Practical Experiences with Purenet, a Self-Learning Malware Prevention System

Abstract : This paper introduces Purenet, which is a self-learning malware detection system aimed at avoiding zero-day attacks and other delays in patching application systems when attacks are identified. The concept and architecture of Purenet are described, specifically positioning anomaly detection as the system enabler. Deployment of the system in an operational environment is discussed, and associated recommendations and findings are presented based on this. Findings from the prototype include various considerations which should influence the design of such security software including latency considerations, multi protocol support, cloud anti-malware integration, resource requirement issues, reporting, base platform hardening and SIEM integration.
Type de document :
Communication dans un congrès
Jan Camenisch; Valentin Kisimov; Maria Dubovitskaya. 1st Open Research Problems in Network Security (iNetSec), Mar 2010, Sofia, Bulgaria. Springer, Lecture Notes in Computer Science, LNCS-6555, pp.56-69, 2011, Open Research Problems in Network Security. 〈10.1007/978-3-642-19228-9_6〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01581334
Contributeur : Hal Ifip <>
Soumis le : lundi 4 septembre 2017 - 15:07:24
Dernière modification le : lundi 4 septembre 2017 - 15:09:11

Fichier

978-3-642-19228-9_6_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Alapan Arnab, Tobias Martin, Andrew Hutchison. Practical Experiences with Purenet, a Self-Learning Malware Prevention System. Jan Camenisch; Valentin Kisimov; Maria Dubovitskaya. 1st Open Research Problems in Network Security (iNetSec), Mar 2010, Sofia, Bulgaria. Springer, Lecture Notes in Computer Science, LNCS-6555, pp.56-69, 2011, Open Research Problems in Network Security. 〈10.1007/978-3-642-19228-9_6〉. 〈hal-01581334〉

Partager

Métriques

Consultations de la notice

31

Téléchargements de fichiers

17