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Alternating Direction Graph Matching
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Abstract Graph matching has been an active research topic in the
) . . computer vision eld for the past decades. In the recent
In this paper, we introduce a graph matching method |iseratyre, [13] proposed a graduated assignment algorithm
that can account for constraints of arbitrary order, with ar- 1, jteratively solve a series of convex approximations to the
bitrary potential functions. Unlike previous decomposition matching problem. In[22], a spectral matching based on
approaches that rely on the graph structures, we introduce {he ranka approximation of theaf nity matrix (composed
gdgcomposmon of the matching constraints. Graph match- of the potentials) was introduced, which was later improved
ing is then reformulated as a non-convex non-separable 0p-j, [g] by incorporating af ne constraints towards a tighter
timization problem that can be split into smaller and much- (q|5xation. In [23], an integer projected xed point algo-
easier-to-solve subproblems, by means of the alternatingyiihm that solves a sequence of rst-order Taylor approxi-
direction method of multipliers. The proposed framework ,-tions using Hungarian methad [18] was proposed, while
is modular, scalable, and can be instantiated into differ- ;. [28] the dual of the matching problem was considered
ent variants. Two instantiations are studied exploring pair- 4 gptain a lower-bound on the energy, via dual decompo-
wise and higher-order constraints. Experimental results on giiion. In [6], a random walk variant was used to address
widely adopted benchmarks involving synthetic and real €x- g5h matching whilé [32] factorized the af nity matrix into
amples demonstrate that the proposed solutions outperformgajier matrices, allowing a convex-concave relaxation that
existing pairwise graph matching methods, and competitive .4 he solved in a path-following fashion. Their inspiration

with the state of the art in higher-order settings. was the path-following approach [29] exploiting a more re-
stricted graph matching formulation, known as Koopmans-
1. Introduction Beckmann's QAP[1]7]. Lately, [7] proposed a max-pooling

) strategy within the graph matching framework that is very
The task of nding correspondences between two sets yqpyst to outliers.

of visual features has a wide range of applications in com-
puter vision and pattern recognition. This problem can be  Recently, researchers have proposed higher-order graph
effectively solved using graph matchirig [28], and as a con- matching models to better incorporate structural similari-
sequence, these methods have been successfully applied ttes and achieve more accurate results [11, 30]. For solv-
various vision tasks, such as stereo matching [14], objecting such high-order model$, [30] viewed the matching prob-
recognition and categorizationl [1,112], shape matcHing [1], lem as a probabilistic model that is solved using an iterative
surface registration [31gtc successive projection algorithm. The extension of pairwise
The general idea of solving feature correspondences viamethods to deal with higher-order potentials was also con-
graph matching is to associate each set of features an atsidered like for example in_[11] through a tensor matching
tributed graph, where node attributes describe local char-(extended from([22]), or i [31] through a third-order dual
acteristics, while edge (or hyper-edge) attributes describedecomposition (originating from_[28]), or in_[21] through
structural relationships. The matching task seeks to min-a high-order reweighted random walk matching (extension
imize an energy (objective) function composed of unary, of [6]). Recently, [26] developed a block coordinate ascent
pairwise, and potentially higher-order terms. These termsalgorithm for solving third-order graph matching. They
are called thgotentialsof the energy function. In pairwise lifted the third-order problem to a fourth-order one which,
settings, graph matching can be seen as a quadratic assigrafter a convexi cation step, is solved by a sequence of linear
ment problem (QAP) in general form, known as Lawler's or quadratic assignment problems. Despite the impressive
QAP [19]. Since QAP is known to be NP-completél[5] 27], performance, this method has two limitations: (a) it cannot
graph matching is also NP-complete [13] and only approx- be applied to graph matching of arbitrary order other than
imate solutions can be found in polynomial time. third and fourth, and (b) it cannot deal with graph matching



where occlusion is allowed on both sides, nor with many- By conventionfF N Z:a xq = Fifa>bh.

to-many matching. In this work, we are interested in tensors having the same
In this paper, a novel class of algorithms is introduced dimension at every modée.n; = ny = ::: = np = n.

for solving graph matching involving constraints with arbi- In the sequel, all tensors are supposed to have this property.

trary order and arbitrary potentials. These algorithms rely ]

on a decomposition framework using the alternating direc- 2-2. Graph and hypergraph matching

tion method of multipliers. A matching con guration between two grapl@ =

The remainder of this paper is organized as follows. Sec- (v, £,) andG, = (V»; E,) can be represented byaasign-
tion [J provides the mathematical foundations of our ap- ment matrixX 2 f 0;1g"* "2 whereny = jV4j:n, = jVaj.

proach while in Sect|o|j]_3 the general decomposition strat- o, elementx;, ;,) of X equalsl if the nodei; 2 V; is
egy is proposed along with two instantiations of this frame- matched to the node 2 V,, and equal® otherwise.
work to a pairwise and higher-order approach. Sedfion 4 standard graph matching imposes the one-to-(at most)-one
presents in-depth experimental validation and comparisonseonstraintsj.e. the sum of any row or any column of
with competing methods. The last section concludes the pa-yystbe 1. If the elements oK are binary, therX obeys
per and presents the perspectives. the hard matching constraintsWhenX is relaxed to take
real values irff0; 1], X obeys thesoft matching constraints
In this paper we use the following notationsec(V )
Letus rst provide the elementary notation as well as the denotes the column-wise vectorized replica of a matrix
basic mathematical foundations of our approach. Inthe rst mat(v) isthen; n; reshaped matrix of an-dimensional
subsection we will give a brief review of tensor, which will vectorv, wheren = niny; X 2 R" "2 the assignment
help us to compactly formulate the graph matching prob- matrix andx = vec(X) 2 R" theassignment vectoM

lem, as will be shown in the subsequent subsection. (respectivelyM ) is the set ofn;  n, matrices that obey
the hard (respectively, the soft) matching constraints.

2. Mathematical background and notation

2.1. Tensor
A real-valuedD "-order tensoF is a multidimensional ~ Energy function. Letx; = X, ;i,) be an element of rep-
array belonging tR"+ "2 No (whereny;ny;:::;Np resenting the matching of two nodgsandi,. Suppose that

are positive integers). We denote the element$ oby matching these nodes requires a poterftial2 R. Simi-
Fi,i,mio, Wherel ig ngford=1;2:::;D. Each larly, let Fij2 denote the potential for matching two edges

dimension of a tensor is callednaode (i1;j1), (i2;j2), and Fij3k for matching two (third-order)
We call themultilinear formassociated to a tensbr the hyper-edgeq(i1;j1; K1), (i2;j2:k2), and so on. Graph
functionF : R"t R R" | Rdenedby matching can be expressed as minimizing
X Ro X 1 2 3
F(X1;1:0:Xp) = Fioizuio Xb X5 XD Fixi+  Fixixp+  Fo Xixjxy + (5)
i1=1 iD =1 i IJ I]k
1) | | |
wherexy = (x§;x9;::: ;ng) 2R ford=1:2:::::D. The above function can be re-written more compactly using
Atensor can be multiplied by a vector at a speci ¢ mode. tensors. Indeed, let us consider for example the third-order
Letv = (Vi;Va;:::;Vn,) be amg dimensional vector. The ~ potentials. Since=j, has three indices(Fi, )1 ijk n
moded productof F andv, denoted by 4 v, isa(D can be seen as a third-order tensor belongingto" "
1)™-order tenso6 of dimensionsi; Ng 1 Ngs1 and its multilinear formd.f. (I)) is the function
np de ned by
X wiyin= (6)
¢ Fo(x;y:2) = Fik XiYj Z 6
Gy igs o = Fiiigmio Vig: (2) i=1 j=1 k=1
idzl
With this de nition, it is straightforward to see that the mul- de ned forx;y;z 2 R". Clsearly, the third-order terms
tilinear form [1) can be re-written as in (B can be re-written ak °(x;x;x). More generally,
o _ _ D-order potentials can be represented iy%order ten-
F(X1iXz;:ixp) = F 1X1 2%z ,\'13 xp: () sorFP and their corresponding terms in the objective func-
Let us consider for convenience the notatior}_ , to de-  tion can be re-written a6 ° (x; x;:::;x), resulting in the
note a sequence of products from made modeb: following reformulation of graph matching.
o Problem 1 (D"-order graph matchingMinimize
F Xg=F aXa a+1 Xa+1 b Xb- (4)

FI)+ F20x)+ + FP(x;iix) ()

d=a



subject tox 2 M
tilinear form of a tensofF 9 representing thel"-order po-
tentials.

3.2. Graph matching decomposition framework

Decomposition is a general approach to solving a prob-
lem by breaking it up into smaller ones that can be ef-

In the next section, we propose a method to solve thecjently addressed separately, and then reassembling the re-

continuous relaxation of this probleme. minimizing (7)
subjecttax 2 M (soft matching) instead of 2 M (hard

sults towards a globally consistent solution of the original
non-decomposed probleml [2, [4,]10]. Clearly, the above

matching). The returned continuous solution is discretized ADMM is such a method because it decomposes the |arge

using the usual Hungarian methaod|[18].

3. Alternating direction graph matching
3.1. Overview of ADMM

We brie y describe the (multi-block) alternating direc-
tion method of multipliers (ADMM) for solving the follow-
ing optimization problem:

Minimize  (X1;X2;::%;Xp)
subjectto Aix; + AoXxp + + Apxp=Db; (8)
Xi2X; R" 81 i p;

whereX; are closed convex sets; 2 R™ "i 8i;b 2 R™.
The augmented Lagrangian of the above problem is

x° ' x°
+y> AiXi b + =
i=1

wherey is called the_agrangian multiplier vectoand >
0is called thepenalty parameter

convention, ifa > b then X,y is ignored). Standard

ADMM solves problem[(B) by iterating:
1. Fori =1;2;:::;p, updatex;:

k+1
i

k+1

Xt =argmin L (x§ XX Y ) (20)

X2X i
2. Updatey:

k+l — ,k k+1 k+1
y<t = yiH Aix; b

i=1

(11)

The algorithm converges if the followirrgsidualconverges
toOask!1

(12)
We will discuss the convergence of ADMM in Sect[on|3.4.

problem [[) into smaller problemls (10).

In computer vision, decomposition methods such as
Dual Decomposition (DD) and ADMM have been applied
to optimizing discrete Markov random elds (MRFs) |15,
16,20, 25] and to solving graph matching|[28]. The main
idea is to decompose the original complex graph into sim-
pler subgraphs and then reassembling the solutions on these
subgraphs using different mechanisms. While in MRF in-
ference, this concept has been proven to be exible and
powerful, that is far from being the case in graph matching,
due to the hardness of the matching constraints. Indeed,
to deal with these constraints, [28] for example adopted a
strategy that creates subproblems that are also smaller graph
matching problems, which are computationally highly chal-
lenging. Moreover, subgradient method has been used to
impose consensus, which is known to have slow rate of
convergence |2]. One can conclude that DD is a very slow
method and works for a limited set of energy models often
associated with small sizes and low to medium geometric
connectivities[[28].

In our framework, we do not rely on the structure of the
graphs but instead, on the nature of the variables. In fact, the
idea is to decompose the assignment vextfisy means of
Lagrangian relaxation) into different variables where each
variable obeys weaker constraints (that are easier to handle).
For example, instead of dealing with the assignment vector
X 2 M, we can represent it by two vectoxg andx.,
where the sum of each row afat(x,) is 1 and the sum
of each column ofmat(x,) is 1, and we constrain these
two vectors to be equal. More generally, we can decompose
X into as many vectors as we want, and in any manner, the
only condition is that the set of constraints imposed on these
vectors must be equivalent to, = x, = = Xp 2
M wherep is the number of vectors. As for the objective
function [7), there is also an in nite number of ways to re-
write it under the new variables;; X2;:::;Xp. The only
condition is that the re-written objective function must be
equal to the original one whery = X, = = Xp = X.

For example, ip = D then one can re-writ¢|7) as

F(x1) + F2(x1;x2) +

Each combination of (a) such a variable decomposition and
(b) such a way of re-writing the objective function will yield
a different Lagrangian relaxation and thus, produce a differ-
ent algorithm. Since there are virtually in nite of such com-
binations, the number of algorithms one can design from



them is also unlimited, not to mention the different choices Thus, letcst be a constant independentafwe have:
of the reassembly mechanism, such as subgradient meth-

ods [2] 4], cutting plane methods [2], ADMMI[3], or others. L (xk* xoxk 101 yk) = (p¥)” x
We call the class of algorithms that base on ADMM Alter- fLa 1] 5
nating Direction Graph Matching (ADGM) algorithms. A +(y*)” (Agx + sd) + > Agx + sd , sty (23)

major advantage of ADMM over the other mechanisms is
that its subproblems involve only one block of variables, re- and the subproblems (119) are reduced to minimizing the fol-

gardless of the form the objective function. lowing quadratic functions ovev ¢ (d =1;2;:::;D):
As an illustration of ADGM, we present below a par-
ticular example. Nevertheless, this example is still general 1 >
enough to include an in nite number of special cases. §X> AJAg+ AJsS+ Z(AJy<+pX)  x: (29)

Problem 2 (Decomposed graph matchingjlinimize

1 200 v N 4 ED (g ey In summary, an ADGM algorithm has three main steps:
Frixa)+ Fr(xaixz) + + PP (xuixaitinixo) (14) 1) choos€A4)1 4 p and(M 4)1 ¢ p satisfying the con-
subject to ditions stated in Probler@ 2,2 updaté+l by minimiz-
ing (24) overM 4, and 3) updatg*** using [I1) (and re-
Aixp+ Agxp+  + ApXp = 0; (15)  peat 2), 3) until convergence).
X¢2M g4 81 d D; (16)

_ _ 3.3. Two simple ADGM algorithms
where(Ag4)1 ¢ p a'em n matrices, de ned in such a

way that(I5) is equivalent tax; = x, = = Xp, and Let us follow the above three steps with two examples.
(M ¢)1 ¢ p are closed convex subsetsRIf satisfying Step 1: Choose(Aq4):1 ¢ o and (M 4)1 ¢ p. First,
(M 4)1 ¢ p take values in one of the following two sets:
Mi\M 2\ \M p=M: (17)
It is easily seen that the above problem is equivalent to M r = X : sumofeachrowomat(x)is 1g;  (25)

the continuous relaxation of Problém 1. Clearly, this prob- M ¢ = fx : sum of each column ahat(x) is  1g; (26)
lem is a special case of the standard fdrin (8). Thus, ADMM
can be applied to it in a straightforward manner. The aug- such thatothM , andM . are taken at least oncef no
mented Lagrangian of Probldm 2 is occlusion is allowed irG, (respectivelys,), then the term
“ 1"isreplaced by = 1" for M  (respectivelyM ;). If
many-to-many matching is allowed, then these inequality

..... d e j j
L (X1;X2;:155XpY) = Fo(x1;:005Xq) constraints are removed. In either cabe, andM . are
d=|1 closed and convex. Clearly, sinké, \M .= M, condi-
X ' 2 tion (I7) is satis ed.
+y” Agxg + 3 Agxg @ (18) Second, to impose; = X, = = Xp, we can for exam-
d=1 d=1 2 ple choos€A 4)1 ¢ b such that
They update step[(11) and the computation of the resid- o o _
ual (T2) is trivial. Let us focus on the update step[(30): X1= X2, X1 = Xgiii, X1= Xp (27)
xK*t = argmin L (xkfj l];x;x'fdﬂ oY) (9) or alternatively
X2M ¢4
Denote X1 = X2; X2=Xgz;iil; Xp 1= Xp: (28)
k X1 k+1 » k It is easily seen that the above two sets of constraints can
sk= AxKT o+ Ajxk; (20) y

be both expressed under the general form (15). Each choice

i=1 j=d+1
' o 1 ' leads to a different algorithm. Let ADGM1 denote the one
k — i w1 O Lk obtained from[(27) and ADGM2 obtained from [28).
ps= F X] Xio (see[®)  (21) Step 2 Undatext*! . Pluagi ATISY | .
id  jo = de1 tep pdatexg™ . Plugging [2T) an [:@. ) |n.tq:(]._ ),
the subproblems[@4) are reduced to (details given in the
It can be seen that (details given in the supplement) supplement)
Fi (Xk+1 .X.Xk ) ):(pk)>x. (22) K+1 _ . 1k k2 > .
d 1] X5 X[d+1 5] : Xgq &~ =argmin > XKk, CgXx (29)

i=d X2M ¢



where(cq)1 4 p are de ned as follows, for ADGM1.: consensus of the variables and that would result in faster
I convergence. Using this scheme, we observe that our algo-

o= 1 » K 1% gk 1% Fd@' xk. _ rithms always converge in practice. Inrt1he experiments, we
1= - - i ’ = : = o= = —
D 1 i d - d i - i setT, = 300; T, = 50; 2 and o = 1p55-
0 1(30) 4. Experiments
Cy = x'fl + }y'é 1 » i O 1Xik+l o KA We adopt'the adaptive scheme in Secfion] 3.4 to two
- - . J ADGM algorithms presented in Secti¢n 3.3, and denote
i=d = J=da them respectively ADGM1 and ADGM2. In pairwise set-
(31) tings, however, since these two algorithms are identical,
for2 d D, andfor ADGM2: we denote them simply ADGM. We compare ADGM and
ADGM1/ADGM2 to the following state of the art methods:
1 12 o Pairwise: Spectral Matching with Afne Constraint
cp=x5 Tyk = F¢ xK (32) (SMAC) [9], Integer Projected Fixed Point (IPFR) [23],
d=1 i=2 Reweighted Random Walk Matching (RRWM) [6], Dual
D1 Decomposition with Branch and Bound (DD)_[28] and
— yktl 1 k 1 D k+1 . . .
Cob =Xp 1+ -yp -F Xi (33) Max-Pooling Matching (MPM)[[7]. We should note that
i=1 DD is only used in the experiments using the same energy
o= }(Xku X+ i(yk vE) models presented in [28]. For the other experiments, DD
47 2V 17 Rdea /T 57 d Y is excluded due to the prohibitive execution time. Also, as
1% ot O suggested in [23], we use the solution returned by Spectral
> FIoooxk xf (34) Matching (SM) [22] as initialization for IPFP.
i=d =1 j=d+1 Higher-order: Probabilistic Graph Matching (PGM) [30],
Tensor Matching (TM)[[111], Reweighted Random Walk
forz d D 1 o Hypergraph Matching (RRWHM) [21] and Block Coordi-
Step 3: deateykﬂ - L:I‘l)m (27) and[:(’é]?l), it IS seen that  nate Ascent Graph Matching (BCAGM)[26]. For BCAGM,
this step is reduced tpg™ = y§ + (x] Xg ) for  we use MPM [[7] as subroutine because it was shown
ADGM1andy§™ = y§+ (x5} x§™)for ADGM2. in [26] (and again by our experiments) that this variant of
RemarkWhenD = 2 the two algorithms are identical. BCAGM (denoted by “BCAGM+MP” in[[26]) outperforms
Note that [2P) meanx§*™ is the projection ofcq the other variants thanks to the effectiveness of MPM. Since

onto M 4. Since (M g)1 ¢ o Obey only row-wise or  there is no ambiguity, in the sequel we denote this variant
column-wise constraints, the projection becomes row-wise“BCAGM” for short.
or column-wise and can be solved based on the projec- e should note that, while we formulated the graph
tion onto a simplex([8]. We show how to do that and give matching as aminimizationproblem, most of the above
sketches of the above algorithms in the supplement. listed methods arenaximizationsolvers and many mod-
3.4. Convergent ADGM eIs/objeptiye functions in previous .work were d.esigned to
be maximized. For ease of comparison, ADGM is also con-
Note that the objective function in Problér 2 is neither verted to a maximization solver (by letting it minimize the
separable nor convex in general. Convergence of ADMM additive inverse of the objective function), and the results
for this type of functions is unknown. Indeed, our ADGM reported in this section are for the maximization settings
algorithms do not always converge, especially for small val- (i.e. higher objective values are better). In the experiments,
ues of the penalty parameter When is large, they are  we also use some pairwise minimization models (such as
likely to converge. However, we also notice that small the one from([28]), which we convert to maximization prob-
often (but not always) achieves better objective values.lems as follows: after building the af nity matriki from
Motivated by these observations, we propose the following the (minimization) potentials, the new (maximization) af n-
adaptive scheme that we nd to work very well in practice: ity matrix is computed bymax(M) M wheremax(M )
starting from a small initial valueg, the algorithm runs  denotes the greatest elementMf Note that one cannot
for T, iterations to stabilize, after that, if no improvement simply take M because some of the methods only work
of the residuat® is made eveny, iterations, then we in-  for non-negative potentials.
crease by a factor and continue. The intuition behind And last, due to space constraints, we leave the reported
this scheme is simple: we hope to reach a good objectiverunning time for each algorithm in the supplement (except
value with a small , but if this leads to slow (or no) con- for the very rst experiment where this can be presented
vergence, then we increaseto put more penalty on the compactly). In short, ADGM is faster than SMAC][9]



Methods | Error  Global  Time
(%) opt. (%)  (s)
MPM 42.32 0 0.02
o | RRWM | 90,51 0 0.01
2 | IPFP 87.30 0 0.02
2| smMAC | 81.11 0 0.18
DD 0 100  14.20
ADGM 0 100  0.03
MPM 2149 4480 0.02 4 : B =
_ | RRWM | 85.05 0 0.01 _—— 3
g | IPFP 85.37 0 0.02
T | SMAC | 71.33 0 0.18
DD 0.19 100  13.57
ADGM | 0.19 100  0.02
Table 1: Results on House and Hotel se-  (e) SMAC 12/20 (315.0426) (f) ADGM 18/20(353.3569

quences using thpairwise model A, de-
scribed in Sectiofi 4}1 and previously proFigure 1: House matching using tipairwise model B described in Sec-
posed in[[28]. tion[4.3. Ground-truth value 3431515 (Best viewed in color.)

(in pairwise settings) and ADGM1/ADGM2 are faster than overall percentage of mismatches and frequency of reach-
TM [L1] (in higher-order settings) while being slower than ing the global optimum. Results are given in Tgble 1. One
the other methods. can observe that DD and ADGM always reached the global
optima, but ADGM did it hundreds times faster. Even the
recent methods RRWM and MPM performed poorly on this
The CMU House and Hotel sequerfibave been widely =~ model (only MPM produced acceptable results). Also, we
used in previous work to evaluate graph matching algo- hotice a dramatic decrease in performance of SMAC and
rithms. It consists of 111 frames of a synthetic house and!PFP compared to the results reported(inl [28]. We should
101 frames of a synthetic hotel. Each frame in these se-note that the above potentials, containing both positive and

4.1. House and Hotel

quences is manually labeled with 30 feature points. negative values, are de ned for minimizationproblem.
Pairwise model A.In this experiment we match all possible It was unclear how thosmaximizationsolvers were used
pairs of images in each sequence, with3@lpoints {.e. no in [28]. For the reader to be able to reproduce the results,

outlier). A Delaunay triangulation is performed for th@®  we make our software publicly available.
points to obtain the graph edges. The unary terms are thePairwise model B.In this experiment, we match all possi-
distances between the Shape Context descrigfors [1]. Théle pairs of the sequence with the baseline (he separa-
pairwise terms when matchir{y;j1) to (i2;j2) are tion between frame®.g the baseline between frarbeand
frame 105 is 100) varying from 10 to 100 by intervals of
Ff= exp >=7 +(1 )exp =% 1 (35 10 For each pair, we matctD, 20 and30 points in the rst
) ) image to30 points in the second image. We set the unary
where ; |; , are some wellght and scallnq constants and tayms to0 and compute the pairwise terms as
; are computed fromd; = Kkijijik andd, = kijj 2k as | |
| ;! F? =exp  Kigj1k Kiigjok = 2 ; (37)
_jdi dj. RETFR I
T 4 +q, Caweos = 5= ¢ (38 where 2 = 2500. It should be noted that the above pair-
wise terms are computed for every péit;j1) and(iz;j2),
This experiment is reproduced from [28] using their energy i.e. the graphs are fully connected. This experiment has
model leg] It should be noted that in [28], the above unary been performed on the House sequence in previous work,
potentials are subtracted by a large number to prevent oc4ncluding [6] and [26]. Here we consider the Hotel se-
clusion. We refer the reader to [28] for further details. For quence as well. We report the average objective ratio (which
ease of comparison with the results reportedin [28], here weis the ratio of the obtained objective value over the ground-
also report the performance of each algorithm in terms of truth value) and the average accuracy for each algorithm in
T vaco oo edundbhimiimotionndeschimi Figurg 2. Due to space constraints,_ we_only show the results
2http;//wwwl.c:s.dar.tmouth.e o ~Iorer.120/Papers/tkr_ for the harder cases where occlusion is allowed, and leave
pamil3_data.zip | the other results in the supplement. As one can observe,



http://vasc.ri.cmu.edu/idb/html/motion/index.html
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Figure 2: Results on House and Hotel sequences usinggihsise model Bdescribed in Secti@.l.

ADGM produced the highest objective values in almost all 1q ——? 1
the tests. L . L2
. . . 1
Third-order model. This experiment has the same set- £°° 2
. . . @ 0.7 H=Pom @08 PGM
tings as the previous one, but uses a third-order model pro-5 ™ T4
T i 08 [ aeAM S vy
posed in[[11]. We set the unary and pairwise term3and 05 | e 0.4 Haasamt
compute the potentials when matching two triples of points S-aDoM? 0.2 |[8rADCH2
(i1;i1:ke) and(iz;j2; kz) as P haselne P Chasine
1
2 . 0.8
Fijgk =exp K filjlkl fizizkzk2: , (38) > >
@ 0.6 §
> PGM 3
wherefj is a feature vector composed of the angles of SO e
. . . . . =#=BCAGM =#=BCAGM
the triangle(i;j;k ), and is the mean of all squared dis- *2 |l@acom %2 /@ noom
tances. We report the results for House sequence in Fig-  ° L, . o & 10 20 4 & & 10
ure[3 and provide the other results in the supplement. One Baseline Baseline
can observe that ADGM1 and ADGM2 achieved quite sim- (a) 20 pts vs 30 pts (b) 10 pts vs 30 pts
ilar performance, both were competitive with BCAGM [26]
while outperformed all the other methods. Figure 3: Results on House sequence usingtthid-order

model described in Secti.l.
4.2. Cars and Motorbikes

The Cars and Motorbikes dataset was introduced in [24] pute the pairwise terms as
and has been used in previous work for evaluating graph

matching algorithms. It consists 8D pairs of car images |:ij2 = +(1 )1 cos : (39)
and 20 pairs of motorbike images with different shapes, 2

view-points and scales. Each pair contains both inliers (cho-where 2 Lo; 1]is a weight 'constant angd are computed
sen manually) and outliers (chosen randomly). fromdy = Kiqj1k andd, = Kijok as

Pairwise model C.In this experiment, we keep all inliers in | |

both images and randomly add outliers to the second image. _jdi dyj g1 Tigj2,

The number of outliers varies frofito 40 by intervals of5. T odi+dy’ cos = d dp (40)

We tried thepairwise model Bdescribed in Sectidn 4.1 but N _

obtained unsatisfactory matching results (showed in supple-ntuitively, Fi , computes the geometric agreement be-
mentary material). Inspired by the model in[28], we pro- tweeniij; andi,j,, in terms of both length and direc-
pose below a new model that is very simple yet very suited tion. The above potentials measure tissimilarity be-

for real-world images. We set the unary term@® &md com- tween the edges, as thus the corresponding graph matching
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Figure 4: Results on Cars and Motorbikes using fihée-

(a) Cars (b) Motorbikes

Figure 6: Results on Cars and Motorbikes usingtttied-

wise model Cdescribed in Sectiqn 4.2. order model described in Sectidn 4.2.

(a) 25 pts vs 36 pts (9 outliers) (b) PGM 4/25 (337.8194)

(c) RRWHM 3/25 (1409.832) (d) BCAGM 15/25 (1713.487)

(e) ADGM1 25/25(2161.535% (f) ADGM2 25/25(2161.535%

Figure 7: Car matching using thhird-order model de-
scribed in Sectiop 4]2. (Best viewed in color.)

() SMAC 11/46 (1028.7961) (f) ADGM 46/46(1043.068

Figure 5: Motorbike matching using tipairwise model C

described in Sectidgn 4.2. (Best viewed in color.)
ues than BCAGM in7=9 cases. On Motorbikes, ADGM1

beat BCAGM in5=9 cases and had equivalent performance

problem is aninimizationone. Pairwise potentials based on in 179 cases; ADGM2 beat BCAGM if=9 cases.

both length and angle were previously proposed in([24, 28] ]
and [32]. However, ours are the simplest to compute. In this - Conclusion and future work

experiment, = 055' . _ We have presented ADGM, a novel class of algorithms
We match every image pair and report the average in terms solving graph matching. Two examples of ADGM were
.Of opjective value and matching accuracy for each mGtho‘jimplemented and evaluated. The results demonstrate that
in Figure[4. One can observe that ADGM completely out- they outperform existing pairwise methods and competitive
performed all the other methods. with the state of the art higher-order methods. In future
Third-order model. This experiment has the same settings \ork, we plan to adopt a more principled adaptive scheme
as the previous one, except that it uses a third-order modekg the penalty parameter, and to study the performance of
(the same as in House and Hotel experiment) and the num-yitferent variants of ADGM. A software implementation of
ber of outliers varies frorfito 16 (by intervals o). Results  gyr algorithms are available for download on our website.
are reported in Figuifg 6 and a matching example is given in _
Figure[T. ADGM did quite well on this dataset. On Cars, Acknowledgements. We thank the anonymous reviewers
both ADGM1 and ADGM2 achieved better objective val- for their insightful comments and suggestions.
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