R. Drouilly, P. Rives, and B. Morisset, Semantic representation for navigation in large-scale environments, 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.1106-1111, 2015.
DOI : 10.1109/ICRA.2015.7139314

URL : https://hal.archives-ouvertes.fr/hal-01122196

S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, Learning Rich Features from RGB-D Images for Object Detection and Segmentation, European Conference on Computer Vision, pp.345-360, 2014.
DOI : 10.1007/978-3-319-10584-0_23

URL : http://arxiv.org/abs/1407.5736

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, Semantic image segmentation with deep convolutional nets and fully connected crfs, 2014.
DOI : 10.1109/tpami.2017.2699184

URL : http://arxiv.org/abs/1606.00915

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3431-3440, 2015.
DOI : 10.1109/CVPR.2015.7298965

URL : http://arxiv.org/pdf/1411.4038

H. Noh, S. Hong, and B. Han, Learning Deconvolution Network for Semantic Segmentation, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1520-1528, 2015.
DOI : 10.1109/ICCV.2015.178

URL : http://arxiv.org/abs/1505.04366

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, 2015.
DOI : 10.1109/tpami.2016.2644615

A. Kendall, V. Badrinarayanan, and R. Cipolla, Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding, 2015.

C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture, Proc. ACCV, 2016.
DOI : 10.1007/s11263-015-0816-y

L. Ladick-`-ladick-`-y, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr, What, where and how many? combining object detectors and crfs, European conference on computer vision, pp.424-437, 2010.

S. Zheng, S. Jayasumana, B. Romera-paredes, V. Vineet, Z. Su et al., Conditional Random Fields as Recurrent Neural Networks, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1529-1537, 2015.
DOI : 10.1109/ICCV.2015.179

URL : http://arxiv.org/pdf/1502.03240

F. Liu, G. Lin, and C. Shen, CRF learning with CNN features for image segmentation, Pattern Recognition, vol.48, issue.10, pp.2983-2992, 2015.
DOI : 10.1016/j.patcog.2015.04.019

URL : http://arxiv.org/abs/1503.08263

A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, Virtual worlds as proxy for multi-object tracking analysis, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.4340-4349, 2016.
DOI : 10.1109/cvpr.2016.470

URL : http://arxiv.org/pdf/1605.06457

C. Couprie, C. Farabet, L. Najman, and Y. Lecun, Indoor semantic segmentation using depth information, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00805105

A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard, Multimodal deep learning for robust RGB-D object recognition, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.681-687, 2015.
DOI : 10.1109/IROS.2015.7353446

URL : http://arxiv.org/abs/1507.06821

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture, 2015 IEEE International Conference on Computer Vision (ICCV), pp.2650-2658, 2015.
DOI : 10.1109/ICCV.2015.304

URL : http://arxiv.org/pdf/1411.4734

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler et al., The Cityscapes Dataset for Semantic Urban Scene Understanding, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3213-3223, 2016.
DOI : 10.1109/CVPR.2016.350

. Fig, Semantic segmentation produced by the different models The first 2 columns correspond to test images from Virtual KITTI, while and the last 2 columns correspond to images from our KITTI test. The first row shows the input RGB image, followed by depth, groundtruth labels. Rows 4 th to 7 th show the segmentation produced by SegNet2 (RGB-D) and SegNet (RGB) respectively. The 8 th row shows the border regions from the ground truth, which are used to evaluate border recall and our metric in eq, CEDCNN (RGB) The 9 th row shows the border precision of CEDCNN2 (RGB-D), p.2

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics: The KITTI dataset, The International Journal of Robotics Research, vol.14, issue.3, pp.1231-1237, 2013.
DOI : 10.1177/027836499501400301

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.650.8155

D. R. Martin, C. C. Fowlkes, and J. Malik, Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.5, pp.530-549, 2004.
DOI : 10.1109/TPAMI.2004.1273918

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.2575

G. Csurka, D. Larlus, F. Perronnin, and F. Meylan, What is a good evaluation measure for semantic segmentation?, Procedings of the British Machine Vision Conference 2013, p.2013, 2013.
DOI : 10.5244/C.27.32

P. Kohli, L. Ladicky, and P. H. Torr, Robust higher order potentials for enforcing label consistency, Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1007/s11263-008-0202-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.8646

J. Freixenet, X. Muñoz, D. Raba, J. Martí, X. Cufí et al., Yet another survey on image segmentation: Region and boundary information integration Computer VisionECCV A systematic analysis of performance measures for classification tasks, Information Processing & Management, vol.45, issue.4, pp.21-25, 2002.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.