N

N

A Graphical Framework for High Performance
Computing Using An MDE Approach

Julien Taillard, Frédéric Guyomarc ’, Jean-Luc Dekeyser

» To cite this version:

Julien Taillard, Frédéric Guyomarc ’, Jean-Luc Dekeyser. A Graphical Framework for High Per-
formance Computing Using An MDE Approach. 16th Euromicro International Conference on
Parallel, Distributed and network-based Processing, Feb 2008, Toulouse, France. pp.165 - 173,
10.1109/PDP.2008.74 . hal-01580911

HAL Id: hal-01580911
https://inria.hal.science/hal-01580911

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01580911
https://hal.archives-ouvertes.fr

A Graphical Framework For High Performance Computing Using An MDE

Approach
Julien Taillard Frédéric Guyomarc’h Jean-Luc Dekeyser
LIFL and INRIA-Futurs IRISA LIFL and INRIA-Futurs
University of Lille University of Rennes University of Lille
France France France

Julien. Taillard @lifl.fr

Abstract

In this paper, we present a framework for Shared Mem-
ory Architectures that make design of parallel applications
easier. We use the Model-Driven Engineering (MDE) ap-
proach and integrate new metamodels in Gaspard for each
step of the design flow. The targeted model is an OpenMP
metamodel, from which we immediately derive a source code
in OpenMP Fortran or OpenMP C. This approach based
on models allows a better reuse and also gives a better and
more hierarchic view of the application so that it can better
fit the architecture.

1 Introduction

Thanks to advancements in technology, the number of
cores in processors have increased in recent years. This
has caused shared memory computers to become common
and has made parallel programming more attractive for non
specialists.

Parallel language evolves continuously but it does not
facilitate programming, code reuse and maintainability. The
use of visual modeling, like the Unified Modeling Lan-
guage [1], which is a standard, can help users to design
parallel applications. High abstraction level modeling al-
lows to have a model independent of any language: from
this high abstraction level, different languages can be then
targeted. Moreover visual modeling will imply a raise in
the abstraction level at which the application is designed. It
could help to increase productivity while implementation
details will be managed by the code generation not by the
designers. Another point to help to raise productivity is
that component-based approach promotes component reuse.
Once a component has been designed for a service or a com-
putation, it could be reused in any other application with the
same need.

Frederic. Guyomarch@irisa.fr

Jean-Luc.Dekeyser@lifl.fr

An important point to obtain a high performance applica-
tion is the distribution of the tasks on the execution platform.
Since distribution could have a great influence on the appli-
cation performance, a mechanism to express the distribution
has been introduced in the parallel language. For example,
a DISTRIBUTE directive is used in High Performance For-
tran [2] to distribute the data over processors. This directive
allocates each array element to an owner. Then the owner-
compute rule is used: the owner has to execute each program
block which modifies the owned element. Such a mechanism
is needed in a high level model to express tasks distribution.

In this paper, we present a Model-Driven Engineering
approach for High Performance Computing in a framework
called Gaspard. This approach allows to model application
and hardware architecture. Then, with the help of a dis-
tribution mechanism, the placement of the tasks onto the
processor is done. Afterwards code generation is made:
from a high level model, and through model transformation,
different languages are targeted. We will focus on OpenMP
Fortran.

This paper is organized as follow: section 2 presents
how the Model Driven Engineering could be use in the High
Performance Computing field, then Gaspard is presented and
how to make parallel code generation is explained. Section 4
presents a comparison between generated code and hand-
written code. Finally, section 5 concludes and gives some
further works.

2 Usage of MDE for High Performance Com-
puting

Although the model approach and High Performance
Computing are two different fields, the latter can take advan-
tage of modeling to make design, reuse and parallel program-
ming easier. In this section, the Model Driven Engineering
(MDE) and how it could be used in the High Performance
Computing (HPC) field is presented.

2.1 Model Driven Engineering (MDE) overview

The Model Driven Engineering [3] (MDE) approach re-
quires the use of models in each level of conception. Starting
from a high abstraction level, models are refined to a targeted
model. Typically, the high level models contain domain spe-
cific concepts while lowest levels contain technical aspects.
The MDE is based on two concepts: model and transforma-
tion.

A model is an abstract view of the modeled system ac-
cording to a certain point of view. Models information are
structured according to the metamodel to which they con-
form. A metamodel defines the available concepts. For
instance, in a metamodel of object-oriented language such
as Java, concepts like Class, Interface and Method should
be available.

The other important concept is the transformation be-
tween models. In an MDE process, all the inputs and the
outputs are models. Transformation consists of describing
how concepts in the input(s) metamodel(s) are converted into
the concepts in the output(s) metamodel(s). It is described
in transformation rules. Then a tool called a transforma-
tion engine executes these rules in order to create the output
model(s).

An Object Management Group (OMG) standard called
Query/View/Transformation [4] (QVT) defines a declarative
and an imperative language to write the transformations.
Unfortunately transformation tools are not yet mature and
no complete implementation of QVT is available. Some
others transformations languages are available like ATL [5]
or Kermeta [6].

One of the incarnations of MDE is the Model Driven Ar-
chitecture [7] (MDA) which is based on the OMG’s standard.
The separation between high level models and technical as-
pects makes the change of technology and the reuse of high
level models quite simple.

2.2 Using the MDE for HPC

The use of the MDE approach for HPC should allow to
raise the abstraction level and to permit a higher productivity
while it should ease programming and encourage model
reuse.

One of the main goals in today’s language design is to
raise productivity. New languages such as Chapel [8] or
Fortress [9] are developed in this intention. These languages
want to permit more abstraction to be used in the program
specification and to improve program performance. This
leads to the specification of all the application’s potential
concurrency. Thus compilers have to deal with this potential
parallelism. Considering that a specification is a kind of
model even if it is not graphical but textual one. An MDE
approach could also reach this goal.

Another interesting point to raise productivity is to reuse
the same specification of an application to target different
computers. An application model made without any refer-
ence to the computing resource onto it will run could be
reuse for any computers.

2.2.1 Visual programming

Visual programming should help to reach a high abstraction
level while implementation details will not be modeled. The
use of the de facto standard Unified Modeling Language
(UML) will simplify programming. Manipulation of visual
elements is easier than coding. Communication between
developers should be simplified since they can access the
global model and design each part independently of each
others.

The use of a component based approach could also allow
a better use of models.

2.2.2 Component based approach

Although Component Based Software Engineering (CBSE)
is a widely studied domain, there is not a singular definition
of a component. Each component model like CCM, EJB, or
UML 2.0 has its own definition. A component can generally
be defined [10] by a name, an interface and code. The code
implements the services provided, or operations performed.
The interface specifies what the component needs as inputs
and its produced outputs. In the HPC field, inputs are data
used by the computation and outputs are data produced by
the component computation.

Modeling of a system in component based approach is
comparable to making a component assembly.

The advantages of a component based approach is the
reuse of components in different models as much as the ease
to replace a component by another.

2.2.3 Related work

A use of model approach for the HPC has already been stud-
ied. Pllana and Fahringer [11] have made a model approach
for High Performance Computing based on UML activity
diagram. It allows to model classical constructs of parallel
language like SEND, RECEIVE, PARALLEL. This approach is
close to programming language because it includes technical
aspects.

Our goal is to model applications without any technical
restriction or any language reference.

3 Gaspard: Implementation of an MDE ap-
proach for HPC

Gaspard (Graphical Array Specification for Parallel and
Distributed Computing) is an Integrated Development En-

Application \ / Architecture
Association

P
Deployed

Synchronous

Hardware
Equational Polyhedron

}

Loop.

HDL
OpenMP o

' }

OpenMP SystemC

SEIEIED Fortran TLM PA

VHDL

Key

Metamodel dependency

Code —> transformation

Figure 1. The Gaspard Y chart

vironment (IDE) for Multiprocessor System On Chip co-
modeling and High Performance Computing. It is based
on the Model Driven Engineering, more precisely on the
Y-Chart (Figure 1).

Gaspard uses a component based approach using UML
2.0 [1] components. It proposes a UML profile, allowing
designers to model both applications and their architecture.

The methodology is the following: application models
and hardware architecture models are designed indepen-
dently. Then the mapping of application on hardware is
done by the user. It implies the placement of tasks on pro-
cessing units and the data on memory. Finally, through some
abstraction levels, specific code is generated for the targeted
system. This separation between domain specific concept
and the technical aspect simplifies model reuse. The ap-
pearance of a new language will introduce a new targeted
language but the high level model will be reused.

Gaspard has different targets. The Synchronous target
allows to make model verification in synchronous language
such as Lustre. The SystemC target is able to make System
On Chip co-simulation. The VHDL one permits to gener-
ate an hardware accelerator for a part of the application.
This hardware accelerator can be implemented on Field-
Programmable Gate Array (FPGA).

This papers deals with Shared Memory architectures.
Therefore we produce OpenMP code [12], a standard for
this targeted architecture. We use the Single Program Mul-
tiple Data (SPMD) approach: each processor has the same
code, parametrized with the processor number. As shared
memory architecture are targeted, data placement are not
taken into account. Only task distributions over processors
are managed.

The expression of parallelism in Gaspard is based on
Array-OL, detailed in the following section. Then, the high
level model is explained. Finally, we present how to generate

automatic code from such models.
3.1 Array-OL

Array Oriented Language [13] (Array-OL) is a specifi-
cation language allowing to express all the parallelism of a
multidimensional application, including the data parallelism,
in order to allow an efficient distributed scheduling of this
application on a parallel architecture. It is a data dependence
expression language which allows to express the true data
dependencies. Thus any schedule respecting these dependen-
cies will be a valid schedule.

Array-OL allows the expression of task parallelism and
data parallelism.

Task-parallelism The task-parallelism is expressed by a
directed acyclic graph (DAG) where each node is a task
and each edge represents a multidimensional array. These
multidimensional arrays may have one infinite dimension
that is generally used to represent time. At the execution
of a task, the input arrays are consumed while the output
arrays are produced. Using this directed acyclic graph, the
execution of the different tasks can be scheduled. In Figure 2,
tasks A and B could be done in parallel before the execution
of C.

e i
] []
g C EE
(720, 1080) (720, 480)

(20) B (10

Figure 2. Task-parallelism

Data-parallelism A data-parallel repetition of a task is
specified in a repetition task with a repetition space. All
the repetitions of the repeated task are independent. Thus
repetitions can be executed in parallel.

A repeated task works on patterns which are sub-arrays
of the inputs and outputs of the repetition. A pattern is called
a tile when it is considered as a set of point in an array. The
considered tiles are sets of regularly spaced point of an array
and the tiles themselves are regularly spaced in the array. The
description of the regular spacing of the points of a tile is
called fitting and the description of the regular spacing of the
tiles in the array is called paving. The complete description
of the tiling of an array by tiles, called a filer, necessitates the
description of the shape of the pattern, the fitting, the paving,

an origin and a repetition space. The repetition space gives
the number of tiles. Figure 3 shows a tile which correspond
to a (2,3) pattern positioned on an array of (6,4).

20 2
N F = (0 1) Spattern = (3

— 0 3 — 6
0= 0 blll'l'.'l} - 4

W

Figure 3. A sparse tile aligned on the axes of
the array.

From an origin element @) in the array, a pattern has
to be extracted. The fitting matrix is used to compute the
regularly spaced point of the tile in the array. Equation to

H
compute each tile element (75) is given by (1), where D is
the pattern shape, F the fitting matrix and X; is any vector
inside the pattern shape.

-
0 <y

< d<3,_x)=(r_q)+F><Z}) mod 7 (1)

VX, 0 <

For each repetition in the repetition space (_Q)), the origin
element @) is built relatively to one origin vector (0). Its
coordinates are given by the following equation (2), which
is a combination between paving matrix (P), the repetition
index (Zj) and the origin vector ().

Vi, 0<%, <0. 7 =@ +Px%) modw (2)

Figure 4 represents the complete description of a data-
parallel task. A task called Hfilter is repeated (240,1080,00).
It consumes patterns with a shape of 13 and produces pat-
terns with a shape of 3, which means it reads a one dimen-
sional array of size 13 and writes one of size 3 for each
repetition.

Detailed information about Array-OL can be found
in [14].

3.2 Gaspard profile

The Gaspard model is at the highest level. Models are
made at this level. In order to benefit from a visual modeling
interface and some well known tools, the Gaspard models
are designed in UML with the help of a profile. A profile
allows to add semantics to the UML model. The Gaspard
profile [15, 16] introduces stereotypes which allow applica-
tion, hardware and allocation modeling. It is a subset of
the OMG standard MARTE [1] (Modeling and Analysis of

Horizontal filter
(240, 1080, c0)

13| Hfiter |3 720, 1080, 00

(1920, 1080, 00)[

1 1
F=|0 F=10

0 0

0 0
o=|0 0=|0

0 0

8§ 0 O 30 0
P=|10 1 O P=|10 1 O

0 0 1 0 0 1

Figure 4. Data-parallelism

Real-Time and Embedded systems) profile. Gaspard profile
is based on the Array-OL specification. In this section, we
will briefly introduce few concepts of Gaspard, mandatory
for the rest of the paper.

3.2.1 Application - Hardware architecture modeling

Gaspard models are composed of basic components: the
ElementaryComponents (also called elementary tasks). An
ElementaryComponent has no structure, it is a black box
deployed on a function or on an Intellectual Property (IP).
As Gaspard deals with all the parallelism of the application,
it implies that the elementary tasks are sequential. Then
components can be composed by component instances to
make a compound component. An instance in a compound
component is repeated if there are multiple identical and in-
dependent tasks. A repeated instance has a repetition space
and is connected to other components via tilers. In Figure 5,
which presents a row-column matrix multiplication, an in-
stance dP of the component dotProduct is repeated (4,4) to
produce each scalar of the output matrix. These basic con-
cepts are used for both application modeling and hardware
architecture modeling. It allows to make compact modeling
of regular applications and hardware architecture.

3.2.2 Allocation

Once application and hardware architecture have been mod-
eled, allocation of application on hardware has to be speci-
fied. Allocation has to be defined by the users, therefore it
must be modeled too. We have to specify how applications
will be executed on the execution platform. A TaskAllocation
stipulates the allocation of an application on to a specific in-

<<ApplicationComponent>> =]
matrixMultiplication

A double [(4,4)]

<<ElementaryComponent>> 2]
<<ApplicationComponent>>
dP : dotProduct [(4,4)]
column : double [(4)]

C :double [(4,4)]

dot : double [(1)] [

row : double [(4)]

B double [(4,4)]

<<TaskAllocation>>
<<Distribution>>

oftTiler : Tiler
origin = "ZERO"
paving = "((0,1)"
fitting = "((1,0))"

hardTiler : Tiler
origin = "ZERO"

paving = "((0))"
fitting = "((1))"

<<HardwareComponent>> 2]
HardwareArchitecture

<<Communication > <<RAM>gT]
b: bus r:ram

Figure 5. row-column multiplication mapped
on a multiprocessor

<<HardwareComponent>£3 |
<<Processor>>

processors : myProc [(4)]

stance of a processor. Distribution allows to map a repeated
software task onto repeated computing elements. It is based
on the Array-OL concepts. A Distribution is composed of
two tilers, a repetition space (rS) and a pattern shape (pS). A
pattern (with a pS size) is filled with a tiler which expresses
how to fit repetition tasks into pattern. Then pattern elements
are disseminated with a tiler which indicates on which rep-
etition of processor each software repetition is distributed.
Such process is repeated S times. It is a powerful way
to express regular allocation. Detailed explanation of the
distribution mechanism could be found in [17].

High Performance Fortran [2] distribution could be done
with such a mechanism. Classical distribution such as Block,
cyclic, k-cylic can be modeled. Figure 5 shows the distribu-
tion of the dotProduct instance on a four processor model.
Each processor will execute a column of computation. This
distribution is equivalent to the following HPF distribution
of the output array C:

IHPF$ PROCESSOR P(4)
'HPF$ DISTRIBUTE C(*,BLOCK)

3.3 From a Gaspard2 model to OpenMP code

We focused on the generation of parallel code for High
Performance Computing. From a Gaspard model, the goal is
to make a valid and efficient code generation.

For the generation, we considered that a thread is associ-
ated to a single processor. As optimized sequential tasks are
used and knowing that those tasks have a good management
of the processor pipeline, threads switching will penalize
performance.

In agreement with the MDE approach, a few abstraction
levels have been defined. Through these abstraction levels,
which are detailed below, an architecture is targeted and
specific code is generated. The use of some abstraction
levels allow to decompose the transformation into small
transformations which are easier to debug than a big one.
Thus, from a certain abstraction level, different languages
could be targeted. For instance, from the loop abstraction
level, OpenMP and SystemC simulation are generated.

Transformation from a Gaspard model to OpenMP code
is now presented step by step in the following sections. For
each abstraction level, a metamodel has been defined.

3.3.1 Gaspard model to polyhedron model

During the transformation, models have to become closer to
the targeted language. The first step is to produce a model
representing the application on to the hardware architecture.
At the high level, a Gaspard model is composed by different
models:

- Application model
- Hardware architecture model
- Allocation model

These models are unified to produce a unique model.
Hardware architecture model is the same as the one in the
Gaspard high level. Allocation information is given to the
software tasks. As models are still repetitive, it has to be
kept in a compact way. The expression of the mapping of
repeated tasks on repeated processors are expressed in the
polyhedral model. The polyhedral model is used to solve
the distribution on multiple processors. Polyhedrons are
well known and several tools already use it [18]. Allocation
information is transformed into polyhedron where processor
number is a parameter of the polyhedron. Software tasks
are parametrized by their corresponding polyhedron which
express the mapping of the repeated tasks over the repeated
computing resources at which they are linked to.

Polyhedron is build automatically from distribution in-
formation. It is composed of equality which come from
the fitting and paving equations (1,2), and inequations to
landmark polyhedrons (software repetition space, processors
repetition space).

3.3.2 Polyhedron model to Loop model

Once we have a model with distribution in the polyhedral
model, the next step is to generate a loop expression from
each polyhedron. This is a usual problem studied since
decades. CLooG (Chunky Loop Generator), written by
Cédric Bastoul [18, 19], focused on the problem of scan-
ning polyhedrons. CLooG is used to transform polyhedrons
into loops.

Figure 6 shows a polyhedron generated from a block
distribution of the dotProduct instance on four processors.
Each processor (processor number is supposed to be p0) will
execute one computation column. This polyhedron is given
to CLooG which generates a loop to scan the polyhedron.

p0>0, 3-p0=0

-p0+0%xg0+1%xd0+0=0
-x0+0xg0+1%xd0+0=0
—x1+1%g0+0%xd0+0=0

qg0>0, 3-40=0
d0>0, 3-d0>0
x0 >0, 3—-x0>0
x1 >0, 3-x1>0
DO x1=0,3
S1(d0 = p0,q0 = x1,x0 = p0)
END DO

Figure 6. Polyhedron generated and Fortran
code generated by CLooG

3.3.3 Loop model to OpenMP model

A metamodel, which allows to model classical constructs of
a procedural language, has been developed. It is inspired by
the ANSI C Yacc grammar [20]. OpenMP statements have
been added to this metamodel. The goal of this model is to
use the same model for Fortran and C. From an OpenMP
model, we are able to generate OpenMP Fortran or OpenMP
C.

Generated code manages parallelism and control loop to
distribute tasks repetition over processors. When an elemen-
tary task is used, a call to the adapted subroutine/function is
done.

The transformation between the loop model and the
OpenMP model requires different operations:

- scheduling of the task
- generation of synchronization barriers
- code generation for tiler computations

Scheduling the task is limited to an analysis of the data
dependencies of the DAG. A task can be scheduled when
all the data required by the task have been produced. A
synchronization barrier is needed when a task needs data
produced by another task. The algorithm is as follow: while
there is a task to schedule, schedule tasks that could be
done now, then a synchronization is made (waiting for data
production of each task) then others tasks can be schedule.

Code generation for the tilers consists of generating a
code to fit tiles. This code is generated only when they
are no others solutions (for the complex tiles). In most of
the cases, when patterns are regular and axes parallel, this
generation is not used and is replaced by the adapted tiles in
the original array.

3.3.4 Code generation

The last transformation is a model to code transformation.
As the OpenMP model is close to a programming language,
the code generation is just a ”pretty printer”.

4 Experimentations

In this paper, experimentations are made on a 3Ghz bi-
Xeon dual core processor, running Linux with a total of 2
Gb of shared memory. We run the program over four threads
unless precised otherwise.

In order to illustrate the use of this approach, we have
modeled a classical operation: the matrix multiplication. In
this study, we have use the GotoBLAS optimized library [21].
Five algorithms have been compared:

- Row column multiplication
- matrix multiplication by block

- matrix multiplication by block using sequential Goto-
BLAS

Parallel GotoBLAS
- Sequential GotoBLAS

Computations are made with dense square matrices of
size {2000,2000} and with rectangular matrices of size
{3000,2000}x{4000,3000} . The first step of the study is
to model the program.

4.1 Matrix multiplication modeling

Our benchmark programs consist of two matrix initial-
izations and the call of the routine for the matrix-matrix
multiplication. Row-column multiplication is build with the
same expression as shown in Figure 5, where the dotProduct
is deployed on the DDOT function. This very simple algo-
rithm has a major drawback: it does not respect the memory
hierarchy, and thus we expect a lot of cache misses using
this model. That is why we also propose a basic model for
the matrix multiplication using different levels of blocks (see
Figure 7).

The MatrixMultiplication component takes as input two
matrices ({2000,2000} for the square case) and produces
an output matrix of the right size. It is composed of one

<<ApplicationComponent>>
MatrixMultiplication

A : REAL(8) [(2000,2000)]

<<ApplicationComponent>>
mbdp : MultiBlockDotProduct [(4,4)]

inA : REAL(8) [(500,2000)]

((2,0),(0,1)"

paving = "((500,0),(0,0B"

<<ApplicationComponent>>
rsm: it i ipli

m1 : REAL(8) [(500,2000)]
<<Tiler>>

frigin = "(0,0)!

fitting = "((1,0),(0,1))"

aving = "((0,500)}"

<<ApplicationComponent> >
sm : SequentialMultiplication [(4)1
m1: REAL(8) [(500,500)]
res : REAL(8) [(500,500)]
m2 : REAL(8) [(500,500)]

<<Tiler>>
frigin = "(0,0);"
fitting = "((1,0),(0,1))"
paving = "((500,0)}"
m2 : REAL(8) [(2000,500)]

<<Tiler>>

frigin = "(0,0)"

fitting = "((1,0),(0,1))"
paving = "((0,0),(0,500h"

out : REAL(8) [(500,500,4).

<<Tiler>>
“forigin = "(0,0,0)"
fitting = "((1,0,0),(0,1,0))"
paving = "((0,0,1)}"

<<ApplicationComponent>> E
< <ElementaryComponent> >
add: SequentialAddition

E : REAL(8) [(2000,2000)]
‘oul REAL(8) [(500.500){,‘ r

m1:REAL(8) [(500,500,4)] } L1 5

] res : REAL(8) [(500,500)]

<<Tiler>>
frigin = *(0,0)"
fitting = "((1,0),(0,1))"
paving = "((500,0),(0,500})

B:REAL(8) [(2000,2000)]

inB : REAL(8) [(2000,500)]

Figure 7. Model of matrix multiplication by block

instance of MultiBlockDotProduct which is repeated {4,4}
times. This repeated task is distributed over the processors:
each processor deals with a {2,2} computation block.

Then MultiBlockDotProduct runs sequentially. It should
be handle by an Elementary Task (ET), provided by an op-
timized library. Here we use the DGEMM routine from
GotoBLAS.

We also propose a model of this algorithm using different
levels of block on each thread to decrease the cache-misses.
Our model here has two levels. We describe here the first
level, composed by two component instances: rsm instance
of RepetitionSequentialMultiplication and add instance of
Sequential Addition. The RepetitionSequentialMultiplication
is also composed of a repetitive instance. SequentialAddi-
tion'is an ElementaryComponent which makes reduction of
{500,500,4} arrays into {500,500} arrays.

The Figure 7 shows only the first layer of the block hi-
erarchy. The real model we use goes down to the scalar
multiplication with 2 levels but it can not be easily shown in
a unique readable figure.

4.2 Results

Results shown in Figure 8 and in Figure 9 are the average
of 100 consecutive executions.

The four first lines show a parallel multiplication (on
four threads) whereas the last line is the sequential time on
one processor for the optimized hand-written library. The
execution time decreases for the more complex algorithms,
which means algorithm 2 and 3 take a better advantage of the

'We use here an elementary task because reduction concepts are not yet
available in the Gaspard framework.

Algorithm Best execution time | Average
Row-column algorithm 0:21.11 0:21.60
Block multiplication 0:12.59 0:13.17
Block multiplication with
GotoBLAS task 0:01.25 0:01.26
Parallel GotoBLAS 0:01.03 0:01.05
Sequential GotoBLAS 0:03.34 0:03.39

Figure 8. Square matrices - Execution times
on four threads - Average is made on 100 ex-
ecutions

Algorithm Best execution time | Average
Row-column algorithm 1:53.79 1:57.87
Block multiplication 0:32.46 0:33.52
Block multiplication with
GotoBLAS task 0:03.97 0:04.04
Parallel GotoBLAS 0:02.91 0:02.96
Sequential GotoBLAS 0:09.89 0:10.03

Figure 9. Rectangular matrices - Execution
times on four threads - Average is made on
100 executions

hardware. The best execution time while using Gaspard is
when we use sequential optimized elementary task when the
task belongs to only one process. That is how we recommend
to use Gaspard, as a framework dealing with the parallelism,
and rely on optimized libraries for the sequential parts. Such
an approach is suitable for coarse grain parallelization. Tasks
are distributed over threads and use optimized components.

5 Conclusion and further work

We have presented a model driven approach for meta-
computing, it should simplify the writing, maintenance and
reuse of applications. And it can be used by non specialists,
without knowing parallel programming, to generate parallel
programs easily. Gaspard generates OpenMP Fortran code
but generating OpenMP C code is immediate if the feature
is needed because of the metamodels. The last model is
actually extremely close to the generated code. The design
framework is a full graphic environment based on Eclipse
and MagicDraw, inside which we can create the application
model, architecture model and the association between both.
The generated code is good enough if the algorithm is well
adapted to the target architecture, but can not compete with
the state-of-art hand-written libraries. Therefore Gaspard
models should use these optimized sequential libraries as
building blocks, and deal only with the parallel part of the ap-
plication. This could help the parallelization of applications
using intensive computations, like in numerical simulations
or more generally in scientific computations.

The next step of this work will be to extend the range
of architectures addressed and we plan to manage dis-
tributed memory architectures using Message Passing In-
terface (MPI). This is in fact a platform widely used in the
scientific computing field, and our generated codes could
then be executed on many new powerful calculators, espe-
cially on clusters or even on grids.

An other important improvement of our framework is an
extension of the application metamodel to unlock a few limi-
tations of ArrayOL. First one concerns the loops. In order to
model iterative algorithms, we need to express convergence
loops, which means we have no idea about the iteration space
before the execution.

The second one is to add some dynamicity in the tilers:
for the moment, shapes are given at the design phase and
their size is fixed. For the needs of linear algebra algorithms,
we plan to add parametrized tilers which allow to adapt the
tiler during the iterations. This typically occurs when we
program an algorithm like the QR factorization using House-
holder reflections where the dimension of the reflection space
decreases when the algorithm progresses.

All the approaches will be validated on a 3D electromag-
netic simulation code which has been developed in L2EP.
This code is highly hierarchic and implies all the classic

steps of software for modeling and simulation of physical
phenomena: discretization of the structure, solving non lin-
ear equations with a Newton-like algorithm, solving linear
equations with preconditioned Krylov or multigrid solvers.
Then our framework becomes also a tool to study algorithms
comportment. In fact, because of its high modular structure,
we can easily change an algorithm by another: this is just
changing the algorithm instantiation. Finally we can imagine
to integrate these algorithms choices inside Gaspard itself:
the choices would be guide by the architecture model.

References

[1] Object Management Group, Inc., ed.: UML 2 Super-
structure (Available Specification). http://www.omg.
org/cgi-bin/doc?ptc/2004-10-02 (2004)

[2] High Performance Fortran Forum: High Performance
Fortran language specification, version 2.0. Rice Uni-
versity, Houston, TX (1997)

[3] Planet MDE: Model Driven Engineering (2007) http:
//planetmde.org.

[4] Object Management Group, Inc.: MOF Query / Views /
Transformations. http://www.omg.org/docs/ptc/
05-11-01.pdf (2005) OMG paper.

[5] Jouault, F., Kurtev, I.: Transforming Models with
ATL. In: Satellite Events at the MoDELS 2005
Conference: MoDELS 2005 International Workshops
OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME,
MODAUI, NfC, MDD, WUsCAM, Montego Bay, Ja-
maica (2005)

[6] Muller, P.A., Fleurey, F., Vojtisek, D., Drey, Z., Pol-
let, D., Fondement, F., Studer, P., Jézéquel, J.M.: On
executable meta-languages applied to model transfor-
mations. In: Model Transformations In Practice Work-
shop, Montego Bay, Jamaica (2005)

[7] Board, O.A.: Model driven architecture (MDA). Tech-
nical Report ormsc/2001-07-01, OMG (2001)

[8] Callahan, D., Chamberlain, B.L., Zima, H.P.. The
Cascade High Productivity Language. In: 9th Interna-
tional Workshop on High-Level Parallel Programming
Models and Supportive Environments, IEEE Computer
Society (2004) 52-60

[9] Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessn,
J.W., Ryu, S., Jr., G.L.S., Tobin-Hochstadt, S.: The
Fortress Language Specification Version 1.0 Beta.
Technical report, Sun Microsystems, Inc. (2007)

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

Lau, K.K., Wang, Z.: A Taxonomy of Software Com-
ponent Models. In: 31st EUROMICRO Conference
on Software Engineering and Advanced Applications
(EUROMICRO-SEAA’05), IEEE (2005)

Pllana, S., Fahringer, T.: On Customizing the UML
for Modeling Performance-Oriented Applications. In:
UML. (2002) 259274

OpenMP Architecture Review Board: OpenMP
application program interface. Technical re-
port (2005) http://www.openmp.org/drupal/
mp-documents/spec25.pdf.

Soula, J., Marquet, P., Dekeyser, J.L., Demeure, A.:
Compilation principle of a specification language dedi-
cated to signal processing. In: Sixth International Con-
ference on Parallel Computing Technologies, PaCT
2001, Novosibirsk, Russia, Lecture Notes in Computer
Science vol. 2127 (2001) 358-370

Boulet, P.: Array-OL revisited, multidimensional inten-
sive signal processing specification. Research Report
RR-6113, INRIA (2007)

Cuccuru, A., Dekeyser, J.L., Marquet, P., Boulet, P.:
Towards UML 2 extensions for compact modeling of
regular complex topologies. In: MoDELS/UML 2005,
ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems, Montego
Bay, Jamaica (2005)

Ben Atitallah, R., Boulet, P, Cuccuru, A., Dekeyser,
J.L., Honoré, A., Labbani, O., Le Beux, S., Marquet,
P, Piel, E., Taillard, J., Yu, H.: Gaspard2 uml profile
documentation. Technical Report 0342, INRIA (2007)

Boulet, P., Marquet, P, Piel, E., Taillard, J.: Repetitive
Allocation Modeling with MARTE. In: Forum on spec-
ification and design languages (FDL’07), Barcelona,
Spain (2007) Invited paper.

Bastoul, C.: Code generation in the polyhedral model is
easier than you think. In: PACT’ 13 IEEE International
Conference on Parallel Architecture and Compilation
Techniques, Juan-les-Pins (2004) 7-16

document, W.W.W.: (Cloog home page) URL: http:
//www.cloog.org.

document, W.W.W.: (Ansi ¢ yacc gram-
mar) URL: http://www.lysator.liu.se/c/
ANSI-C-grammar-y.html.

Goto, K., van de Geijn, R.: On Reducing TLB Misses
in Matrix Multiplication. Technical Report TR-2002-
55, The University of Texas at Austin, Departement of
Computer Sciences (2002) FLAME Working Note #9.

