
HAL Id: hal-01582989
https://inria.hal.science/hal-01582989

Submitted on 6 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Simulation-Based Performance Analysis of
Channel-Based Coordination Models
C. Verhoef, C. Krause, O. Kanters, R. van Der Mei

To cite this version:
C. Verhoef, C. Krause, O. Kanters, R. van Der Mei. Simulation-Based Performance Analysis of
Channel-Based Coordination Models. 13th Conference on Coordination Models and Languages (CO-
ORDINATION), Jun 2011, Reykjavik, Iceland. pp.187-201, �10.1007/978-3-642-21464-6_13�. �hal-
01582989�

https://inria.hal.science/hal-01582989
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Simulation-based Performance Analysis of
Channel-based Coordination Models

C. Verhoef1?, C. Krause2??, O. Kanters1 and R. van der Mei1,3

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
2 Hasso Plattner Institute (HPI), University of Potsdam, Germany

3 Vrije Universiteit Amsterdam (VUA), The Netherlands

Abstract. Quantifying the performance of component-based or service-
oriented systems is a complex task, e.g., it is non-trivial to calculate the
end-to-end quality of service of a composite Web service. An established
approach to reason about such systems in general is the use of coordina-
tion models, which can provide a formal basis for both their verification
and implementation. An example of such a model is the channel-based
coordination language Reo and its probabilistic extension Stochastic Reo.
However, all existing performance analysis approaches for Stochastic Reo
are restricted to the use of exponential distributions. To this end we in-
troduce a transition structure, which enables a simulation approach for
performance evaluation in Reo, enabling the use of arbitrary distributions
and predefined probabilistic behaviors. Our approach supports steady-
state and transient analysis and, moreover, scales much better than the
existing automata-based algorithms.

1 Introduction

Non-functional requirements, such as reliability, security and performance are
becoming of increasing importance in many branches of component-based and
service-oriented software engineering. Particularly the quantitative aspects in-
herent in the performance evaluation of composite and distributed systems in-
troduce major challenges. Even if the quality of service (QoS) properties of every
individual service and connection is known, it is far from trivial to reason about
the end-to-end QoS of the composed system. This is due to the fact that syn-
chronization constraints as well as buffering and routing policies between the
different parties in a network can have an impact not only on its qualitative
behavioral properties, but also on its overall performance. In the worst case, a
‘bad’ performance, e.g. if a service takes too long to respond to a request, can
even have an influence on the functional properties of the system. However, in
this paper we consider rather typical questions of performance evaluation, such
as: Where are the bottlenecks in the network? What is the expected delay and
the maximum throughput? How much time does it take until a certain event
happens? What is the expected utilization of a buffer?

? Corresp. author, e-mail: C.G.Verhoef@cwi.nl. Supported by NWO project Cooper.
?? Supported by the research school in ‘Service-Oriented Systems Engineering’ at HPI.

2 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

Building software compositionally out of a set of primitive components or ser-
vices is a key task in software engineering in general. The coordination paradigm
provides concepts to properly describe the allowed interactions between the ac-
tive entities in a system. A specific coordination approach is considered in the
channel-based coordination language Reo [1], in which compositionally built
components connectors are used as coordination artifacts. Connectors in Reo
can be seen as a kind of ‘glue code’ which coordinate the interactions among a
set of components or services from outside. To enable performance evaluation of
component connectors, Stochastic Reo [2] provides an extension that allows to
annotate connectors with stochastic performance properties. Specifically, com-
munication channels in Stochastic Reo are annotated with processing delays.
Moreover, to reason about the end-to-end QoS of a connector, its boundary
nodes are annotated with data arrival rates, modeling the interaction with its
environment. In this way, Stochastic Reo provides detailed information about the
performance of the primitive buildings blocks on the one hand, and the external
world on the other.

The existing techniques for performance evaluation in Stochastic Reo are
all based on analytical methods and essentially follow the same recipe. An
automata-based model is used to describe the semantics of every primitive chan-
nel in a connector. By composing all these automata, a behavioral model for
the whole connector is built. Then, using the stochastic annotations of the
channels and boundary nodes, a probabilistic performance model, specifically:
a continuous-time Markov chain is generated. Finally, the Markov model is fed
into a tool for probabilistic analysis, such as PRISM [3] or Matlab. This ap-
proach was taken in [4] using Quantitative Constraint Automata (QCA), in [2]
using Quantitative Intentional Automata (QIA) and in [6] using Stochastic Reo
Automata (SRA). An implementation of the QIA-based approach is described
in [7]. However, all of these approaches to performance evaluation in Reo have
two main limitations: (i) they are all restricted to the use of exponential dis-
tributions, and (ii) they suffer from the state space explosion problem, because
the automaton / continuous-time Markov chain for the whole system has to be
computed in advance.

Complementary to the existing analytical methods, we consider a simulation
approach for performance analysis in Stochastic Reo, which enables the use of
arbitrary (not just exponential) distributions for describing stochastic properties
of channels and components. Our approach is based on the coloring semantics [8]
of Reo, which enables a step-wise execution scheme (cf. [9]). Thus, state spaces
can be generated on-the-fly during the simulation without requiring to keep track
of the execution history. Therefore, our approach scales much better than the
existing automata-based techniques, which require to compute the whole state
space before the actual analysis starts. The coloring semantics which we use
in our approach, supports context-dependent primitives, such as the LossySync
channel (cf. [8]). Moreover, it allows to model the availability of I/O requests
at the boundary of a connector, which is a key ingredient to reason about the
end-to-end performance of a connector.

Simulation of Channel-based Coordination Models 3

We have implemented our simulation approach for Reo in a sophisticated
graphical tool, as part of the Eclipse Coordination Tools (ECT) [10]. Connectors
can be specified using a graphical editor in ECT. By annotating these graphical
connector models with stochastic information, our simulator generates a large
number of performance statistics. Our tool supports both steady-state and tran-
sient analysis and can be applied to connectors built using all standard and
even user-defined Reo channels. To analyze specific behaviors of the modeled
system, a number of tools are available to the user, such as automatic deadlock
and livelock detection, visualization of the connector colorings, and charts for
the behavior of simulation results during the simulation. Various stopping con-
ditions can be specified for the simulation. Our simulator generates a number of
statistical outputs depending on the chosen type of simulation, for an overview
we refer to Section 4.1.

Related work. Model-based methodologies to assess performance of distributed
software systems can be categorized [11] in: queuing networks, state/transition-
based analysis, and software performance engineering. A survey of the avail-
able results in the theory of queuing networks is given in [12]. The Method
of Layers in [13], models the responsiveness of composite services using closed
queuing networks using Mean Value Analysis. Stochastic rendezvous networks
are introduced in [14] for performance evaluation of distributed systems with
synchronization. Software Performance Engineering is suggested in [15] to en-
able the integration of performance analysis into the software development pro-
cess. Simulation of stochastic graph transformation systems is described in [16].
In [17] a methodology for simulation of embedded systems is presented. Yacoub
et al. [18] focus on reliability analysis for component-based systems. In [19] a
reasoning technology to simulate and verify pure Web services is defined. In [20]
Generalized Stochastic Petri Nets (GSPN) are proposed for performance anal-
ysis of multiprocessor systems. Performance evaluation is done by generating
continuous-time Markov chains [21]. Haas provides an overview of simulation
techniques for GSPNs [22]. GreatSPN is a simulation tool for performance eval-
uation of distributed systems using GSPNs [23]. Compared to GSPNs, Reo has
a strong notion of synchronization, which, just like the notion of context de-
pendency, propagates through connectors, both not supported by GSPNs. Due
to this, traditionally automata based models are used as semantical models for
Reo.

Acknowledgments. We are grateful to Farhad Arbab and anonymous reviewers
for their insightful comments.

Organization. Section 2 gives a brief overview of (Stochastic) Reo. We define the
operational semantics underlying our simulation and introduce our transition
system in Section 3. In Section 4 we present our simulation-based stochastic
analysis procedure. Our simulation tool is described in Section 5. We present
two case studies in Section 6. Section 7 contains conclusions and future work.

4 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

2 Channel-based coordination with Reo

The simulation approach we present here targets the channel-based coordina-
tion language Reo [1]. Channels in Reo are entities that have exactly two ends,
which can be either source or sink ends. Source ends accept data into, and sink
ends dispense data out of their channel. Reo allows directed channels as well as
drain and spout channels, which have respectively two source and two sink ends.
Channels may impose constraints on the dataflow at their ends. For instance,
the communication through channels can be (a)synchronous and (un)buffered.

For the scope of this paper, we consider a fixed set of channels, summarized in
Table 1. The Sync channel consumes data items at its source end and dispenses
them at its sink end. The I/O operations are performed synchronously and
without any buffering. Thus, the channel blocks if the party at the sink end
is not ready to receive data. The LossySync channel behaves in the same way,
except that it does not block the party at its source end. Instead, the data
item is consumed and destroyed by the channel if the receiver is not ready to
accept it. The SyncDrain channel is also synchronous, but it differs in the fact
that it has two source ends through which it consumes and destroys data items
synchronously. The FIFO channel is a directed, asynchronous channel with a
buffer of size one.

Sync LossySync SyncDrain FIFO

Table 1. Some basic Reo channels

Channels in Reo can be joined together using nodes, which read data items
from sink ends and write data items to source ends of channels that coincide
in it. Nodes in Reo behave as non-deterministic mergers on the sink ends and
as (synchronous) replicators on the source ends. This means that a node non-
deterministically reads a data item from one of the incoming sink ends and
replicates it to all outgoing source ends without buffering it.

2.1 Building connectors

In Reo, channels and nodes are joined together to build so-called connectors
which resemble electronic circuits. These connectors are used as glue code be-
tween components or services and essentially enforce a communication protocol
between them. This coordination of components or services is performed from
outside and without their knowledge, which is also referred to as exogenous co-
ordination.

An important aspect of Reo is the fact that nodes do not buffer data items and
therefore allow synchrony to propagate through the connector. For instance, a
sequence of n Sync channels joined together using nodes has the same qualitative
behavior as a single Sync. Note also that Reo allows an arbitrary mixing of
synchrony and asynchrony.

Simulation of Channel-based Coordination Models 5

Example 1. We consider a simple instant messenger application, depicted in
Fig. 1. Two Client components exchange messages via a connector. Messages
are exchanged via FIFO channels and are, thus, buffered. When leaving the
buffer again, the messages are synchronously replicated by the node behind the
FIFO and sent to both clients. This can succeed only when both clients are ready
to accept data, i.e. when there are pending read requests at both in ports. In a
nutshell, this connector ensures that the clients get –as an acknowledgment– a
copy of their own message when the other client has successfully received it.

Fig. 1. Instant messenger application modeled in Reo

2.2 Stochastic Reo

Stochastic Reo is an extension of Reo annotated with stochastic properties. In
particular, we distinguish between the following two quantitative aspects in Reo:

– Channel delays: Every channel has one or more associated delays repre-
sented by a set of random variables. Such a delay models how long it takes for
a channel to transfer or process a data item. For instance, a LossySyncA→B

has two associated delays ‘dAB ’ and ‘dALost ’, respectively for successful
dataflow through the channel, and losing data in the channel if B is not ready
to receive data. A FIFOA→B has two associated delays: ‘dAF ’ and ‘dFB ’.
The former represents the delay for the dataflow from A into the buffer. The
latter models the dataflow out of the channel. Sync and SyncDrain channels
have only one delay, i.e., for successful dataflow.

– Arrivals at nodes: I/O operations are performed at the boundary nodes
of a connector through which it interacts with its environment (depicted as
empty circles). We assume the time between consecutive arrivals of read and
write requests at the boundary nodes depends on their associated stochastic
processes. For instance, ‘dA’ and ‘dB ’ in the connector in Fig. 1 represent
the associated arrival processes of nodes A and B. Furthermore, at most one
request at each boundary node can wait for acceptance. If a boundary node
is occupied by a pending request, then the node is blocked and consequently
all further arrivals at that node are lost.

Note that arrivals at nodes are considered only for boundary nodes, e.g.A,B,C,D,
but not X,Y in Fig.2. Internal nodes are used for synchronous dataflow only and
merely pump data in the connector, without interaction with the environment.
Therefore, internal nodes have neither an associated arrival rate, nor a delay.

6 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

2.3 Distributions

In our simulation approach and particularly in the simulation tool which we
present in Section 5, we support a number of distribution types, some of them
being general stochastic distributions, while others being special constructs for
steering the simulation process. The types of supported distributions and their
parameters are listed in Table 2. The value after the parameters between the
brackets indicates the type of the parameter, where b = Boolean, i = integer,
r = real, and s = string.

Distribution Param 1 Param 2 Param 3

Beta α (r) β (r)

Binomial n (i) p (r)

Chi2 k (i)

Constant (Con) value (r)

Exponential (Exp) λ (r)

F d1 (r) d2 (r)

Gamma k (r)

Lognormal µ (r) θ (r)

Poisson λ (r)

Triangular (Tri) low (r) high (r) avg (r)

Uniform low (r) high (r)

Weibull k (r)

IfNeeded

Always

Trace path (s) loop (b)

Table 2. Supported distributions

Channel Delay 1 Delay 2

FIFOA→X Exp(2) Exp(1)

SyncX→C Tri(5, 10, 7) −
FIFOD→Y Exp(2) Con(0)

SyncY →B Con(0) −
SyncX→B Exp(1) −
SyncY →C Exp(2) −

Table 3. Example channel delays

Node Arrivals

A Exp(1)

B Exp(10)

C Exp(1/2)

D Exp(1/8)

Table 4. Example node arrival rates

Example 2. For the instant messenger example, we consider the channel delay
and node arrival parameters chosen such that analysis is not trivial, given in
Table 3 and 4, respectively. We assume exponential distributions for the request
arrivals at all boundary nodes and for most of the channel delays. However,
we assume that the dataflow between the buffer of FIFOD→Y to the boundary
node B can be performed without any delay (Con(0)). Moreover, the delay of
SyncX→C is approximated using a triangular distribution.

3 Coloring semantics with states

In our simulation approach, we use the so-called coloring semantics [8] of Reo,
introduced by Clarke et al. to properly model context-dependent behavior as
required for instance for the LossySync channel. The basic idea of the coloring
semantics is to associate flow and no-flow colors to channel ends. As shown in [8]
one flow and two no-flow colors are sufficient to model context-dependency.
Essentially, the two different no-flow colors are used to distinguish between ab-
sence and presence of an I/O request. Table 5 depicts the names and graphical
notations of the flow and the two no-flow colors, as used in this paper.

Simulation of Channel-based Coordination Models 7

Color name Symbol

flow

no-flow-provide-reason

no-flow-require-reason

Table 5. Colors

Sync Merger

(S1)

(S2)

(S3)

(S4)

(M1) (M2)

(M3) (M4)

Table 6. Example colorings

The color flow represents ordinary dataflow at a channel end. The two no-
flow colors are used to encode a direction of the reason for the fact that no
dataflow is possible. Intuitively, no-flow-provide-reason models the fact that the
receiving or sending party is not ready to perform an I/O operation. Conversely,
no-flow-require-reason says that the party is ready to receive or send data, but
is not allowed to perform the operation. At the boundary of a connector, the
two no-flow colors can be interpreted as lack of dataflow – either because of a
missing, or in spite of a present I/O request.

Valid behaviors of channels are described as colorings of their respective
ends. Table 6 depicts the colorings of the Sync the Merger primitive. The latter
is used for modeling nodes in Reo. For the colorings of other primitives such as
the FIFO channel we refer to [8]. Note that the colors are always read from the
perspective of the primitive. For instance, in coloring (S2) of the Sync the party
at the right end provides a reason for no flow, whereas the source end on the left
requires a reason. This models the behavior where data is available at the source
end but the receiver at the sink end is not ready to accept data. Similarly, in
coloring (S3) there is no flow, because there is no data available at the source
end. Finally, coloring (S4) models the situation where no data is available and
the receiver is also not ready to accept any data. Similarly, the colorings of the
Merger primitive in Table 5 show the valid dataflows through sink nodes and
how reasons for no dataflow are being propagated.

Valid colorings of primitives are joined together and give rise to valid colorings
of the whole connector (see [8] for details).

Example 3. Fig. 2 depicts an example coloring of the instant messenger appli-
cation. The coloring is based on the following state of the connector: FIFOA→X

is full, FIFOD→Y is empty, there are read requests at the boundary nodes B
and C, and no write requests at A and D. This particular coloring models a
dataflow action from the full FIFOA→X to both clients, i.e., a synchronized
message delivery and acknowledgment.

Fig. 2. A coloring of the instant messenger application

8 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

3.1 Coloring transition system

Colorings describe only dataflow events, but not the state of primitives or the
whole connector. Therefore, we now incorporate a notion of state into the col-
oring model, which gives rise to a transition structure defined in the following.
Let Color be a fixed set of flow colors, as defined in Table 5.

Definition 1 (coloring transition system). A coloring transition system
C = (N,B,Q,=⇒) consists of a set of nodes N , a set of boundary nodes B ⊆ N ,
a set of states Q and a set of coloring transitions =⇒⊆ Q× ColorN ×Q.

We often write q =⇒c q
′ for a transition where c ∈ ColorN is a coloring. Colorings

model dataflows, which is why we also refer to transitions as dataflow transitions
or just dataflows.

However, this model does not reflect the interaction of the connector with
its environment. Specifically, boundary nodes receive requests from their com-
ponents. Therefore, we model the state of boundary nodes explicitly as:

– States = {empty ,waiting , busy}

A boundary node is empty when there is no I/O request pending, waiting when
the node received an I/O request pending for processing, and busy when it is
sending or receiving data. We model the state change of boundary nodes on
request arrivals using the map Arrival : States → States defined as follows:

– Arrival = {empty 7→ waiting ,waiting 7→ waiting , busy 7→ busy}

In the following, we relate the state of the boundary nodes with the coloring
semantics. Specifically, we define a transition structure where colorings are being
enabled based on the presence/absence of requests. Moreover, we model the start
and the end of dataflows as distinct events. This is important to measure, e.g.,
the duration of dataflows and the waiting time of requests at boundary nodes.

Definition 2 (induced intensional coloring transition system). Given a
coloring transition system C = (N,B,Q,=⇒). The induced intensional coloring

transition system is a tuple C = (Q,→, start=⇒, end=⇒) where:

– Q = Q×StatesB × 2 is a set of states where a state q∈Q consists of a state
q•∈Q together with (qn)n∈B ∈ StatesB and q∼ ∈ {true, false}

– → ⊆ Q×B ×Q is a set of request arrival transitions

–
start
=⇒, end=⇒ ⊆ Q× ColorN ×Q are sets of dataflow start and end transitions

where the transition relations are defined by the following rules:

∃n∈B : q′n = Arrival(qn) ∀m 6= n∈B : q′m = qm q′• = q• q′∼ = q∼
q →n q′

(1)

q• =⇒c q
′
•

q∼ = false ∀n ∈ B :
q′∼ = true

c(n) = ⇒ qn = q′n = empty
c(n) = ⇒ qn = q′n = waiting
c(n) = ⇒ qn = waiting ∧ q′n = busy

q
start
=⇒c q′

(2)

Simulation of Channel-based Coordination Models 9

q∼ = true

p
start
=⇒c p

′→∗q q′∼ = false
∀n ∈ B :

qn = busy ⇔ q′n = empty
qn 6= busy ⇔ q′n = qn

q
end
=⇒c q′

(3)

In an intensional coloring transition system (ICTS), we distinguish between re-
quest/data arrival transitions (1), dataflow start (2), and dataflow end (3) tran-
sitions. Moreover, the state space of an ICTS is enriched with the states of the
boundary nodes and a global dataflow flag. This operational semantics is the
basis of our simulation approach.

4 Simulation-based stochastic analysis

In this section, we show how to construct a discrete event simulator engine
(DES) [24] for Stochastic Reo, which can be used for performance evaluation of
connectors. The core idea of simulation in general is to generate a large number
of sample path sequences, which are used as a characterization of the system
behavior. Formally, a sample path is a realization of a (stochastic) process X(t)
of transitions between states over time. In a DES, states change at discrete
points in time, rather than continuously with time. An advantage of simulation
over algorithmic approaches, such as QIA [2], is that all kinds of stochastic
distributions can be used for specifying channel delays and request arrivals at
nodes, in particular the ones given in Table 2. As underlying stochastic semantic
model for our approach we use a generalized semi-Markov process (GSMP), a
classical model for discrete event stochastic systems [25].

Definition 3 (generalized semi-Markov process). A generalized semi-Markov
process is a stochastic process X(t) with state space S generated by a stochastic
timed automaton A defined as A = (S,E, F (x), T (x, e), p0, P), with E a set of
events, F (x) the set of feasible events at state x ∈ S, T (x, e) the state transition
function with x the current state and event e ∈ E, p0 the probability mass for
the initial state, and P the probability function for all events.

Lemma 1. Let C = (Q,→, start=⇒, end=⇒) be an ICTS. This induces a minimal
GSMP A = (S,E, F (x), T (x, e), p0, P) such that the states are given by S = Q,
events are E = {requestb | b ∈ B} ∪ {startc | c ∈ ColorN} ∪ {stopc | c ∈ ColorN},
and the transitions T are given by the union of →, start=⇒ and

end
=⇒.

Proof. The semi-Markov property holds, because for a transition s
e→ s′ the next

state s′ is depending only on the current state s ∈ S and event e ∈ E. ut

Note that the probability function P and the initial probability mass p0 are
derived from the channel delays and request arrival distributions specified by
the user. Thus, mapping the semantical ICTS model to a GSMP enables the use
of discrete event simulation for performance analysis of connectors.

10 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

Since we are not limited to use only continuous distributions, to model de-
lays and inter-arrival times, multiple events could take place at the same time.
In such a case, the correct DES process order of the event sequence is crucial.
Therefore, we enforce that dataflow events take precedence over request arrival
events. Furthermore, in this case, multiple possible dataflows, i.e. colorings, can
be activated. A scheduler then selects one dataflow based on a given execution
policy, such that only one dataflow is active at a time to ensure proper synchro-
nization.

4.1 Simulation and analysis

We distinguish between two types of simulation: steady-state analysis, and tran-
sient analysis. Moreover, we consider a number of stopping criteria, i.e., maxi-
mum simulation time, maximum number of events, deadlocks, livelocks, and ob-
served states. The latter offers the possibility to end the simulation in a specific
state, which is particularly important for transient analysis.

Channel delays and node inter-arrival times. As described in Section 2.2, we
associate a number of stochastic delays to every channel, and request inter-arrival
times to boundary nodes. The derived GSMP allows the distributions to be
general stochastic distributions, as in Table 2. Besides the standard distributions
there are some special constructs. IfNeeded and Always can be used to model
inter-arrival times without specifying a particular distribution, but depending
on the current state of the connector. IfNeeded ensures that a boundary node
always is in the empty or busy, but never waiting. Thus, request are spawned on
demand. Always ensures that a node is never in the empty state. Whenever the
node is finished with a dataflow, it immediately switches to waiting. Moreover,
predefined inter-arrival times and channel delays can be specified as a Trace.

QoS measures. Among others, the following QoS measures can be computed
during the simulation. The channel utilization, channel locked utilization, and
dataflow utilization represent the percentage of time a channel is busy handling
requests, locked for further processing, and the time a certain dataflow is ac-
tivated, respectively. Request arrival statistics for boundary nodes include the
expected node state and request observation state. The latter is the probability for
the node being in a certain state during a request arrival. The expected waiting
time measure is the expected waiting time at each boundary node. The condi-
tional waiting time is the waiting time after a request arrived at a node. For
FIFO channels, the expected buffer utilization can be calculated. For LossySync
channels, the expected loss ratio of requests is an interesting measure. For nodes,
the expected merger direction gives further insight about the internal routing of
data in the connector. Global QoS measures of interest include the steady state
probabilities of the connector and the dataflow probabilities. The latter is the
probability of a specific coloring being active.

Simulation of Channel-based Coordination Models 11

End-to-end delay A special role plays the expected end-to-end delay between
a given start to another end boundary node of a connector. We compute the
end-to-end delay of dataflows using a recursive depth-first traversal through
all channels and nodes with active dataflow. Based on the active dataflow, we
calculate the longest dataflow path through the connector, from the given start
to the given end point. This uniquely determines the duration of the dataflow
and, thus, the point in time where the dataflow is finished. A detailed algorithm
for computing the end-to-end delay is given in [26].

5 Tool support

We have implemented the presented simulation approach for Reo in discrete
event simulation tool as part of the Eclipse Coordination Tools [10]. All distri-
bution types given in Table 2 and all QoS measures described in Section 4.1,
including end-to-end delays, are supported by this tool. The current scheduler
implementation selects a dataflow randomly, with even distribution, thus does
not prioritize. For all statistics, the expectation, standard deviation, the coeffi-
cient of variation, and confidence interval are calculated. ECT includes a graph-
ical editor for specifying connector models. These graphical connector models
are annotated with stochastic information which is sufficient for performing the
stochastic simulation with our tool. The simulator is integrated with the graph-
ical environment of ECT, as shown in the screenshot in Fig. 3, and generates a
number of charts and diagrams.

Our simulation tool supports both steady-state and transient analysis. Steady-
state analysis is only possible if the system actually reaches steady-state, which
is not guaranteed in simulation-based analysis. Therefore, we have implemented
a number of tools to facilitate convergence checking. Specifically, the tool gener-
ates charts that show how the different QoS measure develop over time during
the simulation runs. Furthermore, the tool computes the number of observations,
result histograms, and supports automatic deadlock and livelock detection.

All analysis results are available in the user interface, and can can be addi-
tionally exported for subsequent analysis with other tools. Dataflows, i.e., col-
orings, are visualized graphically which provides an intuitive way to investigate
the dataflow statistics.

Depending on the size of the modeled system, state spaces can grow very
fast. However, the implementation of the coloring semantics in ECT supports
step-wise execution. Our simulation tool uses this functionality for an on-the-fly
generation of the state space, thus, enabling simulation without prior computa-
tion of the whole state space.

6 Case studies

In the following, we present two case studies for our simulation approach. We
perform steady-state simulations with the ending condition of 10,000,000 events,

12 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

Fig. 3. Simulation-based stochastic analysis in the Eclipse Coordintation Tools

and a warm-up period of 10,000 events. A comprehensive case study of an in-
dustrial software system is described in [27].

6.1 Case 1: Instant Messenger

In this example we investigate the instant messenger example, introduced in
Section 2.1. As distinct from existing performance evaluation techniques for Reo
our approach allows us to analyze in detail the impact of the configuration, as
specified in Table 3, on the behavior of the instant messenger.

Using our simulator, we found an asymmetry between the two dataflow re-
gions of the message delivery parts, caused by the configuration. For Client 1,
this is the dataflow represented by the coloring in Fig. 2. For Client 2 it is the
symmetric dataflow. Using the dataflow utilization statistic, we found out that
in 54.0% of the time, dataflow for the message delivery of Client 1 is active,
versus only 3.6% of the time for the message delivery of Client 2. We can also
look to the dataflows from another perspective, i.e., whether the clients are both
sending, both receiving, one is sending and one is receiving, or both are idle.
The results are shown in Table 7.

When we look to the merging directions of node B, 64.1% of the data arrives
from the SyncX→B (acknowledgment message from Client 1) and only 35.9%
arrives from the direction of node Y . Due to the symmetrical structure of the

Simulation of Channel-based Coordination Models 13

Sending Receiving Probability

– – 32.9%
– X 57.3%
X – 9.4%
X X 0.3%

Table 7. Dataflow probabilities

µD,fifo A→ C D → B
Delay σ Delay σ

0.125 10.867 0.110 14.734 0.200
2.000 7.677 0.039 8.343 0.139
50.000 7.642 0.029 8.361 0.117

Table 8. End-to-end delays

connector, the merging directions for node C are the same. From the buffer
utilization statistics, we derive that the buffer between A and X is full 92.8% of
the time, compared to 59.5% for the buffer between D and Y . Using the expected
node states, blocking probabilities of all boundary nodes can be inspected (the
percentage time the boundary node is waiting or busy). The probabilities are,
for node A: 87.1%, B: 98.0%, C: 59.7%, and D: 41.9%. The very high blocking
probability of node B can be explained by the very high arrival rate of requests
at B and the high delay of the dataflow of the message delivery part of Client 1.

In Table 8, the effect on the end-to-end delay from A to C and from D to
B is shown, varying the delay µD,fifo between D and the buffer of FIFOD→Y .
When we decrease the delay from 0.5 to 0.02 (rate 2.0 and 50.0), the decrease in
delay between A and C is very small (7.677 vs. 7.642). If we increase the delay
from 0.5 to 8.0 there is, as one would expect, a major increase in the end to end
delay from D to B. Interestingly, the delay from A to C increases as well. This
is due to the fact that if the dataflow between D and the FIFO buffer is active,
no other dataflow can happen at the same time and the waiting time of requests
at node A increases and therefore also the end-to-end delay between A and C.

6.2 Case 2: Production line decision making

In this example, we model a production line in Reo, as shown in Fig. 4. It uses
1 permanent server on the right-hand side, and whenever there are 3 jobs in the
queue, modeled by a sequence of FIFO channels, one additional server is started.
Whenever a job is assigned to the queue, it will wait until it has been serviced
by server 1, so it will never go to server 2. We vary the service rate of the base
server and keep all other parameters constant to investigate the impact on the
queue length.

For the arrival rate we have chosen a Weibull distribution with k = 1.5. Both
servers have a log-normal distribution with µ = 0 and σ = 1. We vary the µ
of the first server. The average queue length of the queue before the permanent
server is shown in Figure 5. The average inter-arrival times at boundary node
A is around 0.9, so when the average server duration of the base server exceeds
this time, the server is not capable of handling all request. Because of this, the
queue will fill up and the second server will be used to help the first server. When
the average service duration is around 0.9, the average queue length increases
rapidly, until it converges to the maximum queue size. When the service time
becomes large enough, almost all of the requests will be redirected to server 2
or blocked if server 2 is also not available.

14 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

Fig. 4. Reo connector for a production line

Fig. 5. Average queue length for production line

7 Conclusions and future work

We introduced a performance evaluation approach for Reo based on a new tran-
sition system and discrete event simulation. Our approach is more powerful then
the existing techniques for performance analysis in Reo in two respects: (i) it
allows the use of arbitrary distributions, and (ii) scales much better due to an
on-the-fly state-space generation. We implemented our approach in a tool that
supports both steady-state and transient analysis.

As future work, we plan to support the use of convergence of statistics as
stopping criteria and to add automatic sensitivity analysis. To gain more insight
in the precise distribution of the results of statistics, keeping all information
of every single observation, and a detailed distribution plot, will be helpful.
Another promising extension is to link current automata-based models directly
to the simulator state-space. Thereby, it will be possible to define statistics and
stopping criteria for different semantical models.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

2. Arbab, F., Chothia, T., Mei, R., Meng, S., Moon, Y.J., Verhoef, C.: From coor-
dination to stochastic models of QoS. In: Proc. of COORDINATION’09, Berlin,
Springer-Verlag (2009) 268–287

Simulation of Channel-based Coordination Models 15

3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model
Checker. In: Proceedings of TOOLS’02. LNCS, Springer-Verlag (2002) 200–204

4. Arbab, F., Chothia, T., Meng, S., Moon, Y.: Component connectors with QoS
guarantees. In: Proc. of COORNATION’07. LNCS 4467, Springer (2007) 286–304

5. Chothia, T., Kleijn, J.: Q-Automata: Modelling the Resource Usage of Concurrent
Components. ENTCS 175(2) (2007) 153–167

6. Moon, Y.J., Silva, A., Krause, C., Arbab, F.: A compositional semantics for
stochastic Reo connectors. In: Proc. of FOCLASA’10. (2010) 93–107

7. Arbab, F., Meng, S., Moon, Y., Kwiatkowska, M., Qu, H.: Reo2MC: a tool chain
for perf. anal. of coordination models. In: Proc. of FSE, ACM (2009) 287–288

8. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and
context dependency. Science of Computer Programming 66(3) (2007) 205–225

9. Proença, J.: Deployment of Distributed Component Based Systems. PhD thesis,
Leiden University, The Netherlands (2011)

10. ECT: Eclipse Coordination Tools. http://reo.project.cwi.nl/ (2011)
11. Gijsen, B., van der Mei, R., van den Berg, J.: An Integrated Performance

Modeling Approach for Distributed Applications and ICT Systems. In: CMG-
CONFERENCE. Volume 2., Computer Measurement Group; 1997 (2003) 471–482

12. Boxma, O., Daduna, H.: Sojourn times in queueing networks. Stochastic Analysis
of Computer and Communication Systems (1990) 401–450

13. Rolia, J., Sevcik, K.: The method of layers. Software Engineering, IEEE Transac-
tions on 21(8) (2002) 689–700

14. Woodside, M., Neilson, J., Petriu, D., Majumdar, S.: The stochastic rendezvous
network model for performance of synchronous client-server-like distributed soft-
ware. Computers, IEEE Transactions on 44(1) (2002) 20–34

15. Smith, C.: Performance Engineering of Software Systems. Addison-Wesley (1990)
16. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation

systems. In: FASE. (2010) 154–157
17. Ledeczi, A., Davis, J., Neema, S., Agrawal, A.: Modeling methodology for in-

tegrated simulation of embedded systems. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 13(1) (2003) 82–103

18. Yacoub, S., Cukic, B., Ammar, H.: A scenario-based reliability anal. approach for
component-based software. Reliability, IEEE Trans. on 53(4) (2004) 465–480

19. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proc. of the 11th int. conf. on WWW, ACM (2002) 77–88

20. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Transactions
on Computer Systems (TOCS) 2(2) (1984) 93–122

21. Haverkort, B.R., Marie, R., Rubino, G., Trivedi, K.S., eds.: Performability Mod-
elling: Techniques and Tools. Wiley (2001)

22. Haas, P.: Stochastic petri nets: Modelling, stability, simulation. Springer (2002)
23. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: graphical

editor and analyzer for timed and SPNs. Perf. Eval. 24(1-2) (1995) 47–68
24. Fishman, G.: Principles of discrete event simulation. John Wiley, New York (1978)
25. Glynn, P.W.: On the role of generalized semi-markov processes in simulation

output analysis. In: Proc. WSC ’83, IEEE Press (1983) 39–44
26. Kanters, O., Verhoef, C., Schut, M.: QoS analysis by simulation in Reo. Vrije

Universiteit Amsterdam, The Netherlands (2010)
27. Moon, Y., Arbab, F., Silva, A., Stam, A., Verhoef, C.: Stochastic Reo: A case

Study. In preparation. (2011)

	Simulation-based Performance Analysis of Channel-based Coordination Models
	 C. Verhoef, C. Krause, O. Kanters and R. van der Mei

