, 20, 30) with probability 1/3 each, High correlation
GEE 2.0 -0.0086 -0.0086 0.5265 0.5314 0.4701 0.4721 0.5651 0.5657 88.5 88.4 92.9 92.7
IPW 2.0 -1.0221 -1.0229 0.7026 0.7083 0.5776 0.5829 0.7015 0.7044 52.4 52.2 62.2 61.5
AUG 2.0 -1.7985 -1.7987 0.5058 0.5084 0.8748 0.8727 0.9243 0.9209 35.8 35.8 45.1 45.5
DR 2.0 0.0098 0.0062 0.4328 0.4407 0.2469 0.2480 0.2607 0.2614 77.4 77.7 79.7 79.6
Large sample M = 100, ni = (90, 100, 110) with probability 1/3 each, High correlation
GEE 2.0 -1.7325 -1.7312 0.1145 0.1141 0.1121 0.0753 0.1132 0.1132 0.0 0.0 0.0 0.0
IPW 2.0 -0.9945 -0.9940 0.1618 0.1620 0.1652 0.1656 0.1682 0.1686 0.2 0.2 0.2 0.2
AUG 2.0 -1.8014 -1.8017 0.0787 0.0761 0.2587 0.2581 0.2600 0.2594 0.0 0.0 0.0 0.0
DR 2.0 0.0029 0.0032 0.0609 0.0610 0.0590 0.0590 0.0593 0.0593 94.7 94.6 94.7 94.6
Marginal model for the GEE:

µ(β, Ai) = β0 + βAAi

OM in AUG and DR is fitted for each treatment group Ai = a using a stepwise regression:
B(Xi, Ai = a) = stepwise(X1ij , X2ij , X3ij , X1i., X2i., X3i.)

PS in DR and IPW is fitted for the whole dataset using a stepwise regression:
logit(πij(Xi, Ai)) = stepwise(Ai, X1ij , X2ij , X3ij , X1i., X2i., X3i.)
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Table 5: Simulation of the scenario described in Equation 6 mimicking the SAM study data.
Statistics for 1000 replicates are the bias compared to M∗

E, the empirical standard errors
over replicates, the mean asymptotic nuisance-adjusted standard error, and the coverage for
the GEE, the IPW, the AUG and the DR with independence (-I) and exchangeable (-E)
working correlation matrix.

Standard Error (SE) Coverage
Bias Empirical Robust Fay’s Robust Fay’s

M∗
E -I -E -I -E -I -E -I -E -I -E -I -E

Small sample M = 10, ni = (10, 20, 30)with probability 1/3 each
GEE 5.73 2.214 2.213 1.330 1.329 1.829 1.848 1.359 1.363 89.4 88.7 59.4 59.7
IPW 5.73 0.536 0.537 1.333 1.333 1.214 1.214 1.470 1.471 86.5 86.4 92.1 92.1
AUG 5.73 0.173 0.173 0.973 0.973 0.878 0.878 0.925 0.925 88.6 88.6 89.9 89.9

DR 5.73 -0.104 -0.104 1.102 1.101 0.932 0.931 0.982 0.982 90.3 90.3 92.0 92.0

SAM-like sample M = 50, ni = (20, 30, 30) with probability 1/3 each
GEE 5.73 2.347 2.343 0.308 0.308 0.532 0.466 0.308 0.309 0.0 0.0 0.0 0.0
IPW 5.73 0.622 0.623 0.303 0.303 0.317 0.317 0.323 0.323 50.7 50.7 52.1 52.1
AUG 5.73 0.215 0.215 0.222 0.222 0.230 0.230 0.232 0.232 85.1 85.1 85.2 85.2

DR 5.73 0.037 0.026 0.259 0.260 0.252 0.253 0.254 0.255 94.6 95.3 94.6 95.4
Marginal model for the GEE:

µ(β, Ai) = β0 + βAAi

OM in AUG and DR is fitted for each treatment group using a stepwise regression:
B(Xi, Ai = a) = stepwise(EMPij ,MARIij ,AGEij ,RELij ,CAGEij ,HIVij ,CDMij ,X1ij ,X2ij ,X3ij)

PS in IPW and DR is fitted for the whole dataset using a stepwise regression:
logit(πij(Xi, Ai)) = stepwise(Ai,EMPij ,MARIij ,AGEij ,RELij ,CAGEij ,HIVij ,CDMij ,X1ij ,X2ij ,X3ij)
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