Study of a combinatorial game in graphs through Linear Programming - Archive ouverte HAL Access content directly
Conference Papers Year :

Study of a combinatorial game in graphs through Linear Programming

(1) , (2) , (2) , (2)
1
2

Abstract

In the Spy Game played on a graph G, a single spy travels the vertices of G at speed s, while multiple slow guards strive to have, at all times, one of them within distance d of that spy. In order to determine the smallest number of guards necessary for this task, we analyze the game through a Linear Programming formulation and the fractional strategies it yields for the guards. We then show the equivalence of fractional and integral strategies in trees. This allows us to design a polynomial-time algorithm for computing an optimal strategy in this class of graphs. Using duality in Linear Programming, we also provide non-trivial bounds on the fractional guard-number of grids and torus. We believe that the approach using fractional relaxation and Linear Programming is promising to obtain new results in the field of combinatorial games.
Fichier principal
Vignette du fichier
ISAAC2017_revised.pdf (796.88 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01582091 , version 1 (05-09-2017)

Identifiers

Cite

Nathann Cohen, Fionn Mc Inerney, Nicolas Nisse, Stéphane Pérennes. Study of a combinatorial game in graphs through Linear Programming. 28th International Symposium on Algorithms and Computation (ISAAC 2017), 2017, Phuket, Thailand. ⟨10.4230/LIPIcs⟩. ⟨hal-01582091⟩
489 View
315 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More