Ground Estimation and Point Cloud Segmentation using SpatioTemporal Conditional Random Field

Lukas Rummelhard 1 Amaury Nègre 1 Anshul Paigwar 1 Christian Laugier 1
1 CHROMA - Robots coopératifs et adaptés à la présence humaine en environnements dynamiques
Inria Grenoble - Rhône-Alpes, CITI - CITI Centre of Innovation in Telecommunications and Integration of services
Abstract : Whether it be to feed data for an object detection-and-tracking system or to generate proper occupancy grids, 3D point cloud extraction of the ground and data classification are critical processing tasks, on their efficiency can drastically depend the whole perception chain. Flat-ground assumption or form recognition in point clouds can either lead to systematic error, or massive calculations. This paper describes an adaptive method for ground labeling in 3D Point clouds, based on a local ground elevation estimation. The system proposes to model the ground as a Spatio-Temporal Conditional Random Field (STCRF). Spatial and temporal dependencies within the segmentation process are unified by a dynamic probabilistic framework based on the conditional random field (CRF). Ground elevation parameters are estimated in parallel in each node, using an interconnected Expectation Maximization (EM) algorithm variant. The approach, designed to target high-speed vehicle constraints and performs efficiently with highly-dense (Velodyne-64) and sparser (Ibeo-Lux) 3D point clouds, has been implemented and deployed on experimental vehicle and platforms, and are currently tested on embedded systems (Nvidia Jetson TX1, TK1). The experiments on real road data, in various situations (city, countryside, mountain roads,...), show promising results.
Type de document :
Communication dans un congrès
IEEE Intelligent Vehicles Symposium (IV), Jun 2017, Redondo Beach, United States. pp.1105 - 1110, 2017, 〈10.1109/IVS.2017.7995861〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01579095
Contributeur : Lukas Rummelhard <>
Soumis le : mercredi 30 août 2017 - 14:02:33
Dernière modification le : mercredi 11 avril 2018 - 01:54:15

Fichier

GroundEstimatorIV2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Lukas Rummelhard, Amaury Nègre, Anshul Paigwar, Christian Laugier. Ground Estimation and Point Cloud Segmentation using SpatioTemporal Conditional Random Field. IEEE Intelligent Vehicles Symposium (IV), Jun 2017, Redondo Beach, United States. pp.1105 - 1110, 2017, 〈10.1109/IVS.2017.7995861〉. 〈hal-01579095〉

Partager

Métriques

Consultations de la notice

221

Téléchargements de fichiers

744