L. Alphey, Genetic Control of Mosquitoes, Annual Review of Entomology, vol.59, issue.1, pp.205-224, 2014.
DOI : 10.1146/annurev-ento-011613-162002

L. Alphey, M. Benedict, R. Bellini, G. Clark, D. Dame et al., Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis, Vector-Borne and Zoonotic Diseases, vol.10, issue.3, pp.295-311, 2010.
DOI : 10.1089/vbz.2009.0014

D. Angeli and E. Sontag, Monotone control systems, IEEE Transactions on Automatic Control, vol.48, issue.10, pp.1684-1698, 2003.
DOI : 10.1109/TAC.2003.817920

URL : http://arxiv.org/abs/math/0206133

D. Angeli, D. Leenheer, P. Sontag, and E. , A small-gain theorem for almost global convergence of monotone systems, Systems & Control Letters, vol.52, issue.5, pp.407-414, 2004.
DOI : 10.1016/j.sysconle.2004.02.017

N. Barton and M. Turelli, Spatial Waves of Advance with Bistable Dynamics: Cytoplasmic and Genetic Analogues of Allee Effects, The American Naturalist, vol.178, issue.3, pp.48-75, 2011.
DOI : 10.1086/661246

G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathogens, vol.17, issue.4, p.1000833, 2010.
DOI : 10.1371/journal.ppat.1000833.s001

P. Bliman, M. Aronna, F. Coelho, and M. Da-silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control. arXiv Available, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01261164

W. Brogdon and J. Mcallister, Insecticide resistance and vector control. Emerging infectious diseases, Centers for Disease Control and Prevention, vol.4, issue.4, pp.605-613, 1998.
DOI : 10.1300/j096v06n02_04

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640263/pdf

J. Brownstein, E. Hett, O. Neill, and S. , The potential of virulent Wolbachia to modulate disease transmission by insects, Journal of Invertebrate Pathology, vol.84, issue.1, pp.24-29, 2003.
DOI : 10.1016/S0022-2011(03)00082-X

S. Christophers, Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure Stability and asymptotic behavior of differential equations. Heath mathematical monographs, Heath Dutra HLC (2015) From lab to field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLOS Negl Trop Dis, vol.9, issue.4, p.3689, 1960.

G. Enciso, Fixed points and convergence in monotone systems under positive or negative feedback, International Journal of Control, vol.383, issue.1, pp.301-311, 2014.
DOI : 10.1016/j.sysconle.2009.12.008

G. Enciso and E. Sontag, Nonmonotone systems decomposable into monotone systems with negative feedback, Journal of Differential Equations, vol.224, issue.1, pp.205-227, 2006.
DOI : 10.1016/j.jde.2005.05.007

URL : http://doi.org/10.1016/j.jde.2005.05.007

L. Farnesi, A. Martins, D. Valle, and G. Rezende, Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures, Memórias do Instituto Oswaldo Cruz, pp.124-130, 2009.
DOI : 10.1590/S0074-02762008005000003

C. Ferreira and W. Godoy, Ecological modelling applied to entomology, 2014.
DOI : 10.1007/978-3-319-06877-0

D. Focks, D. Haile, E. Daniels, and G. Mount, Dynamic Life Table Model for Aedes aegypti (Diptera: Culicidae): Analysis of the Literature and Model Development, Journal of Medical Entomology, vol.30, issue.6, pp.1003-1017, 1993.
DOI : 10.1093/jmedent/30.6.1003

D. Focks, A review of entomological sampling methods and indicators for dengue vectors, Geneva: WHO, 2003.

R. De-freitas and D. Valle, Challenges encountered using standard vector control measures for dengue in Boa Vista, Brazil, Bulletin of the World Health Organization, vol.92, issue.9, pp.685-689, 2014.
DOI : 10.2471/BLT.13.119081

R. De-freitas, F. Avendanho, R. Santos, G. Sylvestre, S. Araujo et al., Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak, PLOS ONE, vol.9, pp.1-9, 2014.

F. Frentiu, T. Zakir, T. Walker, J. Popovici, A. Pyke et al., Limited Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with Wolbachia, PLoS Neglected Tropical Diseases, vol.87, issue.2, p.2688, 2014.
DOI : 10.1371/journal.pntd.0002688.s002

URL : http://doi.org/10.1371/journal.pntd.0002688

T. Gedeon and G. Hines, Multi-valued characteristics and Morse decompositions, Journal of Differential Equations, vol.247, issue.4, pp.1013-1042, 2009.
DOI : 10.1016/j.jde.2009.04.019

URL : http://doi.org/10.1016/j.jde.2009.04.019

J. Gouzé, A criterion of global convergence to equilibrium for differential systems with an application to Lotka-Volterra systems, 1988.

P. Hancock and H. Godfray, Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of The Royal Society Interface, vol.178, issue.3, pp.3045-3054, 2012.
DOI : 10.1086/661247

P. Hancock, S. Sinkins, and H. Godfray, Strategies for Introducing Wolbachia to Reduce Transmission of Mosquito-Borne Diseases, PLoS Neglected Tropical Diseases, vol.106, issue.4, p.1024, 2011.
DOI : 10.1371/journal.pntd.0001024.s008

M. Hirsch, Stability and convergence in strongly monotone dynamical systems, J reine angew Math, vol.383, pp.1-53, 1988.

A. Hoffmann, Facilitating Wolbachia invasions, Austral Entomology, vol.53, issue.2, p.125132, 2014.

A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.53, issue.7361, pp.454-457, 2011.
DOI : 10.1603/ME09218

L. Hu, M. Huang, M. Tang, J. Yu, and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theoretical Population Biology, vol.106, pp.32-44, 2015.
DOI : 10.1016/j.tpb.2015.09.003

M. Huang, M. Tang, and Y. J. , Wolbachia infection dynamics by reaction-diffusion equations, Science China Mathematics, vol.6, issue.1, pp.77-96, 2015.
DOI : 10.1016/0362-546X(82)90028-1

H. Hughes and N. Britton, Modelling the Use of Wolbachia to Control Dengue Fever Transmission, Bulletin of Mathematical Biology, vol.310, issue.5, pp.796-818, 2013.
DOI : 10.1126/science.1117607

J. Jeffery, N. Yen, V. Nam, L. Nghia, A. Hoffmann et al., Characterizing the Aedes aegypti Population in a Vietnamese Village in Preparation for a Wolbachia-Based Mosquito Control Strategy to Eliminate Dengue, PLoS Neglected Tropical Diseases, vol.79, issue.11, p.552, 2009.
DOI : 10.1371/journal.pntd.0000552.s002

M. Keeling, F. Jiggins, and J. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, vol.91, issue.4, pp.382-388, 2003.
DOI : 10.1038/sj.hdy.6800343

J. Koiller, D. Silva, M. Souza, M. Codeço, C. Iggidr et al., Aedes, Wolbachia and Dengue The Stability of Dynamical Systems. SIAM Malisoff M, De Leenheer P (2006) A small-gain theorem for monotone systems with multi-valued input-state characteristics, IEEE Transactions on Automatic Control, vol.41, issue.2, pp.287-292, 1976.

C. Mcmeniman, R. Lane, B. Cass, A. Fong, M. Sidhu et al., Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti, Science, vol.5, issue.5, pp.141-145, 2009.
DOI : 10.1038/nrmicro1638

L. Moreira, E. Saig, A. Turley, J. Ribeiro, O. Neill et al., Human Probing Behavior of Aedes aegypti when Infected with a Life-Shortening Strain of Wolbachia, PLoS Neglected Tropical Diseases, vol.29, issue.12, pp.1-6, 2009.
DOI : 10.1371/journal.pntd.0000568.s003

J. Murray, C. Jansen, D. Barro, and P. , Risk Associated with the Release of Wolbachia-Infected Aedes aegypti Mosquitoes into the Environment in an Effort to Control Dengue, Frontiers in Public Health, vol.3, issue.2, 2016.
DOI : 10.3389/fpubh.2015.00142

M. Ndii, R. Hickson, D. Allingham, and G. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Mathematical Biosciences, vol.262, pp.157-166, 2015.
DOI : 10.1016/j.mbs.2014.12.011

S. Neill, The Dengue Stopper, Scientific American, vol.312, issue.6, pp.72-79, 2015.
DOI : 10.1038/scientificamerican0615-72

O. Neill, S. Hoffman, A. Werren, J. Ocampo, C. et al., Influential Passengers: Inherited Microorganisms and Arthropod Reproduction Insecticide resistance status of Aedes aegypti in 10 localities in Colombia, Acta Tropica, vol.118, issue.1, pp.37-44, 1998.

M. Otero, H. Solari, and N. Schweigmann, A Stochastic Population Dynamics Model for Aedes Aegypti: Formulation and Application to a City with Temperate Climate, Bulletin of Mathematical Biology, vol.99, issue.8, pp.1945-1974, 2006.
DOI : 10.1007/978-1-4757-4067-7

M. Otero, N. Schweigmann, and H. Solari, A Stochastic Spatial Dynamical Model for Aedes Aegypti, Bulletin of Mathematical Biology, vol.2, issue.1, pp.1297-1325, 2008.
DOI : 10.1590/S0074-02762004000400002

J. Rasgon and T. Scott, (Rickettsiales: Rickettsiaceae) Infections in Selected California Mosquitoes (Diptera: Culicidae) : Table 1, Journal of Medical Entomology, vol.41, issue.2, pp.255-257, 2004.
DOI : 10.1603/0022-2585-41.2.255

T. Ruang-areerate and P. Kittayapong, Wolbachia transinfection in Aedes aegypti: A potential gene driver of dengue vectors, Proceedings of the National Academy of Sciences, vol.180, issue.9, pp.12534-12543, 2006.
DOI : 10.1073/pnas.89.7.2699

J. Silver, Mosquito ecology: field sampling methods, 2007.
DOI : 10.1007/978-1-4020-6666-5

H. Smith, T. Perkins, L. Tusting, T. Scott, and S. Lindsay, Monotone dynamical systems, PLoS One, vol.418, issue.8, p.71247, 1995.
DOI : 10.1090/surv/041/01

T. Southwood, G. Murdie, M. Yasuno, R. Tonn, and P. Reader, Studies on the life budget of Aedes aegypti in Wat Samphaya, Bulletin of the World Health Organization, vol.46, issue.2, p.211, 1972.

M. Turelli, CYTOPLASMIC INCOMPATIBILITY IN POPULATIONS WITH OVERLAPPING GENERATIONS, Evolution, vol.13, issue.1, pp.232-241, 2010.
DOI : 10.1111/j.1469-1809.1937.tb02153.x

T. Walker, P. Johnson, L. Moreira, I. Iturbe-ormaetxe, F. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.74, issue.7361, pp.450-453, 2011.
DOI : 10.1371/journal.pone.0013398

Z. Xi, C. Khoo, and S. Dobson, Wolbachia Establishment and Invasion in an Aedes aegypti Laboratory Population, Science, vol.310, issue.5746, pp.310326-310334, 2005.
DOI : 10.1126/science.1117607

H. Yang, M. Macoris, K. Galvani, M. Andrighetti, and D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiology and Infection, vol.27, issue.08, pp.1188-1202, 2009.
DOI : 10.1093/jmedent/27.5.892

H. Yeap, M. P. Walker, T. Weeks, A. , O. Neill et al., Dynamics of the "Popcorn" Wolbachia Infection in Outbred Aedes aegypti Informs Prospects for Mosquito Vector Control, Genetics, vol.187, issue.2, pp.583-95, 2011.
DOI : 10.1534/genetics.110.122390

B. Zheng, M. Tang, and Y. J. , Spread in Mosquitoes Through Delay Differential Equations, SIAM Journal on Applied Mathematics, vol.74, issue.3, pp.743-770, 2014.
DOI : 10.1137/13093354X