
HAL Id: hal-01582200
https://inria.hal.science/hal-01582200

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An MDE Approach for Automatic Code Generation
from UML/MARTE to OpenCL

de Oliveira Rodrigues Antonio Wendell, Frédéric Guyomarc’H, Jean-Luc
Dekeyser

To cite this version:
de Oliveira Rodrigues Antonio Wendell, Frédéric Guyomarc’H, Jean-Luc Dekeyser. An MDE Ap-
proach for Automatic Code Generation from UML/MARTE to OpenCL. Computing in Science and
Engineering, 2012, 15 (1), pp.46-55. �10.1109/MCSE.2012.35�. �hal-01582200�

https://inria.hal.science/hal-01582200
https://hal.archives-ouvertes.fr

46	 This article has been peer-reviewed.� Computing in Science & Engineering

S c i e n t i f i c C o m p u t i n g
w i t h G P U s

To reduce the design complexity of OpenCL programming, the approach proposed here
generates application code automatically, based on model-driven engineering (MDE) and
modeling and analysis of real-time and embedded (MARTE) systems. The aim is to provide
application-development resources for nonspecialists in parallel programming, exploiting
concepts such as reuse and platform independence.

An MDE Approach for
Automatic Code Generation
from UML/MARTE to OpenCL

A dvanced engineering and scientific
communities have used parallel pro-
gramming to solve their large-scale
complex problems for a long time.

Despite their high-level expertise, developers in
these communities often find it hard to imple-
ment their parallel applications effectively. Some
inherent characteristics of parallel programming
contribute to this difficulty, including race con-
ditions, memory access bottleneck, granularity
decision, scheduling policy, and thread safety. To
facilitate the programming of parallel applica-
tions, developers have specified several approaches.
The most commonly used standards are Open
Message Passing (OpenMP) for shared memory
and Message Passing Interface (MPI) for distrib-
uted memory programming. These approaches
let us express and explore the potential parallel-
ism of applications and architectures. OpenMP
adds directives having the same syntax level as the
target programming language (C, C++, Fortran),

while MPI is implemented as a library to manage
communication between nodes. From this view-
point, these approaches are actually tools to add
parallelism resources to a sequential program-
ming model rather than a solution for parallel
programming.

In December 2008, the consort ium man-
aged by the Khronos Group released the Open
Computing Language (OpenCL) 1.0 specifica-
tion.1 OpenCL is the first open, royalty-free
standard for general-purpose parallel pro-
gramming of heterogeneous systems. It pro-
vides a uniform programming environment
for software developers to write efficient and
portable code for high-performance comput-
ing servers, desktop computer systems, and
handheld devices using a diverse mix of multi-
core CPUs, GPUs, cell-type architectures, and
other parallel processors such as digital signal
processors (DSPs).

Here, we present an approach based on model-
driven engineering (MDE)2 to specify, design, and
generate OpenCL applications. This approach
relies on the following aspects:

•	We propose three new metamodels that sat-
isfy essential concerns of a whole application—
scheduling policy, variable definitions, and the
OpenCL programming model itself.

A. Wendell O. Rodrigues
Federal Institute of Education, Science, and Technology of Ceará
Frédéric Guyomarc’h and Jean-Luc Dekeyser
University of Lille

1521-9615/13/$31.00 © 2013 IEEE

Copublished by the IEEE CS and the AIP

CISE-15-1-Rodr.indd 46 12/12/12 12:09 PM

January/February 2013 � 47

•	We propose a transformation chain that in-
cludes as many model transformations as we
need for generating an efficient code (in other
words, we concatenate single, specific model
transformations to add or change elements de-
signed in an input model to generate intermedi-
ate models toward the target code).

•	 Because abstract models don’t have all of the
necessary information for improving perfor-
mance based on the target hardware, we include
some optimization levels to achieve (whenever
possible) automatically generated code that’s
as efficient as manually written code.

To gain a theoretical base for some of the con-
cepts we’ll discuss, see the “Background Review”
sidebar. Next, we’ll discuss our automatic code-
generation approach.

Code-Generation Approach
Our approach aims to generate effective code
for OpenCL as a new branch of our Gaspard2
development environment.3 During application
design, Gaspard2 uses a Unified Modeling Lan-
guage (UML) profile for modeling and analysis
of real-time and embedded (MARTE) systems
to define semantics to the application. Then,
using transformation chains, it lets us automati-
cally generate code for a chosen target platform.
One of the main advantages of MARTE is that
it clearly distinguishes the hardware components
from the software components. This is done via
stereotypes provided in part by the detailed re-
source modeling (DRM) package, in particular the
HwResource and its derived stereotypes. Regard-
ing the hybrid (CPU and compute device) con-
ception, this separation is of prime importance. In
fact, in a codesign environment, usually different
teams simultaneously create these two parts of the
system. For instance, this allows for testing the
software on different kinds of hardware architec-
ture, or reusing an architecture (with few or no
changes) for different applications.

Modeling an Application
The application model concept is a fundamen-
tal modeling process. Indeed, developers will
define three main aspects of their application:
the tasks and their interconnection; the number
of repetitions of a task and its hierarchy, as well
as whether it will be instantiated as temporal or
spatial modes; and how to express the dataflow.
Eventually, to optimize the model, a smart proce-
dure can perform model refactoring, a change made
to the internal structure of a model to make it

easier to understand and cheaper to modify with-
out changing its observable behavior.4 This helps
us find good trade-offs in the usage of storage and
computation resources, as well as in the potential
parallelism of tasks and data.

To clearly distinguish a host from a com-
pute device, both defined in an OpenCL plat-
form model, a tagged-value description in the
HwResource stereotype is assigned either with
Host or with Device. This is a valuable definition
at design time, because once we have an allocation
model, transformations can promptly identify
kernels from allocated tasks.

The allocation phase is defined in allocation
modeling (Alloc) from the MARTE profile. Al-
location of functional application parts onto the
available resources is the main concern of sys-
tem design for specific platforms. This includes
both spatial distribution and temporal scheduling
aspects, to map certain operations onto available
computing and communication resources and
services.

Although MARTE is suitable for modeling pur-
poses, it cannot move from high-level modeling
specifications to execution platforms. Gaspard2
fills this gap and introduces additional concepts
and semantics to attain this requirement for sys-
tem codesign. Gaspard2 defines a deployment
specification level to generate compilable code
from an application model. This level is related
to the specification of an elementary component
(EC): a basic block having atomic functions. The
deployment model lets us describe how the intel-
lectual properties (IPs)—very optimized and nor-
mally parameterized functions that depend on the
target technology—must be associated to ECs.

Transformations
In MDE, a model transformation is a compila-
tion process that transforms a source model into
a target model. The source and target models are
respectively conformed to the source and the tar-
get metamodels. A model transformation relies on
a set of rules. Each rule clearly identifies concepts
in the source and the target metamodels. Such a
decomposition facilitates the extension and the
maintainability of a compilation process: new rules
extend the compilation process and each rule can
be modified independently from others. The rules
are specified in programming languages, which
can be either imperative (describing how a rule
is executed) or declarative (describing what’s cre-
ated by the rules). Declarative languages are often
used in MDE because the rules’ objectives can be
specified independently from the execution.

CISE-15-1-Rodr.indd 47 12/12/12 12:09 PM

48� Computing in Science & Engineering

Background Review

Open Computing Language is a standard for parallel
computing proposed by Apple and released by the

Khronos Group. In the OpenCL platform model, a system
is divided into one host (a CPU) and one or more compute
devices. The compute devices act as coprocessors (GPUs) to
the host. An OpenCL application runs on the host, which
sends instructions, defined in special functions called kernels,
to the devices. The OpenCL standard defines a data- and a
task-parallel programming model. In the data-parallel model,
the device runs multiple instances of the kernel in parallel on
distinct data. Each instance is called a work item. Although
all work items follow the same kernel, they might perform
different instructions at a time and occasionally change the
instruction path (as is the case with the single-program,
multiple-data, or SPMD, model). Work items can be ar-
ranged in workgroups. OpenCL defines indexing schemes by
which a work item can be uniquely identified through either
a global ID, or through a workgroup ID along with a local ID.
Synchronization of work items is possible within a workgroup
only, and takes the form of a barrier.

Model-driven engineering (MDE)1 aims to raise the level
of abstraction in program specification and increases automa-
tion in program development. MDE techniques have been
widely used in software production. In an MDE approach, we
address the use of models at different levels of abstraction for
developing systems, thus raising the level of abstraction in
program specification. An increase of automation in program
development is reached by using executable model transfor-
mations. Higher-level models are transformed into lower-
level models until the model can be made executable using
either code generation or model interpretation.

In an MDE approach, Unified Modeling Language (UML)
can be used to specify, visualize, modify, construct, and docu-
ment software artifacts. To meet specific details of a particu-
lar application domain, UML can be extended by profiles.
The UML profile for modeling and analysis of real-time and
embedded (MARTE)2 systems consists of defining foundations
for a model-based description of real-time and embedded sys-
tems (RTES). Indeed, it extends the possibilities to model the
application, architecture, and their relationships. Moreover,
MARTE allows extending the performance analysis and task
scheduling based on target platform architecture. These core
concepts are then refined for both modeling and analysis.
MARTE also deals with model-based analysis. From this per-
spective, the aim isn’t to define new techniques for analyzing
RTES, but to support them. Hence, it provides facilities to an-
notate models with information required to perform specific
analysis. The main benefits of using this profile are as follows:

•	 to provide a common way of modeling both hardware
and software aspects of a RTES for improving communi-
cation between developers;

•	 to enable interoperability between development tools
used for specification, design, verification, and code
generation; and

•	 to foster the construction of models that can be used
to make quantitative predictions regarding systems’
real-time and embedded features, accounting for both
hardware and software characteristics.

Allocation modeling (Alloc) from Foundations;
generic resource modeling (GRM) and generic component
modeling (GCM) from Design Model; and the repetitive
structure modeling (RSM) annex are packages that are
part of the MARTE specification. They provide the main
resources to model and describe our entire application. In
particular, RSM provides concepts to allow expressing the
potential parallelism of applications.

With respect to code generation for GPUs, there are a
couple of related works, such as the Single-Assignment
C (SAC) and CAPS projects (see www.openhmpp.org).
SAC3 is a strict, purely functional programming language
whose design is focused on the needs of numerical ap-
plications. CAPS proposes the Open Hybrid Multicore
Parallel Programming (OpenHMPP) toolkit. This toolkit
is a set of compiler directives, tools, and software run-
time that supports multicore and manycore processors
parallel programming in C and Fortran. This approach is
similar to the widely available standard, Open Message
Passing (OpenMP).

There are several other approaches that generate GPU
applications from other existing languages such as C,
Fortran, Python, and Java.4–6 However, even if we’re
inspired by some of their features (such as their optimiza-
tions), all of them rely on code-to-code transformations,
and don’t deal with higher-level and abstract software
specification.

References
1.	D. Lugato, J.-M. Bruel, and I. Ober, “Model-Driven Engineering

for High Performance Computing Applications,” Proc. Modeling

Simulation and Optimization Focus on Applications, Acta Press, 2010,

pp. 303–308.

2.	Object Management Group, “UML Profile for MARTE: Modeling

and Analysis of Real-Time Embedded Systems,” version 1.1, 2011;

www.omg.org/spec/MARTE/1.1.

3.	 J. Guo, J. Thiyagalingam, and S.-B. Scholz, “Towards Compiling

SAC to CUDA,” Trends in Functional Programming 10, vol. 10,

Gutenberg Press, 2011, pp. 38–48.

4.	M. Baskaran, J. Ramanuja, and P. Sadayappan, “Automatic C-to-

CUDA Code Generation for Affine Programs,” Springer, 2010,

pp. 244–263.

5.	A. Klöckner, “PyOpenCL: From Python to OpenCL,” user guide,

2011; http://mathema.tician.de/software/pyopencl.

6.	C. Toepfer, Using GPU-Enabled Math Libraries with PGI Fortran, tech.

report, The Portland Group, 2011.

CISE-15-1-Rodr.indd 48 12/12/12 12:09 PM

January/February 2013 � 49

Table 1 shows the transformation modules
present in the OpenCL chain, defined according
to our model transformation engine. Two types
of transformation are implemented: model-to-
model and model-to-text. The transformation en-
gine is compliant with the Meta-Object Facility
Query/View/Transformation (MOF QVT; see
www.omg.org/spec/QVT), a language proposed
by the Object Management Group (OMG).
Gaspard2 uses the QVT-Operational (QVTO)
tool to standardize the model transformations,
and to render them compatible with future ver-
sions of MARTE.

In Table 1, we present the sequence of trans-
formations that compose the UML to OpenCL
chain. The input for transformation 1 comprises
the whole designed model (application, architec-
ture, deployment, and allocation). Then, we no
longer need the UML profile for MARTE. Aim-
ing for simpler transformations, and to add fur-
ther concepts, we use the MARTE metamodel,
whose elements are based on stereotypes from the
original profile. Missing notions necessary to our
approach, such as memory mapping, are provided
by the metamodel. Therefore, the metamodel lets
us work with the notions that previously were
missing, converting the initial model into a new
model that conforms to the MARTE metamodel.
Furthermore, some instance concepts, such as
port instances (not provided by UML), are added
to the model to create variables of instantiated
tasks (transformation 2).

MARTE’s response-surface model Repetitive
Structure Modeling (RSM) package uses definitions

from the Array Oriented Language (ArrayOL).5
FlowPort stereotypes are applied to UML ports,
and this lets us specify features such as direction,
size, and data type. Hence, to interconnect to
FlowPorts, RSM defines special connectors tagged
with tilers stereotypes. The tiler specified in
ArrayOL lets us declare how the elements from
an input array will be distributed into subelements
called patterns. Then, these patterns will be con-
sumed by each iteration of a repetitive task. This
is the foundation for the model of computation
(MoC) adopted in the Gaspard2 environment.
This MoC enables the expression of the potential
parallelism of data and tasks. Tilers are analyzed
by transformation module number 3 from Table 1.
This transformation creates special tasks that will
be allocated onto available processors, which usu-
ally are the same ones in charge of the respective
tasks interconnected by tilers.

Transformation modules 4, 5, and 6 deal with
static task scheduling. After these transforma-
tions, local and global task graphs are generated, as
well as an ordered list of tasks. Note that we aren’t
searching for an optimal scheduling policy at this
level of task execution. For our target architecture,
GPU, submitted tasks (kernels) execute according
to the GPU scheduler for each microprocessor,
and we generally can’t control this process. The
goal is to create a macro call list for tasks globally
defined in the model. Therefore, this at least as-
sures coherence for exchanged data by the tasks.
For independent tasks, however, OpenCL lets us
define asynchronous task scheduling from the host
dispatcher. This avoids blocking sequential calls.

Table 1. OpenCL* transformation chain.

Transformation Module description

1. UML to MARTE metamodel* This transformation adapts a model conforming to UML to a model conforming to the
MARTE metamodel. Having this model, remaining transformations don’t need to deal
with UML’s unnecessary extra complexity.

2. Instances identification This lets us add instances of ports for each part within the component. Otherwise, we
aren’t able to identify local variables.

3. Tiler processing This module transforms every tiler specified in the models into tasks.

4. Local graph generation
5. Global graph generation
6. Static scheduling policy

These transformation modules undertake the definition of task graphs and
a scheduling policy.

7. Memory allocation This is for memory handling, variable definitions, and data communication.

8. Hybrid conception It summarizes all explicitly modeled or implicitly defined elements by earlier
transformations into a single structure.

9. Code generation This is the only model-to-text transformation in the chain. At this point, we’re already
able to write out the previously analyzed elements directly to source code according
to the OpenCL syntax.

* MARTE = modeling and analysis of real-time and embedded system; OpenCL = Open Computing Language; and UML = Unified Modeling
Language.

CISE-15-1-Rodr.indd 49 12/12/12 12:09 PM

50� Computing in Science & Engineering

To specify future variables in the application,
the transformation module 7 handles all Flow-
Ports and their connectors available in the model
and creates new elements containing enough in-
formation to prepare the memory allocation for
each memory bank.

Once we have all necessary elements processed
in previous module transformations, we synthe-
size these elements into a single structure. This
produces the Hybrid model, which includes ele-
ment definitions closer to our target platform:
OpenCL. For instance, tasks will become func-
tions and their ports will become parameters.

Now that we have this Hybrid model, a model-
to-text step automatically generates code by us-
ing template editors. Obeo (see www.acceleo.
org) supplies the Acceleo plug-in in the context
of MDE. Acceleo scripts, based on the Model-to-
Text OMG standard, make it possible to generate
files from common format models.

Code Optimization
During the transformation process, we can op-
timize some aspects to get higher-performance
OpenCL code. To do so, we consider three ap-
proaches. The first attempts to avoid unnecessary
data transfers between the host and device by ob-
serving FlowPort allocations. The second approach
relies on shared memory use. Some applications can
exploit memory sharing within workgroups of work
items, and thus have high-performance behavior.
This procedure involves tiler analysis. The
third approach involves integrating profiling tools
and models. Indeed, the traceability available in
Gaspard2 makes the integration of profiling tools
and models possible, and thus it can guide designers
to improve their application model. These optimi-
zation approaches are detailed elsewhere,6 and some
aspects of them are exemplified in the next section.

Experimental Results
In our approach, we aimed to produce a functional
and compilable code for the target platform, tak-
ing into account all of the functionalities of the
earlier designed model. In addition, we wanted a
code that exploits the potential parallelism pro-
vided by the runtime architecture. Let’s look at
three general applications that were designed us-
ing our approach. Despite having different goals,
all of these applications have tasks that can run in
parallel, and they’re well-suited to a multithreaded
environment. In the following examples, we used
a 2.26-GHz Intel Core 2 Duo processor and S1070
unit (with four Tesla T10 Nvidia GPUs; although
some benchmarks use only one T10).

Video Downscaling
The modeled feature of the video-processing ap-
plication deals with scaling. It consists of a classi-
cal downscaler, which transforms a video graphics
array signal—Common Intermediate Format
(CIF)—into a smaller one. Such an operation is
necessary to display high-quality live video on a
thin-film transistor screen while using low power
and real-time previews, such as view mode in the
video functionality of a cell phone. The down-
scaler module has two components: a horizontal
filter that reduces the number of pixels from a
352-column frame to a 132-column frame by in-
terpolating patterns of 8 pixels; and a vertical filter
that reduces the number of pixels from a 288-line
frame to a 128-line frame by interpolating pat-
terns of 8 pixels as well.

Figure 1 gives an overview of this application
model. In addition to features such as tiler speci-
fications and task repetitions, a MARTE profile
is applied to the OpenCL architecture model to
identify the host and device. For this example,
we’ve specified one host (the CPU and its RAM)
and one device (the GPU and its global memory).
Data and tasks are associated with memories and
processors according to the project needs (partially
shown in Figure 2). For instance, the six repeti-
tive tasks in horizontal and vertical filters
are placed onto the GPU, and thus they’ll become
kernels in the runtime environment. Allocated
stereotypes provided by MARTE are used to map
ports and tasks onto HwRAMs and HwProcessors.
These stereotypes will allow for creating all of
the variables and relations between them. Addi-
tionally, to distinguish the host from the device,
we chose the description attribute from the
HwResource stereotype. Moreover, tiler con-
nectors are added to each repetitive task from the
HorizontalFilter and VerticalFilter. These
connectors contain structured information based
on arrays that allow describing how to distribute
an array of {288,352} elements into array patterns
of {11} elements. The formalism necessary to im-
plement the tilers can be found elsewhere.5

Figure 1 shows the association between a soft-
ware IP (a function’s code) and an elementary
task’s red horizontal filter (RHF). Here, we mean
to demonstrate how we include code for single
operations in the resulting generated code. These
associations are implemented with the artifact
component from UML.

Downscaling Results
Four versions of the downscaler were tested.
The first is a sequential version using the same

CISE-15-1-Rodr.indd 50 12/12/12 12:09 PM

January/February 2013 � 51

structure defined in Figure 1. Two are automati-
cally generated OpenCL versions, and the last is
a manually written OpenCL version. The first
OpenCL-generated code has no optimization or
further analysis on memory transfers. The second
optimizes the memory transfers between the host
and device. Minimizing these transfers notably
reduces the total GPU execution time, because
data transfers take a lot of time (about 70 percent)
in this application. The generated code achieves a
speedup of 10 times, as Table 2 shows.

Matrix Multiplication
Most scientific numerical methods apply matrix
multiplication. We’ve designed two models for this
application. In the first model, every work item
takes one line and one column from matrices A
and B and produces one point in matrix C using the
scalar product. In the second model, we organize
work items in workgroups that perform the multi-
plication by block. The idea behind this approach is
to use shared memories within workgroups.

Figure 3 illustrates the results from three
OpenCL codes running on four matrix sizes.

Even though the first and second versions have
different codes, they work on same matrix sizes
using similar procedures, having the same compu-
tational effort. Thus, we observe no performance
gains. Indeed, even having different models, all
work items do the same computing work. However,
the third code has an expressive performance.

DownscalerApp

IP (Intellectual Property)
from Deployment Model
void horizontal_�lter(int* a, int* b)
{
…
}

ifg: FrameGenerator ifc: FrameConstructorid: Downscaler
gen_r: INT {288,352} din_r: INT {288,352}

dout_b: INT {128,132}

con_g: INT {128,132}

application: MainAppli

MainAppli
idf: DownscalerApp {2000}

Downscaler

HorizontalFilter

ihf: HorizontalFilter ivf: VerticalFilter

rhfk: RHF {288,44}

<<tiler>> <<tiler>>

ghfk: GHF {288,44}

<<tiler>> <<tiler>>

bhfk: BHF {288,44}

<<tiler>> <<tiler>>

out_ghf: INT {3}

VerticalFilter

rvfk: RVF {32,132}

<<tiler>> <<tiler>>

gvfk: GVF {32,132}

<<tiler>> <<tiler>>

bvfk: BVF {32,132}

<<tiler>> <<tiler>>

out_gvf: INT {4}

in_bhf: INT {11} in_bvf: INT {14}

Figure 1. Downscaler application model. This model describes the main tasks of the frame downscaling application.

Figure 2. Allocation of application elements on architecture elements.
This procedure defines what hardware elements will execute tasks or
store variables.

HorizontalFilter

rhfk: RHF {288,44}

<<tiler>> <<tiler>>

ghfk: GHF {288,44}

<<tiler>> <<tiler>>

bhfk: BHF {288,44}

<<tiler>> <<tiler>>

out_ghf: INT {3}

in_bhf: INT {11}

gp: GPU
<<HwProcessor>>

gpugm: GPU_GM
<<HwRAM>>

cpum: CPU_GM
<<HwRAM>>

<<allocate>>

CISE-15-1-Rodr.indd 51 12/12/12 12:09 PM

52 Computing in SCienCe & engineering

In fact, if we enable optimization analysis in the
tiler transformation, data copies from the global
memory to shared (local) memory in the GPU
processors allow for fast data access and reuse by
all the work items of the same workgroup. Addi-
tionally, as these results indicate, different matrix
sizes don’t have great infl uence on performance.
To compare our results to classical solutions, we
provide performances achieved with the same
hardware using the Nvidia CUDA Basic Linear
Algebra Subroutines (CuBLAS) library and Intel
Math Kernel Library (MKL).

conjugate gradient
The conjugate gradient (CG) method7 is often
used in numerical algorithms. For this example,
the input data comes from a fi nite-element method
(FEM) model of an electrical machine. The ma-
trix is stored in a compressed sparse row (CSR)
format having N= 132,651 and NNZ= 344,2951.
The CG main loop algorithm (lines 7–15 of the
algorithm in Figure 4) is modeled in MARTE
(see Figure 5), where data reading and startup
confi gurations are defi ned by stereotyped blocks
allocated on the CPU.

Highlighted blocks represent tasks, which
are mapped onto as many devices as we want to
distribute the task job. Tasks—such as Sparse
Double-precision General Matrix-Vector Multi-
plication with Sparse Matrices (S-DGEMV)
shown in lines 8 and 10—are repetitive, and thus,
potentially parallel. The CG is repeated 132,651
times, and some of its input data are replaced
by output data between continuous iterations. A
continue-condition (line 7) is specifi ed by a con-
straint annotation to the outer CG block, thus
the loop stops before running all iterations if it
achieves a given tolerance error. Figure 5 is only
an internal view of the CG loop model. Here,
scalar operations run on the CPU processor, and
repetitive operations run on GPU processors ac-
cording to task allocations. Further information
about this case study is detailed elsewhere.8

We launched four double-precision versions of
the CG. The fi rst (the reference result) is a CPU
sequential code that uses Matlab’s pcg function.
The other versions are automatically generated

table 2. Results for downscaler applications.

Downscaler version time (in seconds) speedup gfl ops
Sequential 36.0 1 0.120

OpenCL 4.9 7.35 0.898

OpenCL with transfer optimization 3.6 10 1.2

OpenCL manually coded 3.6 10 1.2

Figure 4. Conjugate gradient (CG) algorithm without the preconditioner.
This algorithm is the basic form of the iterative method commonly used
on solution of systems of linear equation.

 1: x0 ← 0

 2: r0 ← b

 3: normr0 ← norm2(r0)

 4: p0 ← r0

 5: error ← 1

 6: k ← 0

 7: while error > ERROR_MAX do  We stop if error is suffi ciently small

 8: α←
r r

p Ap

()

()
k
T

k

k
T

k
 9: xk + 1 ← xk + αkpk

10: rk + 1 ← rk + αkApk

11: β← + +r r

r r

()

()
k
T

k

k
T

k

1 1

12: pk + 1 ← rk + 1 − βkpk

13: error ← norm r
norm

()

r0
14: k ← k + 1

15: end while

0

40

80

120

160

200

Scalar
product

By Block By BlockSM CuBLAS CPU–MKL
1 core

1K × 1K
2K × 2K
4K × 4K
8K × 8K

G
�o

p
s

Figure 3. Running results obtained with different matrices. Here you can
see the results from three OpenCL codes running on four different matrix
sizes. (BlockSM = By Blocks using Shared M emory; CuBLAS = CUDA
Basic Linear Algebra Subroutines; and MKL = Math Kernel Library.)

CISE-15-1-Rodr.indd 52 12/12/12 12:09 PM

January/February 2013 � 53

OpenCL implementations whose kernels are
launched onto one, two, and four devices, respec-
tively. The listing in Figure 6 presents a sample of
the code generation for the DAXPY kernel. The
IP is inserted as a function and the kernel con-
sists of two gather functions (input tilers), one IP
call, and one scatter function (output tilers). The
number of running devices depends on the task-
allocation process. Usually, manually written codes
have better performance than automatic codes
due to the application-oriented development.
However, these generated CG implementations
have a more expressive performance (see Table 3)
compared to sequential code (benchmarks include
just the computing and data transfer times in the
CG loop). The multi-GPU aspect is verified in
the two other versions. The model compiler de-
cides equally the task (and associated data) parti-
tioning on the multiple devices. Nevertheless, the
performance gain isn’t linear, due to extra data
transfers between the CPU and devices. A de-
tailed analysis of solvers and multi-GPU can be
found elsewhere.9

F rom an abstract model defined using
UML/MARTE, we generated a com-
pilable OpenCL code and then a func-
tional, executable application. As an

MDE approach, this model is a quick codesign
and development tool for nonexpert program-
mers. We thus consider this approach an effective
operational code generator for the newly released
OpenCL standard.

This work also provides resources to model ap-
plications running on homogeneously configured
multidevices, offering two main contributions: it
lets the user model simple distributed-memory
aspects, such as data transfers and memory al-
locations, and it lets the user model the platform
and execute models of OpenCL. Additionally, its
smart transformation capabilities can determine
optimization levels in data communication and
data access. Studies have shown that these op-
timizations remarkably increase the application
performance.

With respect to language dependence, other
target languages can use the Hybrid metamodel
that we proposed. This hybrid can match mem-
ory, platform, and execution models, such as
CUDA. For future work, we’ll make model-to-
text templates (that we’ve already created) avail-
able on the code-generation engine, to exploit
multilanguage capabilities.�

Acknowledgments
This work is part of the Gaspard2 project, developed
by the Dynamic Adaptivity and Real-Time (DART)

α ←
(rκ

T rκ)
(pκ

T Apκ)

β ←
(rT rκ +1)

(rκ
T rκ)

κ+1

error ←
norm (r)
normr0

CGLoop

rr:
dotProd alpha:

ScalarDiv

<<shaped>>
Ap: dgemvCSR

<<shaped>>
x: DAXPY

minusalpha:
Negative

<<shaped>>
r: DAXPY

beta:
ScalarDiv

rrnew:
dotProd

<<shaped>>
p: DAXPY

pAp:
dotProd

error:
ScalarDivSqrt

error : Real
{1}

jA : Integer
{3442951}

iA : Integer
{132652}

p_k1 : Real
{132651}

x_k1 : Real
{132651}

r_k1 : Real
{132651}

p_k : Real
{132651}

A : Real
{3442951}

x_k : Real
{132651}

norm_r0 :
Real{1}

r_k : Real
{132651}

Architecture

hst: HOST {1}
<<shaped>>

p: CPU

dvc: DEVICE {1}
<<shaped>>

gp: GPU

<<allocate>>

<<allocate>>

xκ +1 ← xκ + ακ pκ
pκ +1 ← rκ+1 – βκ pκ

rκ+1 ← rκ – ακ Apκ

Figure 5. Conjugate gradient application model (based on the CG main loop algorithm shown in Figure 4). This is only an internal
view of the CG loop model. Data reading and startup configurations are defined by stereotyped blocks allocated on the CPU.

CISE-15-1-Rodr.indd 53 12/12/12 12:09 PM

54� Computing in Science & Engineering

Figure 6. Listing 1. OpenCL code generated for the DAXPY kernel.

 1 void daxpyfunc (const double * y, const double * x, double a)

 2 {

 3 y [0] = a * x[0] + y[0];

 4 }

 5 __kernel void daxpy_KRN (

 6 	 uint iNumElements ,

 7 	 const __global double * v2_daxpy_KRN,

 8 	 __global double * v1_daxpy KRN,

 9 	 const __global double ct_daxpy_KRN)

10 {

11 	 double v1_loc[1]; double v2_loc[1];

12 	 // get index into global data array

13 	 int iGID = get_global_id(0) +

14 	 get_global_size(0) * get_global_id(1) +

15 	 get_global_size(0) * get_global_size(1) * get_global_id(2);

16 	 if (iGID < iNumElements) // boundcheck

17 	 {

18 	 { // input tiler

19 	 uint tlIter[1];

20 	 uint tl[1];

21 	 uint ref[1];

22 	 uint index[1];

23 	 tlIter[0] = iGID%132651;

24 	 ref[0] = 0 + 1 * tlIter[0];

25 	 for (tl[0] = 0; tl[0] < 1; tl[0]++) {

26 	   index[0] = (ref[0] + 0 * tl[0])%132651;

27 	   v2_loc[tl[0] * 1] = v2_daxpy_KRN[index[0] * 1];

28 		 }

29 		 }

30 	 { // input tiler

31 	 uint tlIter[1];

32 	 uint tl[1];

33 	 uint ref[1];

34 	 uint index[1];

35 	 tlIter[0] = iGID%132651;

36 	 ref[0] = 0 + 1 * tlIter[0];

37 	 for (tl[0] = 0; tl[0] < 1; tl[0] ++) {

38 	   index[0] = (ref[0] + 0 * tl[0])%132651;

39 	   v1_loc[tl[0] * 1] = v1_daxpy_KRN[index[0] * 1];

40 		 }

41 		 }

42 		 daxpyfunc (v1_loc, v2_loc, ct_daxpy_KRN); //IP call

43 	 { // output tiler

44 	 uint tlIter[1];

45 	 uint tl[1];

46 	 uint ref[1];

47 	 uint index[1];

48 	 tlIter[0] = iGID%132651;

49 	 ref[0] = 0 + 1 * tlIter[0];

50 	 for (tl[0] = 0; tl[0] < 1; tl[0]++) {

51 	   index[0] = (ref[0] + 1 * tl[0])%132651;

52 	   v1_daxpy_KRN[index[0] * 1] = v1_loc[tl[0] * 1];

53 		 }

54 		 }

55 	 }

56 }

CISE-15-1-Rodr.indd 54 12/12/12 12:09 PM

January/February 2013 55

team of Laboratoire d’Informatique Fondamentale
de Lille (LIFL)/INRIA Lille. It has been funded by the
Conseil Régional Nord-Pas-de-Calais and Valeo.

References
1. Khronos OpenCL Working Group, The OpenCL Speci-

fi cation, version 1.1, revision 44, 2011.

2. D. Lugato, J.-M. Bruel, and I. Ober, “Model-Driven

Engineering for High Performance Computing Appli-

cations,” Proc. Modeling Simulation and Optimization

Focus on Applications, Acta Press, 2010, pp. 303–308.

3. A. Gamatié et al., “A Model Driven Design Frame-

work for Massively Parallel Embedded Systems,”

ACM Trans. Embedded Computing Systems, vol. 10,

no. 4, 2011, article no. 39.

4. C. Glitia et al., Repetitive Model Refactoring for Design

Space Exploration of Intensive Signal Processing Applica-

tions, tech. report, INRIA, 2009.

5. P. Boulet, Array-OL Revisited, Multidimensional Intensive

Signal Processing Specifi cation, tech. report, INRIA, 2007.

6. W. Rodrigues, “A Methodology to Develop High

Performance Applications on GPGPU Architectures:

Application to Simulation of Electrical Machines,”

doctoral thesis, Computer Science Dept., Univ. des

Sciences et Technologie de Lille, 2012.

7. G.H. Golub and C.F. Van Loan, Matrix Computations,

3rd ed., The Johns Hopkins Univ. Press, 1996.

8. W. Rodrigues et al., “Automatic MultiGPU Code

Generation Applied to Simulation of Electrical

Machines,” IEEE Trans. Magnetics, vol. 48, no. 2,

2012, pp. 831–834.

9. A. Cevahir, A. Nukada, and S. Matsuoka, “High Per-

formance Conjugate Gradient Solver on Multi-GPU

Clusters Using Hypergraph Partitioning,” Computer

Science Research and Development, vol. 25, nos. 1–2,

2010, pp. 83–91.

a. wendell O. rodrigues is an associate professor in
the Telematics Department at the Federal Institute
of Education, Science, and Technology of Ceará. His
research interests include parallel architectures and
programming, and software engineering, specifi cally
with regard to GPUs and high-level software speci-
fi cation. Rodrigues has a PhD in computer science
from the University of Lille, France. Contact him at
wendell.rodrigues@inria.fr.

Frédéric Guyomarc’h is an associate professor in the
Computer Science Department at the University of
Lille. His research interests focus on high-performance
computing, from algorithms for numerical computa-
tion to compilation techniques to generate optimized
code for such algorithms. Guyomarc’h has a PhD
in computer science from the University of Rennes,
France. Contact him at frederic.guyomarch@inria.fr.

Jean-luc dekeyser is a computer science professor at
the University of Lille. His research interests include
embedded systems, system-on-chip codesign, syn-
thesis and simulation, performance evaluation, high-
performance computing, model-driven engineering
(MDE), dynamic reconfiguration, and Chip-3D.
Dekeyser has a PhD in computer science from the Univer-
sity of Lille. Contact him at jean-luc.dekeyser@inria.fr.

table 3. performance results (tol = 1e-10).*

conjugate gradient no. of iterations time (in seconds) speedup gfl ops
Matlab PCG 117 3.17 1 0.303

OpenCL (1 GPU) 116 0.659 4.81 1.45

OpenCL (2 GPUs) 116 0.461 6.87 2.07

OpenCL (4 GPUs) 116 0.380 8.34 2.50

* Tol is an indicator for the maximum iterations of tolerance; it’s a minimum error used to stop the iterations.

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPuTING

IEEE Transactions on Emerging Topics in Computing publishes papers
on emerging aspects of computer science, engineering, technology,
and applications not currently covered by other IEEE Computer Society
Transactions. TETC is an open access journal which allows for wider
dissemination of information.

SUBMIT TODAY!
Publishing in 2013

Submit your manuscript at: www.computer.org/tetc. TETC aggressively
seeks proposals for Special Sections and Issues focusing on emerging
topics. Prospective Guest Editors should contact the EIC of TETC (Dr.
Fabrizio Lombardi, lombardi@ece.neu.edu) for further details.
Submissions are welcomed on any topic within the scope of TETC. Some
examples of emerging topics in computing include:

• IT for Green
• Synthetic and organic computing structures
 and systems
• Advanced analytics
• Social/occupational computing
• Location-based/client computer systems
• Electronic game systems

• Health-care IT
• Computer support for peer tutoring and
 learning
• Creation and management of learning
 objects, tools, and techniques
• Advanced paradigms and initiatives in
 computing and storage with new technologies

CISE-15-1-Rodr.indd 55 12/12/12 12:09 PM

