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SUMMARY: For most patients, the HIV viral load can be made undetectable by highly active retroviral treat-

ments (HAART); the virus however cannot be eradicated. Thus, the major problem is to try to reduce the side

effects of the treatment that patients have to take during their life time. We tackle the problem of monitoring the

treatment dose, with the aim of giving the minimum dose that yields an undetectable viral load. The approach

is based on mechanistic models of the interaction between virus and the immune system. It is shown that the

“activated cells model”, allows making good predictions of the effect of dose changes and thus could be a

good basis for treatment monitoring. Then, we use the fact that in dynamical models there is a non-trivial

equilibrium point, that is with a virus load larger than zero, only if the reproductive number R0 is larger than

one. For reducing side effects we may give a dose just above the critical dose corresponding to R0 = 1. A prior

distribution of the parameters of the model can be taken as the posterior arising from the analysis of previous

clinical trials. Then the observations for a given patient can be used to dynamically tune the dose so that there

is a high probability that the reproductive number is below one. The advantage of the approach is that it does

not depend on a cost function, weighing side effects and efficiency of the drug. It is shown that it is possible to

approach the critical dose if the model is correct. A sensitivity analysis assesses the robustness of the approach.

KEY WORDS: Bayes; Differential equations; Epidemiology; HIV; Metropolis-Hastings algorithm; Monitor-

ing; Optimal control.
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1. Introduction

In developed countries, most HIV infected patients are treated with highly active antiretroviral ther-

apies (HAART), which include a combination of several antiretroviral drugs. For many patients,

such treatments succeed to control viral replication (i.e., the viral load becomes undetectable) and

to restore the immune system sufficiently to dramatically decrease the risk of opportunistic diseases

and AIDS (Egger et al., 2002). The virus is however still present in sanctuaries like resting memory

cells (Chomont et al., 2009). Several side effects have been described in patients having long-term

therapy (Carr and Cooper, 2000). To reduce these side effects, treatment interruptions have been

attempted. However, these trials have been stopped at interim analysis showing an increased risk

of opportunistic diseases (Ananworanich et al., 2006; Danel et al., 2006; Lundgren et al., 2008).

Attempts have been made to decrease the number of drugs but did not succeed either (Girard

et al., 2009). Reducing the doses of treatment may be a flexible way to alleviate side effects while

maintaining efficiency (Sánchez-Conde et al., 2005; Milinkovic et al., 2007; Meynard et al., 2010).

These studies however proposed an arm-specific reduction (same reduction for every patient from

the same arm). A subject-specific dose adaptation (dose individualization) will probably lead to

more significant results.

Recently, adaptive treatment strategies have been proposed in the statistical literature (Murphy,

2003; Murphy and McKay, 2004; Moodie et al., 2007; Lavori and Dawson, 2008; Henderson et al.,

2010). These approaches adapt some concepts of control theory, in particular dynamic program-

ming, developed in engineering (Sage and White, 1977). In engineering, dynamical models on

which optimal control is based are more complex than those generally used for adaptive treatment

strategies and they are often expressed through a system of differential equations. Kirschner et al.

(1997) proposed to use control theory based on mechanistic models of the interaction of HIV and

the immune system for adapting the dose of antiretroviral treatment. Indeed since the pioneering

work of Ho et al. (1995) and Wei et al. (1995), several mechanistic models have been developed.
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However, treatment monitoring raises different issues than control problems in engineering and

the estimation of parameters in HIV dynamics models is challenging. Recent statistical approaches

use random effect models with the aim to estimate the parameters of complex models using rather

large samples from clinical trials: see Wu (2005) for a review and Putter et al. (2002); Huang et al.

(2006); Guedj et al. (2007); Huang et al. (2010) among others for original developments.

The aim of this paper is to examine the possibility of using such sophisticated mechanistic

models, with parameters that can be estimated on previous clinical trial data, for monitoring the

treatment dose of an individual patient. A Bayesian approach seems here natural (Berger, 1985).

Previous data give a prior for the parameters of the model. Observations for a new patient give

additional information, especially on parameters varying between patients, and permit to update

the priors. Then the dose can be adapted so as to minimize a risk function. One key idea in this

paper is that, for reasonable risk functions, the target dose is the critical dose which makes the

reproductive numberR0 equal to (or just below) one. After presenting the method we shall examine

whether it can work in real life. This is a “proof of concept” paper: real patients have not yet taken

doses recommended by our method but we give arguments to convince that mechanistic models,

and this particular method, can be used for treatment monitoring. We first examine, using real data,

whether our model can detect an influence of the treatment dose; then we examine the predictive

ability of the model, still using real data. Then we apply the control method on simulated data.

The paper is organized as follows. Section 2 recalls the mathematical and statistical models

developed by Guedj et al. (2007) and Drylewicz et al. (2010). Section 3 tackles the control problem

first treating the case with known parameters, then the case with unknown parameters. The optimal

dose is defined as the dose which controls the probability that R0 < 1 and this can be computed by

use of a MCMC algorithm. In section 4, a detailed analysis of the ALBI clinical trial is presented. In

this trial, patients received different treatments or doses (patients in the third arm shifted treatment

and some changed their dose) allowing us to study the predictive ability of the model. In section 5,
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we present a simulation study of the proposed strategy. The posterior distribution of the parameters

is used as a prior for a new patient whose data are generated from the model. We examine the

sensitivity of the method to misspecification of the prior. A conclusion and perspectives are given

in section 6.

2. Models of interaction between HIV and immune system

2.1 Mathematical models

Perelson et al. (1996) proposed a three-dimensional ODE system featuring uninfected CD4+ T-

cells, infected CD4+ T- cells (T ∗) and viruses (V ) concentrations. We shall work with an extension

of this model called the “activated cells model”, which distinguishes among uninfected cells those

which are quiescent (Q) and those which are activated (T ). This model has been shown to fit the

ALBI trial data much better (Commenges et al., 2008). The definition of the parameters can be

found in Table 1.

[Table 1 about here.]

The model can be written as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dQ
dt = λ + ρT − αQ − µQQ,
dT
dt = αQ − γTV − ρT − µTT,
dT ∗

dt = γTV − µT ∗T ∗,

dV
dt = πT ∗ − µV V.

(1)

The basic reproductive number R0 (Gran et al., 2008) is given by:

R0 =
γπαλ

µT ∗µV (ρµQ + αµT + µQµT )
. (2)

If R0 is lower than one, the only equilibrium point is the trivial one with V = 0, otherwise the

trivial equilibrium is unstable and after introduction of the virus, the system stabilizes to a non-

trivial equilibrium with V > 0 (see the formula in Web Appendix A ).
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2.2 Statistical models

For the inter-individual variability of the parameters, we use a statistical model with the same

structure as proposed by Guedj et al. (2007). For i = 1 . . .N , we denote by ξi the vector of the nine

individual biological parameters and by ξ̃i the vector of the log-transformed parameters:

ξ̃i = (ξ̃il , l = 1 . . .9) = (α̃i, µ̃iT ∗ , λ̃i, µ̃iT , π̃i, ρ̃i, µ̃iQ, µ̃iV , γ̃i)
T
.

The possible between-subjects variability and time variability of the parameters is modeled as:

ξ̃l
i(t) = φl + zil(t)βl + ωilui, l = 1 . . .9, (3)

where φl is the intercept, zil and ωil are the vectors of (possibly time-dependent) explanatory

variables associated to the fixed and random effects respectively of the lth biological parameter.

The βl are vectors of regression coefficients associated to the fixed effects; ui is the individual

vector of random effects. We assume ui ∼ N (0,Σ) with Σ a diagonal matrix.

Specifically, in the following we shall use as explanatory variable only the treatments doses

dij(t), where j is the treatment index. In the application there are two treatments (j = 1,2); for sake

of simplicity, we present the theory for only one treatment. We assume that the treatment acts by

diminishing the infectivity (this is indeed the case for the reverse transcriptase inhibitors used in

the application). The model for the infectivity parameter is assumed to be:

γ̃i = γ̃0 + βψ {di(t)} , (4)

with β < 0 and where ψ(.) is a known increasing positive ”pharmaco-dynamic” function. We

assume in addition ψ(0) = 0 and ψ(.) unbounded.

Let X = (Q,T,T ∗, V ) in model (1). We used g1(X) = log10(V ) and g2(X) = (Q + T + T ∗)0.25

as transformations to achieve normality and homoscedasticity of measurement error distributions

(Thiébaut et al., 2003) of the observed two compartments: the viral load (number of virions per

µL) and the total CD4 count (number of cells per µL). Let Y i
jm denote the jth measurements of the
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mth observable component for subject i at time tijm; we assume that:

Y i
j1 = g1 {X(tij1, ξ̃i)} + εij1 j = 1, ..., ni1 (5)

Y i
j2 = g2 {X(tij2, ξ̃i)} + εij2 j = 1, ..., ni2

where εij1 and εij2 are independent Gaussian with zero mean and variances σ2
V L and σ2

CD4 respec-

tively. The observation mechanism is generally complicated by a detection limit for the viral load,

producing left-censoring for Y i
j1 (Jacqmin-Gadda et al., 2000).

3. Control strategy

3.1 Targeting R0, known parameters

Our aim is to adapt the treatment dose at visits spaced by several weeks. Study of mathematical

models and observed trajectories shows that the equilibrium state is essentially reached in a very

short period of time. So, we can avoid the complexity of optimal control theory where the control is

in continuous time and the cost function is an integral over time of a function of state and control.

Instead, we define a cost function which depends only on the equilibrium state X̄(d; ξi) that is

reached for a dose d: C {X̄(d; ξi), d}, and more specifically C {V̄ (d; ξi), d}. The best dose for the

patient minimizes C {V̄ (d; ξi), d} on [0, dmax]. The function C(., .) is strictly increasing in both

arguments. Then, we can use the fact that in our HIV dynamic model if R0(d, ξi) < 1 there is only

one equilibrium state which is the trivial one with V̄ = 0. The critical dose dcrit(ξi) is defined as

the solution of R0(d, ξi) = 1. Since ψ(.) is an unbounded and increasing function in the dose, R0

is a one-to-one function strictly decreasing with the dose. Thus, for any given ξi, a unique critical

dose exists. We obtain the critical dose, dcrit(ξi) from (2) and (4):

dcrit(ξi) = ψ−1
⎡⎢⎢⎢⎢⎣

1

β
ln

⎧⎪⎪⎨⎪⎪⎩

µiT ∗µ
i
V (ρiµiQ + αiµiT + µiQµiT )

πiαiλiγi0

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
. (6)

SinceC(., .) is increasing in its second argument, the optimal dose cannot be higher than dcrit(ξi).

If C(., .) rises very sharply in its first argument, the optimal dose will be close to dcrit(ξi). If

C(x, y) presents a discontinuity in x = 0, the optimal dose is dcrit(ξi). This is a reasonable
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requirement from the medical point of view: dcrit(ξi) is the minimum dose which achieves virus

extinction (in practice, a very low viral load). This relieves us from the burden of specifying a cost

function which would weigh the toxicity and the efficiency of the drug in an arbitrary way.

3.2 Unknown parameters: controlling the probability that R0 < 1

In practice the values of the parameters of a particular subject are unknown. We have however a

certain amount of knowledge about ξi. We make observations of both viral load and CD4 count at

times before and after the initiation of the control strategy: t0, t−1, t−2..., and t1, t2, ... respectively;

this gives essentially information about the values of the random effects ui for this subject. Given

F itk , the information at time tk, R0(d, ξi) has a posterior distribution. At time tk, we propose to

choose dtkopt, the readjusted optimum dose, as the minimum dose which gives a high posterior

probability (ω) that R0 is below 1:

PF
i
tk [R0 {dtkopt(ω), ξi} < 1] = ω. (7)

We may take ω = 90%; in the following, we write dtkopt for the optimal dose at time tk. R0 is a

decreasing one-to-one function, thus, dtkopt is unique. We denote by ξi∗ the true parameters value

for patient i and dcrit(ξi∗) his critical dose. If we assume that the information increases in time so

that Doob’s consistency theorem can be applied (Van der Vaart, 2000), dtkopt will tend to the critical

dose (see Web Appendix B for the proof ): dtkopt
PÐ→

tk→∞
dcrit(ξi∗).

We have that PF
i
tk {R0(d, ξi) < 1} = PF

i
tk {dcrit(ξi) < d} (see Web Appendix B). Thus dtkopt is

the ω-quantile of the posterior distribution of dcrit(ξi) which can be computed by MCMC using

formula (6).

Figure 1 displays a flow chart for the control strategy. Time after time, observations of CD4

counts and viral loads are collected and an optimal dose given the reaction to the previous doses

is provided. Optimal dose greater than dmax make the patient leave the control strategy because of

treatment failure.

[Figure 1 about here.]
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4. Dose effect and predictive ability in the ALBI trial

4.1 The ALBI trial

We use the data of the ALBI ANRS 070 trial (Molina et al., 1999). In this three arms controlled

trial, 151 antiretroviral-naive patients (with viral loads between 10,000 and 100,000 copies/mL

and CD4 counts greater than 200 cells/mm3) received 24 weeks of treatment. The 51 patients from

arm 1, received the d4T+ddI treatment, that is stavudine (d4T) / didanosine (ddI) whose dosage

depended on their weight; d4T 250mg plus ddI 60mg for patients less than 60kg, otherwise d4T

400mg plus ddI 80mg. For arm 2, 51 patients received the AZT+3TC treatment, that is 500mg of

zidovudine (AZT) and 300mg of lamivudine (3TC). The 49 patients from arm 3, the switch arm,

received the d4T+ddI treatment for 12 weeks followed by AZT+3TC, with the same doses as in

arm 1 and 2. Blood samples were collected every 4 weeks until 24 weeks. CD4 counts and viral

loads (with a lower quantification limit of 50 copies/mL) were measured. Two patients dropped out

before the first blood sample collection time, so 149 patients were available for the analysis. For

each patient, changes in dose were either self-reported or declared by the clinician. Twenty-seven

patients (18%) changed their doses during the trial; some of them even interrupted the treatment

during a period of time. Molina et al. (1999) found that the d4T+ddI treatment was significantly

better than the AZT+3TC treatment in an intent-to-treat analysis.

4.2 Model for the ALBI trial

We performed a thorough analysis of the ALBI trial using the “activated cells model”, taking into

account all the complexities of the design and the doses actually taken by the patients. Doses were

included in the analysis, by considering treatment as a time-varying covariate. We took into account

the doses of the two ALBI treatments, denoted {di11(t), di12(t)} and {di21(t), di22(t)}. To overcome

unities problem, we took as reference dose the median dose for each drug, denoted (d∗11, d∗12) and

(d∗21, d∗22). We constructed an indicator of the doses for treatment j = 1 (d4T+ddI) or 2 (AZT+3TC)
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as:

dij(t) =
1

2
{
dij1(t)
d∗j1

+
dij2(t)
d∗j2

} .

Moreover, we smoothed the dose indicators by taking the mean of the three doses taken in

previous days, as this provided a better fit. Therefore, the dose indicator for treatment j of subject

i at time t can be written: d̄ij(t) = {dij(t − 2) + dij(t − 1) + dij(t)}/3.

As for the choice of ψ in (4), we first tried a linear function, but this achieved a poor fit of

the data. We obtained a much better fit with power functions, with a power around 0.1. However,

such a simple power function does not have an acceptable shape in the sense that the effect is still

high for very low doses (for which we had no data). We tried sigmoid functions as in Shen et al.

(2008) but this yielded shapes very similar to the power functions. To overcome this problem we

constructed a function which was a power function in the range where information was available

[0.6; 1], connected to zero by a linear function. Finally the ”pharmaco-dynamical” function for

patient i, treatment j at time t was:

ψ {dij(t)} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dij(t)κd if dij(t) > 0.6,

(0.6)κd−1dij(t) otherwise.
(8)

We also tried to introduce the weights of the subjects as explanatory variable but did not find any

effect of it; so these results are not shown.

4.3 Elicitation of a prior, algorithm and posterior

We denote by θ = (φ,β, σα, σλ, σµ∗T , σV L, σCD4) the vector of the parameters. Here, φ=(φl, l=1. . . 9),

appearing in (3), is the vector of the nine baseline biological parameters and β the two-dimensional

vector of regressors for treatment doses. There are also three standard deviations of random effects

(on α, λ and µT ∗ as suggested in Guedj et al. (2007)) and the two standard deviations of errors

measurements.

Normal independent priors were assumed for the components of φ with expectation and variance
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elicited in accordance with the literature. Essentially, the rule was to define the lowest and the

largest values proposed in the literature φlowerl and φupperl and take the mean and standard deviation

as (φupperl +φlowerl )/2 and (φupperl −φlowerl )/4 respectively. The literature was not precise enough to

elicit these bounds for the infectivity parameter γ̃0; we took a very wide range: φlower9 = log(10−6) =

−13.8 and φupper9 = log(10) = 2.3. For the effects of the treatment doses we also assumed normal

priors with expectation corresponding to dividing the infectivity by 3 for the standard dose, and

standard deviation equals to about the third of the absolute value of this expectation: this expresses

the fact that it is unlikely that treatments increase the infectivity while yielding rather weakly

informative priors. The priors did not value one treatment over the other. Half-Cauchy priors were

taken for the variance of the random effects, as recommended by Gelman (2006). For the variances

of the measurement errors, conventional Jeffreys’ improper non-informative priors were taken.

Table 2 summarizes the priors for the different parameters.

In view of the complexity of the problem MCMC methods would be too time-consuming and the

INLA method (Approximate Bayesian Inference for Latent Gaussian Models) (Rue et al., 2009)

can not be applied to this problem. We turned to a normal approximation of the posterior which

is justified by the Bernstein-Von Mises Theorem (Van der Vaart, 2000). Numerically, this amounts

to compute the maximum a posteriori estimator (MAP); this is identical to penalized likelihood

maximization. Specifically, the function that must be maximized is pl = L − J(θ), where the

penalty term J(θ) is:

J(θ) =
9

∑
j=1

{φj −E0(φj)}2√
var0(φj)

+
2

∑
j=1

{βj −E0(βj)}2√
var0(βj)

− log(σ2
α + s2α) − log(σ2

µT∗
+ s2µT∗) −

1

σV L
− 1

σCD4

,

where E0 and var0 stand for the means and variances of the priors. Here, L is the log likelihood

which is described in Guedj et al. (2007). The maximization (or rather the minimization of −pl)

can be done using the algorithm described in Guedj et al. (2007), modified to take into account the

penalty brought by the prior. This algorithm uses the so-called RVS algorithm which approximates

the Hessian using first derivatives. For penalized likelihood, the way the Hessian is approximated
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must be modified as described in section 4.5 of Commenges et al. (2006). There is however a sign

error in the original version. The correct formula for the Hessian of −pl in θk (at iteration k) is:

G(θk) =
N

∑
i=1
Ui(θk)UT

i (θk) − n−1U(θk)UT (θk) +
∂2J(θ)
∂θ2

, (9)

where U(θk) = −∂pl∂θ ∣θk and the Ui(θk)’s are the individual gradients (U(θk) = ∑Ni=1Ui(θk)). The

addition of ∂2J(θ)
∂θ2 (here a diagonal matrix with positive diagonal) generally improves the condition

number of the approximate Hessian. G(θk) is close to −∂2pl∂θ2 (θk) near the maximum. It is generally

easy to compute ∂2J(θ)
∂θ2 .

We evaluated κd in (8) by profile likelihood, leading to κd = 0.13. For other parameters, the

posterior was approximated by a normal distribution with expectation given by the MAP and

variance given by the inverse of the approximation of the Hessian of −pl (9). We present their

means and standard deviations of posteriors in table 2.

[Table 2 about here.]

Finally, we checked reproducibility by starting from 10 different initial values drawn at random

at one standard deviation from the mean of the prior. The algorithm converged toward the same

region obtaining the same 2 significant digits for the standard deviations of measurement errors

and main random effect, one significant digit for most other parameters except π̃, µ̃Q and µ̃P for

which we only had the order of magnitude. This is probably due to lack of practical identifiably:

actually, predictions are not impacted by this relative lack of precision. In Web Appendix C we

show that the fits for three stopping points with rather different values of π̃, µ̃Q and µ̃P are nearly

indistinguishable. Since we use the model essentially for prediction, the problem is not too severe.

4.4 Results: predictive ability for treatment change

The ALBI design offers a very good opportunity to assess the predictive ability of our model,

especially thanks to the switch arm. We can use the first period to assess the random effects for

these patients and then predict how they react to the next treatment. We selected patients from
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the switch arm in an objective manner: we took them at the quartile values of the distribution of

the viral load at the end of the study. We computed the MAP estimates removing these patients.

Then, we estimated the parameters with random effects thanks to a Parametric Empirical Bayes

(PEB) procedure (Kass and Steffey, 1989) based on the first 12 weeks; viral loads and CD4

counts were computed for the value of the parameters using MAP estimates for fixed effects and

PEB for parameters with random effects, taking into account the adherence for the remaining 12

weeks. Using notations in (5), we also computed a 95% “measurement error predictive interval” as

[Ŷ i
j1 ± 1.96σV L] and [Ŷ i

j2 ± 1.96σCD4].

For space concern, we only present the median patient, but predictions for Q1 and Q3 patients at

quartiles are available in Web Appendix D, others on request. Figure 2 presents the viral load and

the total CD4 count with a fit in the first 12 weeks and predictions for the last 12 weeks after the

treatment switch. One can see that we are able to predict quite well the viral load rebound after the

treatment change (because the AZT+3TC treatment is less efficient).

[Figure 2 about here.]

4.5 Results: predictive ability for dose change

We selected analyzed patients in an objective manner among the 27 patients with dose changes:

we took those at each quartile values in function of the distribution of the viral load at the end

of the study. We estimated again all the parameters excluding this new subset of patients and did

step-by-step prediction. Each time we had an additional observation, we updated the knowledge

about random effect and computed the predicted value taking into account the reported adherence.

For sake of illustration, we present a patient who particularly well filled his adherence infor-

mation and who had a large range of behaviors (drug dose reduction, stop, switch...). Figure

3 presents predicted of viral loads and total CD4 counts for each time taking into account the

increase of information in time. The 95% “measurement error predictive interval” is represented.

Predictions taking into account drugs doses are much better than the IIT fits. This can be quantified
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by computing the Mean Square Error (MSE) over all the patients with dose changes. The MSE for

the viral load is 0.23 for the prediction versus 0.61 for the ITT fit. For the CD4 counts, the MSE

are 7768 versus 7962. The predictions together with the MSE for selected patients are available in

Web Appendix E .

[Figure 3 about here.]

5. Simulation study for dose optimisation

5.1 Principle of the data simulation

In this section, we aim at analyzing the efficiency of our drug dose reduction algorithm in term

of precision and safety (recommended doses should be higher than critical doses). Data were

simulated using the MAP estimates from the analysis of the ALBI trial (Table 2). We simulated

samples of 100 patients (n). Parameters with random effects, α,µT ∗ and λ were drawn from the

multi-normal Gaussian posterior for every patient. Fixed parameters were drawn with the constraint

(θ−θ̂)TG(θ̂)(θ−θ̂) = 1 and were the same for all the patients of a sample. We only selected patients

who had a baseline R0 (that is without treatment) higher than 1 and a critical dose lower than the

standard dose; thus, we excluded long-term nonprogressors and only kept patients needing a dose

reduction. We assumed a plausible observation schedule: observation times were at 0, 7 and 14

days whereas dose readjustments were performed every 15 days. The initial dose was taken as the

reference, d0 = 1. We simulated the viral loads and CD4 counts with measurement errors variances

equal to (0.45)2 and (0.2)2 (Table 2). Finally, as ALBI treatments are under-efficient compared to

those given in 2011, we took a treatment effect equal to twice the MAP estimate of treatment effect

for d4T+ddI (β2), that is β = −2.06.

5.2 Illustration of the monitoring method

We ran the control strategy algorithm described in section 3.2 with a burn-in phase consisting

in a 100 000 updates, a sampling phase of 50 000 updates, dmax = 2 and ω = 90%. All the nine
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biological parameters were updated even if significant updates were only noticeable for parameters

with random effects. It never recommended a dose greater than dmax.

We first present the results for a particular patient drawn at random as visual illustration (10

updates were performed). His critical dose was 0.306. We can see on figure 4 (left) that at the first

readjustment time we could advise a reduction by more than 55% of the dose given to the patient.

It is noticeable that the final dose was close to the critical dose. Moreover this result was obtained

while remaining above the critical dose during the tuning period. Furthermore, we can check on

figure 4 (right) that neither the viral load nor the CD4 count are impacted by drug reduction.

[Figure 4 about here.]

Table 3 presents the Mean Square Errors (MSE) between the optimal dose and the critical dose

for each readjustment time computed as: MSE(tk) = 1
n ∑

n
i=1 {dtkopt(i) − dcrit(ξi∗)}

2
, together with

the percentage of doses lower than the critical dose for the patient and the percentage of doses

greater than dmax. In a well-specified model, the MSE decreases while information about the

patient increases and we effectively control the probability to give a dose below the critical dose.

5.3 Sensitivity analysis and a safer monitoring method

We performed a sensitivity analysis to evaluate the robustness of our control strategy in misspec-

ified models. First, we investigated the effect of priors misspecification. In the same fashion as in

part 5.1, we simulated samples of 100 patients with parameters such that (θ − θ̂)TG(θ̂)(θ − θ̂) = k,

k = 1.5,2,2.5,3 and 5. For each k, 10 different samples were taken in order to explore different

profiles of prior misspecification. This extensive simulation study was made possible by using par-

allel computing. Results are presented in table 3. MSE were good up to k = 2.5 but the percentage

of dtkopt < dcrit reached 31% in average at the fifth readjustment. To fix this problem, we propose

to add a safety margin to the readjusted dose. We focused on k=2 since priors should not be too

badly specified if patients come from the same population as in ALBI trial. The value of the safety

margin was determined such that our key proposition ∀k ∈ 0..5, PF
i
tk [R0 {dtkopt(ω), ξi} < 1] < 10%
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hold in the worst simulated case for k=2. We ran again the control procedure, applying the safety

margin, over a new validation sample of 1000 patients with misspecified priors. Table 3 shows

that MSE are increased but are still reasonable while, as expected, the percentage of dtkopt < dcrit is

smaller than 10%.

[Table 3 about here.]

To finish, we tried a misspecified model. Data were generated from a “productive cell model”

(Drylewicz et al., 2010) which has 5 compartments instead of 4. To do so, we took a “productive

cell model” with the same equilibrium state as in the “activated cell model”. Productive cell

production rate was fixed at -0.12, the estimates found by Drylewicz et al. (2010). For all the

readjustment times, the percentage of optimal doses lower than the critical dose was always lower

than 10 %. MSE ranged from 1.21 at time t1 to 0.12 at time t5.

6. Discussion

In this paper, we have proposed a method of dose individualization of HAART for HIV infected

patients. We have attempted to demonstrate its feasibility. First, a pharmaco-dynamic model was

developed for the ALBI trial and we showed that it could be applied to real data. The model fitted

the viral loads and CD4 counts data quite well, providing an in vivo estimation of the treatment

efficacy. More importantly, the model had good prediction abilities. Then, the simulation study

showed that when information is rich enough, the critical dose can be found in a rather small

number of readjustments, while staying most of the time above the critical dose.

An issue is the possible lack of information due to left-censoring when the treatment is very

effective. Then, Doob’s consistency theorem invoked in section 3.2, would not apply. In that case,

more intensive schedules and/or the measurements of more compartments would be needed. Other

concerns could arise from model misspecification. A misspecification could lead to biased results

and wrong recommendations. We have made a sensitivity analysis to test the robustness of the
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procedure to misspecification of the sampling distribution and to misspecification of the prior

(which happens if the new patients are different from those used for defining the prior). In both

cases the convergence toward the critical dose is slower but the procedure, which can be improved

by using a safety margin, generally works.

A major issue is development of drug resistance. If this happens during the monitoring, then

viral load will raise leading to higher recommended dose until we reach the maximum admissible

dose. This is a failure of the treatment and another treatment has to be prescribed. The search of

the optimal dose is relevant in a time period where no major resistance mutation develops.

We conclude that the use of such an adaptive scheme is to be further tested on more informative

data (especially with well documented adherence); however, this work shows that dose individu-

alization is possible. The further step would be to validate the procedure in a clinical trial before

using it in clinical practice. Such a clinical trial would typically have two arms, one in which the

proposed procedure of dose monitoring would be applied, the other in which standard clinical

practice would be applied; the endpoints would be the doses given at the end of the trial, measures

of adverse effects and the proportion of virological failures.

Supplementary Materials

Web Appendices referenced in Section 2.1, 3.2, 4.3, 4.4 and 4.5 are available with this paper at the

Biometrics website on Wiley Online Library.
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Molina, J., Chêne, G., Ferchal, F., Journot, V., Pellegrin, I., Sombardier, M., Rancinan, C., Cotte,

L., Madelaine, I., Debord, T., et al. (1999). The ALBI trial: a randomized controlled trial com-

paring stavudine plus didanosine with zidovudine plus lamivudine and a regimen alternating

both combinations in previously untreated patients infected with human immunodeficiency

virus. The Journal of infectious diseases 180, 351–358.

Moodie, E., Richardson, T., and Stephens, D. (2007). Demystifying optimal dynamic treatment

regimes. Biometrics 63, 447–455.

Murphy, S. (2003). Optimal dynamic treatment regimes. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 65, 331–355.

Murphy, S. and McKay, J. (2004). Adaptive treatment strategies: An emerging approach for

improving treatment effectiveness. Clinical Science 12, 7–13.

Perelson, A., Neumann, A., Markowitz, M., Leonard, J., and Ho, D. (1996). HIV-1 dynamics in

vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271,

1582–1586.

Putter, H., Heisterkamp, S., Lange, J., and De Wolf, F. (2002). A Bayesian approach to parameter

estimation in HIV dynamical models. Statistics in Medicine 21, 2199–2214.

Ramratnam, B., Bonhoeffer, S., Binley, J., Hurley, A., Zhang, L., Mittler, J., Markowitz, M., Moore,

J., Perelson, A., and Ho, D. (1999). Rapid production and clearance of HIV-1 and hepatitis C

virus assessed by large volume plasma apheresis. The Lancet 354, 1782–1785.

Ribeiro, R., Mohri, H., Ho, D., and Perelson, A. (2002). In vivo dynamics of t cell activation,



20 Biometrics, xxxxx 2011

proliferation, and death in hiv-1 infection: Why are cd4+ but not cd8+ t cells depleted?

Proceedings of the National Academy of Sciences of the United States of America 99, 15572–

15577.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent gaussian

models by using integrated nested laplace approximations. Journal of the royal statistical

society: Series b (statistical methodology) 71, 319–392.

Sage, A. and White, C. (1977). Optimum systems control. Prentice-Hall Englewood Cliffs, NJ.
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Figure 1. Flow chart for the control strategy procedure: individualized dose monitoring
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Figure 2. Viral load (log10 copies/mL) et CD4 count (cells/L) predictions for patient 642 from
the switch arm who took full dose of d4T+ddI then switched after 85 days to full dose AZT+3TC.
▲ are observations. Dashed lines represent 95% “measurement error predictive interval”. Vertical
line materializes when the treatment switch occurred. Left side: fit; right side: predictions. Treat-
ment adherence is presented on the lower part of the graph.



24 Biometrics, xxxxx 2011

Figure 3. Viral load (log10 copies/mL) et CD4 count (cells/L) predictions for patient 316 who
took 0.7% of d4T+ddI during 4 days, then decreased by about two during 8 days and then stopped
until day 59. He then took again his treatment until day 65 but with reference posology (probably
because he gained weight during the first treatment part and then passed the threshold of 60kg). He
stopped again the treatment and then from day 91 to the end of the study, he switched to AZT+3TC
treatment. ▲ are observations. Each color represents the predictions knowing the information
up to the previous observation time. Dashed lines represent 95% “measurement error predictive
interval”. Treatments are presented on the lower part of the graph. The grey plain line presents the
fit without taking into account adherence.
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Figure 4. Simulation of 10 doses readjustments spaced by 15 days after 3 observation times: (up)
Viral load (+) and CD4 count (∗) simulated observations (down) Dose readjustment simulation,
dtkopt become closer by above to dcrit = 0.306 (horizontal line).
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Table 1
Biological parameters for the “activated cells model”.

Parameter Meaning

α Activation rate of Q cells (day−1)
µT ∗ Death rate of T ∗ cells (day−1)
λ Rate of Q cells production (µ−1L day−1)
µT Death rate of T cells (day−1)
π Rate of virions per T ∗ cell (day−1)
ρ Rate of reversion to the Q state (day−1)
γ Infectivity: Infection rate of T cells per virion (day−1µL)
µQ Death rate of Q cells (day−1)
µV Death rate of free virions (day−1)
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Table 2
Priors and Posteriors for the “activated cells model” parameters estimated from ALBI trial data.

Priors Posteriors

Biological parameter (Normal priors):
Parameter mean (sd.) References mean sd.

α̃ -4.00 (2.00) Ribeiro et al. (2002) -3.19 0.14
µ̃T ∗ -0.05 (0.68) Althaus et al. (2009) -0.52 0.12

Brandin et al. (2006)
λ̃ 2.55 (1.90) Mohri et al. (1998) 2.52 0.10
µ̃T -2.59 (0.34) Ribeiro et al. (2002) -2.57 0.10
π̃ 4.04 (2.66) Chen et al. (2007) 2.49 0.54
ρ̃ -4.34 (1.38) Ribeiro et al. (2002) -5.13 0.54
γ̃0 -5.76 (4.02) See Section 4.3 -5.38 0.03
µ̃Q -9.00 (1.00) Vrisekoop et al. (2008) -11.2 0.99
µ̃V 2.90 (0.68) Ramratnam et al. (1999) 1.70 0.59

Regressors for treatments doses (Normal priors):
Parameter mean (sd.) References mean sd.

β1 -1.10 (0.37) See Section 4.3 -0.97 0.09
β2 -1.10 (0.37) See Section 4.3 -1.03 0.09

Standard deviation for random effects (Half-Cauchy priors):
Parameter median References mean sd.

σα 0.53 Guedj et al. (2007) 0.38 0.03
σµT∗ 0.37 Guedj et al. (2007) 0.03 0.01
σλ 0.10 Guedj et al. (2007) 0.03 0.01

Standard deviation for error measurment (Jeffrey’s priors):
Parameter mean sd.

σCV - - 0.45 0.01
σCD4 - - 0.20 0.01
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Table 3
Analysis of sensitivity to prior misspecification: evaluation of the convergence of (dtkopt)k=0...5 toward dcrit.
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