N

N

A diagonal plus low-rank covariance model for
computationally efficient source separation
Antoine Liutkus, Kazuyoshi Yoshii

» To cite this version:

Antoine Liutkus, Kazuyoshi Yoshii. A diagonal plus low-rank covariance model for computationally
efficient source separation. IEEFE international workshop on machine learning for signal processing
(MLSP), Sep 2017, Tokyo, Japan. hal-01580733

HAL Id: hal-01580733
https://inria.hal.science/hal-01580733

Submitted on 1 Sep 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-01580733
https://hal.archives-ouvertes.fr

2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25-28, 2017, TOKYO, JAPAN

A DIAGONAL PLUS LOW-RANK COVARIANCE MODEL
FOR COMPUTATIONALLY EFFICIENT SOURCE SEPARATION

Antoine Liutkus *

Inria, Speech Processing Team, France
antoine.liutkus @inria.fr

ABSTRACT

This paper presents an accelerated version of positive semidef-
inite tensor factorization (PSDTF) for blind source separa-
tion. PSDTF works better than nonnegative matrix factoriza-
tion (NMF) by dropping the arguable assumption that audio
signals can be whitened in the frequency domain by using
short-term Fourier transform (STFT). Indeed, this assump-
tion only holds true in an ideal situation where each frame is
infinitely long and the target signal is completely stationary in
each frame. PSDTF thus deals with full covariance matrices
over frequency bins instead of forcing them to be diagonal as
in NMF. Although PSDTF significantly outperforms NMF in
terms of separation performance, it suffers from a heavy com-
putational cost due to the repeated inversion of big covariance
matrices. To solve this problem, we propose an intermediate
model based on diagonal plus low-rank covariance matrices
and derive the expectation-maximization (EM) algorithm for
efficiently updating the parameters of PSDTF. Experimental
results showed that our method can dramatically reduce the
complexity of PSDTF by several orders of magnitude without
a significant decrease in separation performance.

Index Terms— Blind source separation, nonnegative ma-
trix factorization, positive semidefinite tensor factorization,
low-rank approximation.

1. INTRODUCTION

A major approach to blind source separation of single-channel
audio signals in the last decade is to use nonnegative matrix
factorization (NMF) and Wiener filtering by assuming that all
the time-frequency bins in the short-time Fourier transform
(STFT) domain are independent from each other [1-3]. In
NMEF, given a set of nonnegative vectors as input data, each
vector is approximated by the weighted sum of nonnegative
basis vectors. In audio source separation, a mixture spectrum
(magnitude, power, or a-fractional power spectrum [4, 5]) is
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Each nonnegative vector (power spectrum) is approximated
by the weighted sum of fewer nonnegative vectors
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Each positive semidefinite matrix (complex covariance matrix) is approximated
by the weighted sum of fewer positive semidefinite matrices

Fig. 1. Comparion between LD-PSDTF and IS-NMF.

approximated as the weighted sum of source spectra at each
frame. Many variants of NMF have been proposed by design-
ing various cost functions that evaluate the approximation er-
ror at each time-frequency bin [6]. Among these, NMF based
on the Kullback-Leibler (KL) [7] or S-divergence [8,9] have
been empirically known to work well.

NMF based on the Itakura-Saito (IS) divergence is known
to be theoretically justified for audio source separation under
the assumption that all the coefficients of the sources STFT
are independent and isotropic Gaussian [8]. In this context,
it can indeed be interpreted as the maximum likelihood esti-
mation of the sources variances, that are called power spectral
densities. Separation through posterior inference of the Gaus-
sian sources conditionally on the mixture then coincides with
a frame-wise Wiener filter. A serious limitation of this ap-
proach is that, while the magnitude of the input mixture STFT
is partitioned to the different sources, all sources get the same
original phase information. It is thus difficult to resynthesize
high-quality time-domain source signals.

To overcome this limitation, positive semidefinite tensor
factorization (PSDTF) based on the log-det (LD) divergence
has recently been proposed [10] by assuming that the source
complex spectrum at each frame is multivariate complex Gaus-
sian distributed. In PSDTF, given a set of positive semidefi-
nite (PSD) matrices as input data, each PSD matrix is approx-
imated by the weighted sum of PSD basis matrices (Fig. 1).
Focusing on the fact that the positive semidefiniteness of ma-
trices is an extended concept of the nonnegativity of vectors,



LD-PSDTF is a natural extension of IS-NMF. More specifi-
cally, each PSD matrix of input data is given by calculating
the product of the complex spectrum and its conjugate trans-
pose. NMF, on the other hand, focuses on only the diagonal
elements of the PSD matrix, i.e., nonnegative vector (power
spectrum), by ignoring the correlations between frequency
bins. PSDTF can estimate the complex spectrum of each
source with phase information by processing jointly all the
frequencies in an interdependent manner. Since such phase-
aware frequency-domain decomposition was shown to cor-
respond to time-domain decomposition, PSDTF can recover
high-quality time-domain source signals. Note that recently-
proposed phase-aware or time-domain decomposition meth-
ods based on additivity of complex spectra or audio signals
do not take into account inter-frequency correlations [11-13]
(high-resolution NMF [11] deals with inter-frame dependency
based on autoregressive modeling).

A critical problem of LD-PSDTF, however, lies in ex-
tremely large computational cost, which hinders its use in
practice. When a mixture spectrogram with 7' frames and
F' frequency bins is analyzed, the time complexity of LD-
PSDTF with K basis matrices is O(KTF?) while that of IS-
NMF with K basis vectors is only O(KTF'). LD-PSDTF is
performed with a convergence-guaranteed iterative optimiza-
tion method that needs to repeatedly calculate the inversion
of very large matrices of size F' x F'. The matrix inversion
costs O(F?) and is numerically unstable because F' (window
size) is usually several thousands. If all the input and basis
matrices are restricted to diagonal matrices by discarding the
correlations between frequency bins, i.e., LD-PSDTF reduces
to IS-NMF, the matrix inversion costs only O(F') but the sep-
aration performance is deteriorated accordingly.

To solve this problem, we propose a constrained version
of LD-PSDTF that represents each basis matrix as the sum of
a diagonal matrix and a low-rank matrix (Fig. 2). This con-
tribution is inspired by the factor analysis model presented
in [14], but goes further by adopting such a structure for each
source. If the rank of the low-rank matrix is N < F|, the
time complexity of our model is O(KTF?N). If a basis ma-
trix represents a harmonic musical instrument sound, the fre-
quency bins corresponding to the harmonic partials are highly
correlated to each other. This implies that the rank N can
be reduced to around the number of harmonic partials with-
out sacrificing separation performance too much. As either
an expectation-maximization (EM) algorithm or an auxiliary-
function-based (minorization-maximization) method can be
used for IS-NMF, in this paper we derive an EM-based method
with fast inversion of diagonal plus low-rank basis matrices.
The main contribution of this paper is to propose an efficient
and accurate approximation to full LD-PSDTF by leverag-
ing the characteristics of basis matrices. This appears impor-
tant because PSDTF has a great potential for fundamentally
raising the performance of any audio analysis methods using
NMF if the problem of computational cost is solved.

Fig. 2. Diagonal plus low-rank approximation of a full covari-
ance matrix over frequency bins. Ly is F' x N with N < F.
[v] is a diagonal matrix with diagonal v.

2. LOG-DET POSITIVE SEMIDEFINITE TENSOR
FACTORIZATION (LD-PSDTF)

In this section, we review log-det positive semidefinite tensor
factorization (LD-PSDTF) for audio source separation from
the viewpoint of probabilistic modeling and newly derive the
expectation-maximization (EM) algorithm for PSDTF.

2.1. Model formulation

All the signals are represented in the STFT domain, with F’
non-redundant frequency bins and 7" frames. In that domain,
for one given frame ¢, the K source signals are ' x 1 complex
vectors written xg;. We take them as all independent and
distributed according to the LD-PSDTF model as follows:

Tt NNC (Ova't)a (1)

where N, indicates the multivariate complex Gaussian dis-
tribution and Y3, is the covariance matrix. Yj; is assumed
to the time-varying scaled version of a time-invariant F' x F’
covariance template Vi, > 0 as follows:

Y = it Vi,

with hy; > 0 being an activation gain for source & at frame ¢.
As demonstrated in [10], LD-PSDTF generalizes IS-NMF [8]
for which all entries of x;; are assumed to be independent,
resulting in diagonal Vj,. The major advantage of LD-PSDTF
is to overcome the limitation of this independence assump-
tion. Since the perfect stationarity of the waveforms does not
hold true and finite-size frames are used in practice, inter-
frequency covariances cannot be avoided.

Now, we model the F' x 1 mixture x; at frame t as the
sum of the sources as follows:

K
ry = E Lt
k=1

As a sum of independent Gaussian random vectors, x; also
has a Gaussian distribution as follows:

K
@~ N, <O,Yt - Zm) :
k=1

This is the likelihood function of LD-PSDTF. Its maximiza-
tion is known to be equivalent to the minimization of the log-



det divergence between X; = wtwf and Y; [10]. Since a
complex spectrum x; is the linear transform of a time-domain
signal, such frequency-domain Gaussian modeling can be rep-
resented in the time domain.

2.2. Parameter estimation

To estimate the covariance templates V. as well as the acti-
vation gains hg:, we propose an generalized EM algorithm
whose E-step and M-step are iterated until convergence. Note
that we could use the auxiliary function approach presented
in [10]. Let © denote the set of all parameters. The whole
procedure is summarized in Algorithm 1 and detailed below.

2.2.1. E-step

The posterior distribution of the sources xj; is computed. The
posterior of Gaussian random variables is given by

Tt | G‘),.’E ~ Nc (:&kh th) ) (2)

where the posterior mean &j; and covariance C; are of di-
mension F' x 1 and I’ x F, respectively, and given by

Lrt = Wiy, 3)
Cit = Y — Wit Yo, 4

with Wy, being the F'x F' Wiener gain for source k at frame ¢.
In full generality, it is given by

-1
Wi =YY, . %)
The total posterior covariance of x; is thus

E[zrixy, | O,z £y, = Zt&ry + Che. 6)

2.2.2. M-step

Given the total posterior covariances X, for the sources com-
puted in the E-step, hi; and Vi are alternatively updated. A
straightforward option to estimate the activations for source k
is to exploit the posterior distribution of xy; | ©, x as achieved
in (4). We then estimate hy; as:
tr (V7 ")

Rt fa . @)
Note that this requires the inversion of the F' x F matrix V.
This inversion needs to be done once per iteration though,
and not for all frames. The update for the covariance tem-
plate V} can also be derived when the posterior distribution
for the sources has been computed as follows:

T
1 p T
1% <——E —. 8
k Tt:l hit ®)

Note that the likelihood function is not directly maximized in
the M-step. Using the interdependent steps (7) and (8), the
likelihood function is incrementally maximized.

2.3. Computational complexity

‘We now roughly estimate the time complexity of the EM algo-
rithm. The iterative algorithm proposed here comprises sev-

Algorithm 1 EM algorithm for LD-PSDTFE.
Input: z, K, initializations for V}, and Ay
Iterate until convergence:

1. E-step: compute all X, as in (6)
2. M-step: update hy; with (7) and V}, with (8).
Separate: compute the sources &y as in (4)

eral demanding operations, in particular:
e Inversion of all F'x F' covariance matrices Y; : O (TF 3) .
e Computation of all Wj,; and Wy, Yie: O (KTF?).
Accounting only for these most demanding operations, the
total computational complexity Cj, for each iteration of this
baseline algorithm is thus':

C,=0((K+1)TF%). 9)

In this paper, we propose a refinement of LD-PSDTF that per-
mits to dramatically reduce this computational load.

3. FAST LD-PSDTF

This section explain the proposed refinement of LD-PSDTF
based on diagonal plus low-rank covariance matrices.

3.1. Diagonal plus low-rank approximation

Instead of leaving the covariance templates Vj, totally uncon-
strained as done in [10], we assume that they can be approxi-
mated as the sum of low-rank and diagonal matrices (Fig. 2):

Vi = [Py] + Ly, [Sy] Ly, (10

where we write [v] as the diagonal matrix with vector v as
its diagonal. Ly is a F' x N matrix, while P, and S} are
F x 1and N x 1 vectors, respectively, with N < F'. Note
that we introduced S, to make parameter estimation easy (see
Section 3.2.2).

We call this model (10) structured. It is for instance al-
ready reviewed in [14] under the name of factor analysis. Its
rationale is to allow for the dependency structure between fre-
quencies to be correctly explained by a limited amount of
correlations. In other words, while P, may be roughly un-
derstood as the power spectral density (PSD) of the stochastic
part of source k as in IS-NMF, Ly, [Sy] L rather stands for
its sinusoidal part, which introduces deterministic relations
between the entries of xj;. Then, these two components are
coupled because they share the activation gains hy;. Interest-
ingly, if we take N = 0, this model reduces to IS-NMF and
coincides with PSDTF for N = F'.

Now, taking (10) as the covariance templates, the mixture
covariance matrices Y; write:

K
Y, = [Z Dot P,
k=1

"Note that the computational complexity of the method proposed in [10]
is comparable to that of the proposed EM algorithm. Even if it doesn’t require
computation of X, it requires Y; V4, also scaling as O (KTF3).

K
+ ) it Ly [Sk] L.
k=1




The purpose of this paper is to study the consequences of
model (10) over both computational load and performance in
audio separation. For notational convenience below, and for a
givenp = 1,..., K, we define the F' x F' matrix M, ; as:

K
M, = [Z hie P
k=1

With the structured model, the parameters Py, Sy, and Ly,
replace the unconstrained Vj, leading to K (F' + N + F'N)
parameters for the templates instead of K F' (F' + 1) /2. The
special structure (10) chosen for the covariance templates V},

may be understood as stating each source itself is the sum of a
(s )

p
+ Z hii Ly, [Sk} Lz
k=1

with diagonal covariance Yk(;) =
[hitPr] and an 1ndependent deterministic component a:( )

with low-rank covariance Yk(t ) = Ly, [hgtSk] L. For the re-
estimation of these parameters, we modify the EM algorithm
in the following way.

stochastic component x;

3.2. Paramter estimation
We explain an acceralated version of the generalized EM al-
gorithm proposed in Section 2.2.

3.2.1. Modified E-step

We need to compute the total posterior covariances of w(

and :cgct) For this purpose, and for each component ¢ = s

Yk(t(‘)i/; 1

s)

or d, we need the respective Wiener gains Wk(t)
and the total posterior covariance as follows:

fore e (s.a). 5 =) (a)) + v - WY,

Then, for the re-estimation of hj;, we also need the total

posterior covariance Xy, of &, which is different from n(s kit —|—

2,(“) because wgﬁt) and wé,t) are not independent conditionally

on x. It is straightforward to show that

St E;t) + E(d) + E(ds) + E(ds)*7 (11
where
ds ~(d s s
El(ct )= wl(vt) (xgct)> Wk(t) k(t)'
3.2.2. Modified M-step
The updates for Py, are given by:
T (s)
1 diagl;’
I@%TE:———— (12)

Pt

t=1

The updates for L and S}, are obtained straightforwardly
by the truncated eigenvalue decomposition of the weighted
average of E(d) as follows:

| L@
Lk,Sk <—e1g Z kt N R

where eig (M, N) gives the N-truncated eigenvalue decom-
position of matrix M, i.e., the first N eigenvectors along with

13)

Algorithm 2 Inversion of the mixture covariance matrix Y;
under the structured template model (10).

° MOt — |:Zkhktpk:|
e Fork =1...K: Calculate (16) and (17).
e Retun Y, ! = Mf(lt

their eigenvalues. Efficient randomized algorithms [15] may
be used to compute this decomposition with a time complex-
ity scaling as O (F2N) or even less.

Concerning the update for hgy, it is identical to (7), except
that we use the more efficient expression (11) for ;.

3.2.3. Efficient matrix inversion

For inference in the EM algorithm (and also in the auxiliary
function approach of [10]), we need to compute the inverses
of the F' x F' mix covariance matrices Y;. This step is one
of the computational bottlenecks of the method. In this pa-
per, we use the proposed structured model (10) in conjunction
with the Woodbury matrix identity [16], which states

(A+Ucv)™!

—A AU (ct +vaTi) T (14)
for any matrices A, U, C, and V of appropriate size. The
strategy we propose is to proceed iteratively.

Assuming we now have the inverse of M}, _1 ;, (which is
a diagonal matrix for £ = 1), we compute

VAL

M} = (M1 + hieLi [Sk) Ly) ™ (15)
Using Woodbury matrix identity (14) on (15), we have
My =Ml = M L LM (16)
1
Qi=||—|+L;M; ' L 17
k.t (|:hktsk] + LMy k>7 (17)
where 1 = denotes entry-wise inversion for a vector a. The pro-

cedure is iterated up to k = K, as shown in the Algorithm 2.

Note that the same identity (14) may be applied to com-
pute V.~ ! in a computationally efficient manner for the update
of hy in (7) as follows:

v -7

(4] (4] ) 5[] oo

3.3. Computational complexity

(18)

It can be shown that the computational complexity of each of
the K iterations of the procedure presented in the algorithm
box 2 in this structured case is O (N (F? + FN + N?)).
Then, considering our modifications to the generalized EM
algorithm, we also need the add the following computation-
ally most demanding operations:



Approximate speedup for one EM iteration: F/(3N+1)

o1
w
= N N
-
wv
N
o

Fig. 3. Theoretical speedup C},/C; over baseline PSDTF
yield by the proposed inversion procedure permitted by the
structured covariance model (10), for K = 5 sources and
F = 1024 frequency bins. Observing this speedup in practice
requires careful implementation of the inversion algorithm 2.

e E-step: O (F?) for each W) and B{°). O (NF?)

for each W,if ) and E,(c‘f), as well as for ;.

o M-step: O (TF2 + F2N) for the update of Ly, and S}.

Keeping only the computations that need to be done for each
frame, this brings the complexity of each iteration roughly
down to

C, =0 (3KTF? (N +1)). (20)

In Fig. 3, we display the expected improvement C},/C's in
complexity as a function of N for fixed F' and K. We check
for actual improvements with our implementation in the next
section. The effect of the proposed method naturally increases
linearly with the number of frequency bands considered.

4. EVALUATION

In this section, we show that the simplified structured covari-
ance model (10) leads to performance similar to the uncon-
strained PSDTF model [10], while allowing for a significant
computational speedup.

4.1. Experimental conditions

We consider the same evaluation material as presented in [10],
i.e., 4 synthetic mixtures, each of which being composed of
K = 3 instrumental notes first presented separately, and then
combined as various chords. Interestingly, the notes have a
significant amount of overlap in the frequency domain. This
dataset does not correspond to a real challenge in terms of
modern source separation technology (see for instance the lat-
est SiISEC report [17] for that matter). However, they are suf-
ficient for our purpose because our objective here is indeed
only to assess whether the proposed structured model leads to
a degradation in performance compared to PSDTF, as a price
for its computational effectiveness. Comparing both methods
on the same dataset seems sufficient for this.

In terms of metrics, we compute the Source to Distortion
Ratio (SDR [18]) between the true source signals and the es-
timates, both for PSDTF and for the fast PSDTF we propose,
abbreviated as fPSDTF here. We display the difference be-
tween these two scores for all mixtures as a function of the
order N of the approximation in Fig. 4. Then, for one of the

SDR(fPSDTF)-SDR(PSDTF)
iR
T

-2+
i s :
\ +
! + :
-4 1 L I I
N=1 N=5 N=10 N=50

Fig. 4. Performance increase yield by the proposed approxi-
mation fPSDTF over baseline PSDTF, for different values of
the low-rank component order V.

SDR(fPSDTF)-SDR(PSDTF)

iterations

Fig. 5. Performance increase of fPSDTF over PSDTF vs the
number of iterations for one particular mixture and different
orders N of the deterministic component.

mixture, we display the evolution of this difference over the
iterations of the EM algorithm in Fig. 5.

4.2. Experimental results

As shown in these Figures, the fPSDTF has roughly the same
performance than PSDTEF, even for small N. As expected,
the difference decreases with increasing V. This fact strongly
supports the proposed model as a good approximation to PS-
DTF that allows for effective implementations. Note that in
our implementation, the computational speedup we observe
was not as important as displayed on Fig. 3, but was rather of
one order of magnitude, which is already noticeable. This is
due to the fact that the PSDTF implementation benefited from
multicore architectures, while fPSDTF did not.

Finally, for one particular excerpt and source k, we dis-
play the basis matrices | Ly| learned with PSDTF for different
values of IV, along with the corresponding loading factors Sj.
We can see that only a few basis vectors turn out to be active in
this example, suggesting that assuming a diagonal plus low-
rank structure for spectral covariances fits music analysis.



(a) (b) ' ©

Fig. 6. Basis matrices L, and the corresponding loading fac-
tors S, for: a) N = 5,b) N = 10 and ¢) N = 50. We can
notice that even for large NV, only a small number of basis are
typically active.

5. CONCLUSION

In this paper, we introduced a low-rank plus diagonal struc-
ture for approximating the positive semidefinite covariance
matrices that are routinely used in source separation studies.
We showed how straightforward applications of classical lin-
ear algebra methods could allow the inversion of sums of such
matrices, leading to considerable speedups as compared to
naive inversion. Considering the particular positive semidef-
inite tensor factorization (PSDTF) model, where those co-
variances are rather large, we showed that this approxima-
tion does not lead to noticeable decrease in performance as
compared to the unconstrained model, while operating sig-
nificantly faster. Interestingly, the proposed methodology and
structured approximation may be used whenever large covari-
ance matrices are considered, which may also happen in the
case of massively multichannel signals. Future work includes
using the potential of this structured approximation for scal-
ing up the method to large-scale separation scenarios.
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