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S c i e n t i f i c  C o m p u t i n g 
w i t h  G P U s

To reduce the design complexity of OpenCL programming, the approach proposed here 
generates application code automatically, based on model-driven engineering (MDE) and 
modeling and analysis of real-time and embedded (MARTE) systems. The aim is to provide 
application-development resources for nonspecialists in parallel programming, exploiting 
concepts such as reuse and platform independence.

An MDE Approach for  
Automatic Code Generation  
from UML/MARTE to OpenCL

A dvanced engineering and scientific 
communities have used parallel pro-
gramming to solve their large-scale 
complex problems for a long time. 

Despite their high-level expertise, developers in 
these communities often find it hard to imple-
ment their parallel applications effectively. Some 
inherent characteristics of parallel programming 
contribute to this difficulty, including race con-
ditions, memory access bottleneck, granularity 
decision, scheduling policy, and thread safety. To 
facilitate the programming of parallel applica-
tions, developers have specified several approaches. 
The most commonly used standards are Open 
Message Passing (OpenMP) for shared memory 
and Message Passing Interface (MPI) for distrib-
uted memory programming. These approaches 
let us express and explore the potential parallel-
ism of applications and architectures. OpenMP 
adds directives having the same syntax level as the 
target programming language (C, C++, Fortran), 

while MPI is implemented as a library to manage 
communication between nodes. From this view-
point, these approaches are actually tools to add 
parallelism resources to a sequential program-
ming model rather than a solution for parallel 
programming.

In December 2008, the consort ium man-
aged by the Khronos Group released the Open 
Computing Language (OpenCL) 1.0 specifica-
tion.1 OpenCL is the first open, royalty-free 
standard for general-purpose parallel pro-
gramming of heterogeneous systems. It pro-
vides a uniform programming environment 
for software developers to write efficient and 
portable code for high-performance comput-
ing servers, desktop computer systems, and 
handheld devices using a diverse mix of multi-
core CPUs, GPUs, cell-type architectures, and 
other parallel processors such as digital signal 
processors (DSPs).

Here, we present an approach based on model-
driven engineering (MDE)2 to specify, design, and 
generate OpenCL applications. This approach 
relies on the following aspects:

•	We propose three new metamodels that sat-
isfy essential concerns of a whole application—
scheduling policy, variable definitions, and the 
OpenCL programming model itself.
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•	We propose a transformation chain that in-
cludes as many model transformations as we 
need for generating an efficient code (in other 
words, we concatenate single, specific model 
transformations to add or change elements de-
signed in an input model to generate intermedi-
ate models toward the target code).

•	 Because abstract models don’t have all of the 
necessary information for improving perfor-
mance based on the target hardware, we include 
some optimization levels to achieve (whenever 
possible) automatically generated code that’s  
as efficient as manually written code.

To gain a theoretical base for some of the con-
cepts we’ll discuss, see the “Background Review” 
sidebar. Next, we’ll discuss our automatic code-
generation approach.

Code-Generation Approach
Our approach aims to generate effective code 
for OpenCL as a new branch of our Gaspard2 
development environment.3 During application 
design, Gaspard2 uses a Unified Modeling Lan-
guage (UML) profile for modeling and analysis 
of real-time and embedded (MARTE) systems 
to define semantics to the application. Then,  
using transformation chains, it lets us automati-
cally generate code for a chosen target platform. 
One of the main advantages of MARTE is that 
it clearly distinguishes the hardware components 
from the software components. This is done via 
stereotypes provided in part by the detailed re-
source modeling (DRM) package, in particular the 
HwResource and its derived stereotypes. Regard-
ing the hybrid (CPU and compute device) con-
ception, this separation is of prime importance. In 
fact, in a codesign environment, usually different 
teams simultaneously create these two parts of the 
system. For instance, this allows for testing the 
software on different kinds of hardware architec-
ture, or reusing an architecture (with few or no 
changes) for different applications.

Modeling an Application
The application model concept is a fundamen-
tal modeling process. Indeed, developers will 
define three main aspects of their application: 
the tasks and their interconnection; the number 
of repetitions of a task and its hierarchy, as well 
as whether it will be instantiated as temporal or 
spatial modes; and how to express the dataflow. 
Eventually, to optimize the model, a smart proce-
dure can perform model refactoring, a change made 
to the internal structure of a model to make it 

easier to understand and cheaper to modify with-
out changing its observable behavior.4 This helps 
us find good trade-offs in the usage of storage and 
computation resources, as well as in the potential 
parallelism of tasks and data.

To clearly distinguish a host from a com-
pute device, both defined in an OpenCL plat-
form model, a tagged-value description in the  
HwResource stereotype is assigned either with 
Host or with Device. This is a valuable definition 
at design time, because once we have an allocation 
model, transformations can promptly identify 
kernels from allocated tasks.

The allocation phase is defined in allocation 
modeling (Alloc) from the MARTE profile. Al-
location of functional application parts onto the 
available resources is the main concern of sys-
tem design for specific platforms. This includes 
both spatial distribution and temporal scheduling  
aspects, to map certain operations onto available 
computing and communication resources and 
services.

Although MARTE is suitable for modeling pur-
poses, it cannot move from high-level modeling 
specifications to execution platforms. Gaspard2 
fills this gap and introduces additional concepts 
and semantics to attain this requirement for sys-
tem codesign. Gaspard2 defines a deployment 
specification level to generate compilable code 
from an application model. This level is related 
to the specification of an elementary component 
(EC): a basic block having atomic functions. The 
deployment model lets us describe how the intel-
lectual properties (IPs)—very optimized and nor-
mally parameterized functions that depend on the 
target technology—must be associated to ECs.

Transformations
In MDE, a model transformation is a compila-
tion process that transforms a source model into 
a target model. The source and target models are 
respectively conformed to the source and the tar-
get metamodels. A model transformation relies on 
a set of rules. Each rule clearly identifies concepts 
in the source and the target metamodels. Such a 
decomposition facilitates the extension and the 
maintainability of a compilation process: new rules 
extend the compilation process and each rule can 
be modified independently from others. The rules 
are specified in programming languages, which 
can be either imperative (describing how a rule 
is executed) or declarative (describing what’s cre-
ated by the rules). Declarative languages are often 
used in MDE because the rules’ objectives can be 
specified independently from the execution.
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Background Review

Open Computing Language is a standard for parallel 
computing proposed by Apple and released by the 

Khronos Group. In the OpenCL platform model, a system 
is divided into one host (a CPU) and one or more compute 
devices. The compute devices act as coprocessors (GPUs) to 
the host. An OpenCL application runs on the host, which 
sends instructions, defined in special functions called kernels, 
to the devices. The OpenCL standard defines a data- and a 
task-parallel programming model. In the data-parallel model, 
the device runs multiple instances of the kernel in parallel on 
distinct data. Each instance is called a work item. Although 
all work items follow the same kernel, they might perform 
different instructions at a time and occasionally change the 
instruction path (as is the case with the single-program, 
multiple-data, or SPMD, model). Work items can be ar-
ranged in workgroups. OpenCL defines indexing schemes by 
which a work item can be uniquely identified through either 
a global ID, or through a workgroup ID along with a local ID. 
Synchronization of work items is possible within a workgroup 
only, and takes the form of a barrier.

Model-driven engineering (MDE)1 aims to raise the level  
of abstraction in program specification and increases automa-
tion in program development. MDE techniques have been 
widely used in software production. In an MDE approach, we 
address the use of models at different levels of abstraction for 
developing systems, thus raising the level of abstraction in 
program specification. An increase of automation in program 
development is reached by using executable model transfor-
mations. Higher-level models are transformed into lower-
level models until the model can be made executable using 
either code generation or model interpretation.

In an MDE approach, Unified Modeling Language (UML) 
can be used to specify, visualize, modify, construct, and docu-
ment software artifacts. To meet specific details of a particu-
lar application domain, UML can be extended by profiles. 
The UML profile for modeling and analysis of real-time and 
embedded (MARTE)2 systems consists of defining foundations 
for a model-based description of real-time and embedded sys-
tems (RTES). Indeed, it extends the possibilities to model the 
application, architecture, and their relationships. Moreover, 
MARTE allows extending the performance analysis and task 
scheduling based on target platform architecture. These core 
concepts are then refined for both modeling and analysis. 
MARTE also deals with model-based analysis. From this per-
spective, the aim isn’t to define new techniques for analyzing 
RTES, but to support them. Hence, it provides facilities to an-
notate models with information required to perform specific 
analysis. The main benefits of using this profile are as follows:

•	 to provide a common way of modeling both hardware 
and software aspects of a RTES for improving communi-
cation between developers;

•	 to enable interoperability between development tools 
used for specification, design, verification, and code  
generation; and

•	 to foster the construction of models that can be used 
to make quantitative predictions regarding systems’ 
real-time and embedded features, accounting for both 
hardware and software characteristics.

Allocation modeling (Alloc) from Foundations; 
generic resource modeling (GRM) and generic component 
modeling (GCM) from Design Model; and the repetitive 
structure modeling (RSM) annex are packages that are 
part of the MARTE specification. They provide the main 
resources to model and describe our entire application. In 
particular, RSM provides concepts to allow expressing the 
potential parallelism of applications.

With respect to code generation for GPUs, there are a 
couple of related works, such as the Single-Assignment 
C (SAC) and CAPS projects (see www.openhmpp.org). 
SAC3 is a strict, purely functional programming language 
whose design is focused on the needs of numerical ap-
plications. CAPS proposes the Open Hybrid Multicore 
Parallel Programming (OpenHMPP) toolkit. This toolkit  
is a set of compiler directives, tools, and software run-
time that supports multicore and manycore processors 
parallel programming in C and Fortran. This approach is 
similar to the widely available standard, Open Message 
Passing (OpenMP).

There are several other approaches that generate GPU 
applications from other existing languages such as C, 
Fortran, Python, and Java.4–6 However, even if we’re 
inspired by some of their features (such as their optimiza-
tions), all of them rely on code-to-code transformations, 
and don’t deal with higher-level and abstract software 
specification.
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Table 1 shows the transformation modules 
present in the OpenCL chain, defined according 
to our model transformation engine. Two types 
of transformation are implemented: model-to-
model and model-to-text. The transformation en-
gine is compliant with the Meta-Object Facility 
Query/View/Transformation (MOF QVT; see 
www.omg.org/spec/QVT), a language proposed  
by the Object Management Group (OMG).  
Gaspard2 uses the QVT-Operational (QVTO) 
tool to standardize the model transformations, 
and to render them compatible with future ver-
sions of MARTE.

In Table 1, we present the sequence of trans-
formations that compose the UML to OpenCL 
chain. The input for transformation 1 comprises 
the whole designed model (application, architec-
ture, deployment, and allocation). Then, we no 
longer need the UML profile for MARTE. Aim-
ing for simpler transformations, and to add fur-
ther concepts, we use the MARTE metamodel, 
whose elements are based on stereotypes from the 
original profile. Missing notions necessary to our 
approach, such as memory mapping, are provided 
by the metamodel. Therefore, the metamodel lets 
us work with the notions that previously were 
missing, converting the initial model into a new 
model that conforms to the MARTE metamodel. 
Furthermore, some instance concepts, such as 
port instances (not provided by UML), are added 
to the model to create variables of instantiated 
tasks (transformation 2).

MARTE’s response-surface model Repetitive 
Structure Modeling (RSM) package uses definitions 

from the Array Oriented Language (ArrayOL).5 
FlowPort stereotypes are applied to UML ports, 
and this lets us specify features such as direction, 
size, and data type. Hence, to interconnect to 
FlowPorts, RSM defines special connectors tagged 
with tilers stereotypes. The tiler specified in 
ArrayOL lets us declare how the elements from 
an input array will be distributed into subelements 
called patterns. Then, these patterns will be con-
sumed by each iteration of a repetitive task. This 
is the foundation for the model of computation 
(MoC) adopted in the Gaspard2 environment. 
This MoC enables the expression of the potential 
parallelism of data and tasks. Tilers are analyzed 
by transformation module number 3 from Table 1.  
This transformation creates special tasks that will 
be allocated onto available processors, which usu-
ally are the same ones in charge of the respective 
tasks interconnected by tilers.

Transformation modules 4, 5, and 6 deal with 
static task scheduling. After these transforma-
tions, local and global task graphs are generated, as 
well as an ordered list of tasks. Note that we aren’t 
searching for an optimal scheduling policy at this 
level of task execution. For our target architecture, 
GPU, submitted tasks (kernels) execute according 
to the GPU scheduler for each microprocessor, 
and we generally can’t control this process. The 
goal is to create a macro call list for tasks globally 
defined in the model. Therefore, this at least as-
sures coherence for exchanged data by the tasks. 
For independent tasks, however, OpenCL lets us 
define asynchronous task scheduling from the host 
dispatcher. This avoids blocking sequential calls.

Table 1. OpenCL* transformation chain.

Transformation Module description

1. UML to MARTE metamodel* This transformation adapts a model conforming to UML to a model conforming to the 
MARTE metamodel. Having this model, remaining transformations don’t need to deal 
with UML’s unnecessary extra complexity.

2. Instances identification This lets us add instances of ports for each part within the component. Otherwise, we 
aren’t able to identify local variables.

3. Tiler processing This module transforms every tiler specified in the models into tasks.

4. Local graph generation
5. Global graph generation
6. Static scheduling policy

These transformation modules undertake the definition of task graphs and  
a scheduling policy.

7. Memory allocation This is for memory handling, variable definitions, and data communication.

8. Hybrid conception It summarizes all explicitly modeled or implicitly defined elements by earlier 
transformations into a single structure.

9. Code generation This is the only model-to-text transformation in the chain. At this point, we’re already 
able to write out the previously analyzed elements directly to source code according  
to the OpenCL syntax.

* MARTE = modeling and analysis of real-time and embedded system; OpenCL = Open Computing Language; and UML = Unified Modeling 
Language.
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To specify future variables in the application, 
the transformation module 7 handles all Flow-
Ports and their connectors available in the model 
and creates new elements containing enough in-
formation to prepare the memory allocation for 
each memory bank.

Once we have all necessary elements processed 
in previous module transformations, we synthe-
size these elements into a single structure. This 
produces the Hybrid model, which includes ele-
ment definitions closer to our target platform: 
OpenCL. For instance, tasks will become func-
tions and their ports will become parameters.

Now that we have this Hybrid model, a model- 
to-text step automatically generates code by us-
ing template editors. Obeo (see www.acceleo.
org) supplies the Acceleo plug-in in the context 
of MDE. Acceleo scripts, based on the Model-to-
Text OMG standard, make it possible to generate 
files from common format models.

Code Optimization
During the transformation process, we can op-
timize some aspects to get higher-performance 
OpenCL code. To do so, we consider three ap-
proaches. The first attempts to avoid unnecessary 
data transfers between the host and device by ob-
serving FlowPort allocations. The second approach 
relies on shared memory use. Some applications can 
exploit memory sharing within workgroups of work 
items, and thus have high-performance behavior.  
This procedure involves tiler analysis. The 
third approach involves integrating profiling tools 
and models. Indeed, the traceability available in  
Gaspard2 makes the integration of profiling tools 
and models possible, and thus it can guide designers 
to improve their application model. These optimi-
zation approaches are detailed elsewhere,6 and some 
aspects of them are exemplified in the next section.

Experimental Results
In our approach, we aimed to produce a functional 
and compilable code for the target platform, tak-
ing into account all of the functionalities of the 
earlier designed model. In addition, we wanted a 
code that exploits the potential parallelism pro-
vided by the runtime architecture. Let’s look at 
three general applications that were designed us-
ing our approach. Despite having different goals, 
all of these applications have tasks that can run in 
parallel, and they’re well-suited to a multithreaded 
environment. In the following examples, we used 
a 2.26-GHz Intel Core 2 Duo processor and S1070 
unit (with four Tesla T10 Nvidia GPUs; although 
some benchmarks use only one T10).

Video Downscaling
The modeled feature of the video-processing ap-
plication deals with scaling. It consists of a classi-
cal downscaler, which transforms a video graphics 
array signal—Common Intermediate Format 
(CIF)—into a smaller one. Such an operation is 
necessary to display high-quality live video on a 
thin-film transistor screen while using low power 
and real-time previews, such as view mode in the 
video functionality of a cell phone. The down-
scaler module has two components: a horizontal 
filter that reduces the number of pixels from a 
352-column frame to a 132-column frame by in-
terpolating patterns of 8 pixels; and a vertical filter 
that reduces the number of pixels from a 288-line 
frame to a 128-line frame by interpolating pat-
terns of 8 pixels as well.

Figure 1 gives an overview of this application 
model. In addition to features such as tiler speci-
fications and task repetitions, a MARTE profile 
is applied to the OpenCL architecture model to 
identify the host and device. For this example, 
we’ve specified one host (the CPU and its RAM) 
and one device (the GPU and its global memory). 
Data and tasks are associated with memories and 
processors according to the project needs (partially 
shown in Figure 2). For instance, the six repeti-
tive tasks in horizontal and vertical filters 
are placed onto the GPU, and thus they’ll become 
kernels in the runtime environment. Allocated 
stereotypes provided by MARTE are used to map 
ports and tasks onto HwRAMs and HwProcessors. 
These stereotypes will allow for creating all of 
the variables and relations between them. Addi-
tionally, to distinguish the host from the device, 
we chose the description attribute from the 
HwResource stereotype. Moreover, tiler con-
nectors are added to each repetitive task from the  
HorizontalFilter and VerticalFilter. These 
connectors contain structured information based 
on arrays that allow describing how to distribute 
an array of {288,352} elements into array patterns 
of {11} elements. The formalism necessary to im-
plement the tilers can be found elsewhere.5

Figure 1 shows the association between a soft-
ware IP (a function’s code) and an elementary 
task’s red horizontal filter (RHF). Here, we mean 
to demonstrate how we include code for single 
operations in the resulting generated code. These 
associations are implemented with the artifact 
component from UML.

Downscaling Results
Four versions of the downscaler were tested. 
The first is a sequential version using the same 
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structure defined in Figure 1. Two are automati-
cally generated OpenCL versions, and the last is 
a manually written OpenCL version. The first 
OpenCL-generated code has no optimization or 
further analysis on memory transfers. The second 
optimizes the memory transfers between the host 
and device. Minimizing these transfers notably 
reduces the total GPU execution time, because 
data transfers take a lot of time (about 70 percent) 
in this application. The generated code achieves a 
speedup of 10 times, as Table 2 shows.

Matrix Multiplication
Most scientific numerical methods apply matrix 
multiplication. We’ve designed two models for this 
application. In the first model, every work item 
takes one line and one column from matrices A 
and B and produces one point in matrix C using the  
scalar product. In the second model, we organize 
work items in workgroups that perform the multi-
plication by block. The idea behind this approach is 
to use shared memories within workgroups.

Figure 3 illustrates the results from three 
OpenCL codes running on four matrix sizes. 

Even though the first and second versions have 
different codes, they work on same matrix sizes 
using similar procedures, having the same compu-
tational effort. Thus, we observe no performance 
gains. Indeed, even having different models, all 
work items do the same computing work. However,  
the third code has an expressive performance. 

DownscalerApp

IP (Intellectual Property) 
from Deployment Model
void horizontal_�lter(int* a, int* b)
{
…
} 

ifg: FrameGenerator ifc: FrameConstructorid: Downscaler
gen_r: INT {288,352} din_r: INT {288,352}

dout_b: INT {128,132}

con_g: INT {128,132}

application: MainAppli

MainAppli
idf: DownscalerApp {2000}

Downscaler

HorizontalFilter

ihf: HorizontalFilter ivf: VerticalFilter

rhfk: RHF        {288,44}

<<tiler>> <<tiler>>

ghfk: GHF        {288,44}

<<tiler>> <<tiler>>

bhfk: BHF        {288,44}

<<tiler>> <<tiler>>

out_ghf: INT {3}

VerticalFilter

rvfk: RVF        {32,132}

<<tiler>> <<tiler>>

gvfk: GVF        {32,132}

<<tiler>> <<tiler>>

bvfk: BVF        {32,132}

<<tiler>> <<tiler>>

out_gvf: INT {4}

in_bhf: INT {11} in_bvf: INT {14}

Figure 1. Downscaler application model. This model describes the main tasks of the frame downscaling application.

Figure 2. Allocation of application elements on architecture elements. 
This procedure defines what hardware elements will execute tasks or 
store variables.

HorizontalFilter

rhfk: RHF      {288,44}

<<tiler>> <<tiler>>

ghfk: GHF      {288,44}

<<tiler>> <<tiler>>

bhfk: BHF      {288,44}

<<tiler>> <<tiler>>

out_ghf: INT {3}

in_bhf: INT {11}

gp: GPU
<<HwProcessor>>

gpugm: GPU_GM
<<HwRAM>>

cpum: CPU_GM
<<HwRAM>>

<<allocate>>

CISE-15-1-Rodr.indd   51 12/12/12   12:09 PM



52 Computing in SCienCe & engineering

In fact, if we enable optimization analysis in the 
tiler transformation, data copies from the global 
memory to shared (local) memory in the GPU 
processors allow for fast data access and reuse by 
all the work items of the same workgroup. Addi-
tionally, as these results indicate, different matrix 
sizes don’t have great infl uence on performance. 
To compare our results to classical solutions, we 
provide performances achieved with the same 
hardware using the Nvidia CUDA Basic Linear 
Algebra Subroutines (CuBLAS) library and Intel 
Math Kernel Library (MKL).

conjugate gradient
The conjugate gradient (CG) method7 is often 
used in numerical algorithms. For this example, 
the input data comes from a fi nite-element method 
(FEM) model of an electrical machine. The ma-
trix is stored in a compressed sparse row (CSR) 
format having N= 132,651 and NNZ= 344,2951. 
The CG main loop algorithm (lines 7–15 of the 
algorithm in Figure 4) is modeled in MARTE 
(see Figure 5), where data reading and startup 
confi gurations are defi ned by stereotyped blocks 
allocated on the CPU.

Highlighted blocks represent tasks, which 
are mapped onto as many devices as we want to 
distribute the task job. Tasks—such as Sparse 
Double-precision General Matrix-Vector Multi-
plication with Sparse Matrices (S-DGEMV) 
shown in lines 8 and 10—are repetitive, and thus, 
potentially parallel. The CG is repeated 132,651 
times, and some of its input data are replaced 
by output data between continuous iterations. A 
continue-condition (line 7) is specifi ed by a con-
straint annotation to the outer CG block, thus 
the loop stops before running all iterations if it 
achieves a given tolerance error. Figure 5 is only 
an internal view of the CG loop model. Here, 
scalar operations run on the CPU processor, and 
repetitive operations run on GPU processors ac-
cording to task allocations. Further information 
about this case study is detailed elsewhere.8

We launched four double-precision versions of 
the CG. The fi rst (the reference result) is a CPU 
sequential code that uses Matlab’s pcg function. 
The other versions are automatically generated 

table 2. Results for downscaler applications.

Downscaler version time (in seconds) speedup gfl ops
Sequential 36.0 1 0.120

OpenCL 4.9 7.35 0.898

OpenCL with transfer optimization 3.6 10 1.2

OpenCL manually coded 3.6 10 1.2

Figure 4. Conjugate gradient (CG) algorithm without the preconditioner. 
This algorithm is the basic form of the iterative method commonly used 
on solution of systems of linear equation.

  1: x0 ← 0

  2: r0 ← b

  3: normr0 ← norm2(r0)

  4: p0 ← r0

  5: error ← 1

  6: k ← 0

  7: while error > ERROR_MAX do    We stop if error is suffi ciently small

  8: α←
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15: end while
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Figure 3. Running results obtained with different matrices. Here you can 
see the results from three OpenCL codes running on four different matrix 
sizes. (BlockSM = By Blocks using Shared M emory; CuBLAS = CUDA 
Basic Linear Algebra Subroutines; and MKL = Math Kernel Library.)
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OpenCL implementations whose kernels are 
launched onto one, two, and four devices, respec-
tively. The listing in Figure 6 presents a sample of 
the code generation for the DAXPY kernel. The 
IP is inserted as a function and the kernel con-
sists of two gather functions (input tilers), one IP 
call, and one scatter function (output tilers). The 
number of running devices depends on the task- 
allocation process. Usually, manually written codes 
have better performance than automatic codes 
due to the application-oriented development. 
However, these generated CG implementations 
have a more expressive performance (see Table 3) 
compared to sequential code (benchmarks include 
just the computing and data transfer times in the 
CG loop). The multi-GPU aspect is verified in 
the two other versions. The model compiler de-
cides equally the task (and associated data) parti-
tioning on the multiple devices. Nevertheless, the 
performance gain isn’t linear, due to extra data 
transfers between the CPU and devices. A de-
tailed analysis of solvers and multi-GPU can be 
found elsewhere.9

F rom an abstract model defined using 
UML/MARTE, we generated a com-
pilable OpenCL code and then a func-
tional, executable application. As an 

MDE approach, this model is a quick codesign 
and development tool for nonexpert program-
mers. We thus consider this approach an effective 
operational code generator for the newly released 
OpenCL standard.

This work also provides resources to model ap-
plications running on homogeneously configured 
multidevices, offering two main contributions: it 
lets the user model simple distributed-memory 
aspects, such as data transfers and memory al-
locations, and it lets the user model the platform 
and execute models of OpenCL. Additionally, its 
smart transformation capabilities can determine 
optimization levels in data communication and 
data access. Studies have shown that these op-
timizations remarkably increase the application 
performance.

With respect to language dependence, other 
target languages can use the Hybrid metamodel 
that we proposed. This hybrid can match mem-
ory, platform, and execution models, such as 
CUDA. For future work, we’ll make model-to-
text templates (that we’ve already created) avail-
able on the code-generation engine, to exploit 
multilanguage capabilities.�
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Figure 6. Listing 1. OpenCL code generated for the DAXPY kernel.

 1  void daxpyfunc (const double * y, const double * x, double a )

 2  {

 3  y [0] = a * x[0] + y[0];

 4  }

 5  __kernel void daxpy_KRN (

 6  	   uint iNumElements ,

 7  	   const __global double * v2_daxpy_KRN,

 8  	   __global double * v1_daxpy KRN,

 9  	   const __global double ct_daxpy_KRN)

10  {

11  	   double v1_loc[1]; double v2_loc[1];

12  	   // get index into global data array

13  	   int iGID = get_global_id(0) +

14  	   get_global_size(0) * get_global_id(1) +

15  	   get_global_size(0) * get_global_size(1) * get_global_id(2);

16  	   if (iGID < iNumElements) // boundcheck

17  	   {

18  	       {   // input tiler

19  	           uint tlIter[1];

20  	           uint tl[1];

21  	           uint ref[1];

22  	           uint index[1];

23  	           tlIter[0] = iGID%132651;

24  	           ref[0] = 0 + 1 * tlIter[0];

25  	           for (tl[0] = 0; tl[0] < 1; tl[0]++) {

26  	                 index[0] = (ref[0] + 0 * tl[0])%132651;

27  	                 v2_loc[tl[0] * 1] = v2_daxpy_KRN[index[0] * 1];

28  		     }

29  		  }

30  	        {  // input tiler

31  	           uint tlIter[1];

32  	           uint tl[1];

33  	           uint ref[1];

34  	           uint index[1];

35  	           tlIter[0] = iGID%132651;

36  	           ref[0] = 0 + 1 * tlIter[0];

37  	           for (tl[0] = 0; tl[0] < 1; tl[0] ++) {

38  	                 index[0] = (ref[0] + 0 * tl[0])%132651;

39  	                 v1_loc[tl[0] * 1] = v1_daxpy_KRN[index[0] * 1];

40  		     }

41  		  }

42  		  daxpyfunc (v1_loc, v2_loc, ct_daxpy_KRN); //IP call

43  	        {  // output tiler

44  	           uint tlIter[1];

45  	           uint tl[1];

46  	           uint ref[1];

47  	           uint index[1];

48  	           tlIter[0] = iGID%132651;

49  	           ref[0] = 0 + 1 * tlIter[0];

50  	           for (tl[0] = 0; tl[0] < 1; tl[0]++) {

51  	                 index[0] = (ref[0] + 1 * tl[0])%132651;

52  	                 v1_daxpy_KRN[index[0] * 1] = v1_loc[tl[0] * 1];

53  		     }

54  		  }

55  	   }

56  }
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table 3. performance results (tol = 1e-10).*

conjugate gradient no. of iterations time (in seconds) speedup gfl ops
Matlab PCG 117 3.17 1 0.303

OpenCL (1 GPU) 116 0.659 4.81 1.45

OpenCL (2 GPUs) 116 0.461 6.87 2.07

OpenCL (4 GPUs) 116 0.380 8.34 2.50

* Tol is an indicator for the maximum iterations of tolerance; it’s a minimum error used to stop the iterations.
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