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Abstract. Reo is a coordination language which can be used to model
the interactions among a set of components or services in a compositional
manner using connectors. The language concepts of Reo include syn-
chronization, mutual exclusion, data manipulation, memory and context-
dependency. Context-dependency facilitates the precise specification of
a connector’s possible actions in situations where it would otherwise ex-
hibit nondeterministic behavior. All existing formalizations of context-
dependency in Reo are based on extended semantic models that provide
constructs for modeling the presence and absence of I/O requests at the
ports of a connector.
In this paper, we show that context-dependency in Reo can be encoded
in basic semantic models, namely connector coloring with two colors
and constraint automata, by introducing additional fictitious ports for
Reo’s primitives. Both of these models were considered as not expressive
enough to handle context-dependency up to now. We demonstrate the
usefulness of our approach by incorporating context-dependency into the
constraint automata based Vereofy model checker.

1 Introduction

Over the past decades, coordination languages have emerged for modeling and
implementing interaction protocols between two or more software components.
One example is Reo [1], a language for compositional construction of connectors.
Connectors are software entities that coordinate the communication between
components; they constitute the glue that holds components together, and be-
come, once considered at a higher level of abstraction, components themselves.

Connectors have several behavioral properties; for instance, they may manip-
ulate data items that pass through them. Another property is context-dependency
or context-sensitivity : whereas the behavior of a context-insensitive connector
depends only on its own state, the behavior of a context-sensitive connector de-
pends also on the presence or absence of I/O-requests at its ports—its context.
To illustrate context-sensitivity, we consider the LossySync connector, which co-
ordinates the interaction between two components: a writer and a taker. If the
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taker is prepared to receive data, LossySync properly relays a data item from the
writer to the taker. If the taker, however, refuses to receive, LossySync loses the
data item sent by the writer. Since LossySync’s behavior depends on the taker’s
willingness to receive data, that is, the presence or absence of a request for input,
LossySync exhibits context-dependent behavior.

Several formal models for describing the behavior of Reo connectors exist,
but not all of them have constructs for context-dependency. For example, the
early models (e.g., an operational model based on constraint automata [2]), al-
though attractive because of their simplicity, lack such constructs. These models
implement context-sensitivity as non-determinism. In an attempt to mend this
deficiency, more recent models incorporate constructs for context-dependency,
but at the cost of more complex formalisms (e.g., the 3-coloring model [3]). As
a result, the algorithms for their simulation and verification suffer from a high
computational complexity, which makes these models less attractive in practice.

In this contribution, we show that context-dependency in fact can be cap-
tured in simple semantic models, namely the 2-coloring model [3] and constraint
automata: we define an operator that transforms a connector with 3-coloring se-
mantics to one with 2-coloring semantics, while preserving its context-sensitive
behavior. Furthermore, we prove the transformation’s correctness, and, to illus-
trate its merits, we show how our approach enables the verification of context-
dependent connectors with the Vereofy model checker (impossible up to now).
Other applications of our approach include context-sensitive connector decompo-
sition [4], and, as we speculate, an improved implementation of Reo’s interpreter.

The paper is organized as follows. In Section 2, we briefly discuss Reo and
connector coloring. In Section 3, we present the transformation from 3-coloring
models to 2-coloring models. In Section 4, we present an application of our
approach to Vereofy. We discuss related work in Section 5. Section 6 concludes
the paper.

2 Reo Overview

In this section, we discuss connectors in Reo and the coloring models for describ-
ing their behavior. A comprehensive overview appears in [1, 5].

The simplest connectors, called primitives, consist of a number of input and
output nodes to which components can connect and at which they can issue
write and take requests for data items. Data items flow through a primitive
from its input node(s) to its output node(s); if data flow through a node, this
node fires. The semantics of a primitive specifies its behavior by describing how
and when data items flow through the primitive’s nodes. To illustrate this, we
now present some common primitives and sketch their semantics informally.

The Sync primitive consists of an input node and an output node. Data
items flow through this primitive only if these nodes have pending write and
take requests. The LossySync primitive behaves similarly, but, as described in
Section 1, loses a data item if its input node has a pending write request, while
its output node has no pending take request. In contrast to the previous two



Table 1. Common primitives.

Sync LossySync FIFO1 (Empty) FIFO1 (Full)

A B A B A B A B
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memoryless primitives, primitives can have buffers to store data items in. Such
primitives exhibit different states, while the internal configuration of Sync and
LossySync always stays the same. For instance, the FIFO1 primitive consists of
an input node, an output node, and a buffer of size 1. In the EMPTY state, a
write request on the input node of FIFO1 causes a data item to flow into the
buffer (i.e., the buffer becomes full), while a take request on its output node
remains pending. Conversely, in the FULL state, a write request on its input
node remains pending, while a take request on its output node causes a data
item to flow from the buffer to the output node (i.e., the buffer becomes empty).
The first row of Table 1 depicts the three primitives discussed. In general, we
define primitives as follows. Let Node be a denumerable set of nodes.

Definition 1 (Primitive). A primitive P of arity k is a list (nj11 , . . . , n
jk
k ) such

that ni ∈ Node, ji ∈ {“i”, “o”}, and [if i 6= i′, then ni 6= ni′ ] for all 1 ≤ i, i′ ≤ k.

One can construct complex connectors from simpler constituents using com-
position. In this view, a connector consists of a set of nodes, a set of primitives
connecting these nodes, and a subset of boundary nodes on which components
can perform I/O-operations. Although primitives have only boundary nodes,
this generally does not hold for composed connectors. For instance, composing
LossySync and FIFO1, by joining the former’s output node with the latter’s in-
put, causes their shared node to become internal to the composed connector.
This connector, called LossyFIFO1, appears in the top–left cell of Table 2. We
proceed with the formal definitions.

Definition 2 (Connector). A connector C is a tuple 〈N,B,E〉 such that N
is the set of nodes occurring in C, ∅ 6= B ⊆ N is a set of boundary nodes, and
E is a set of primitives.

Definition 3 (Composition of connectors). Let C1 = 〈N1, B1, E1〉 and
C2 = 〈N2, B2, E2〉 be connectors such that E1 ∩ E2 = ∅. Their composition,
denoted C1×C2, is defined as: C1×C2 = 〈N1∪N2, (B1∪B2)\(B1∩B2), E1∪E2〉.

Thus, to compose two connectors, we merge their sets of nodes, compute a new
set of boundary nodes, and merge the primitives that constitute them.



Table 2. Empty LossyFIFO1 and its M-transformation.

LossyFIFO1 M(LossyFIFO1)

A B C A B C

A B C
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Thus far, we presented only the structure of connectors; next, we focus on
their behavior. More specifically, we discuss connector coloring [3], the most rel-
evant model to this paper, in some detail; we mention other models in Section 5.
Connector coloring works by assigning colors to the nodes of a connector. These
colors specify whether data items may flow at a node. For instance, when using
two colors, one color expresses that data can flow at a node (i.e., the flow-color:

), while the other expresses the opposite (i.e., the no-flow color: ).
We call a total map from the nodes of a connector to colors a coloring.

Definition 4 (Coloring [3]). Let N ⊆ Node and Colors a set of colors. A
coloring over N , denoted c, is a total map N → Colors. We denote c’s domain
by dom(c).

To model a connector’s different behavior in different states, we use coloring
tables. A coloring table consists of a number of colorings and corresponds to a
configuration of a connector; each coloring describes one way in which nodes can
fire synchronously in this configuration.

Definition 5 (Coloring table [3]). A coloring table, denoted T , is a set of
colorings with mutually equal domains, denoted dom(T ), and co-domains.

When certain nodes fire synchronously, a connector’s configuration may change
(e.g., a full FIFO1 can become empty). We use next functions, which describe
transitions from one coloring table to the next, to model this change.

Definition 6 (Next function [5]). Let S be a set of coloring tables such that
dom(T1) = dom(T2) for all T1, T2 ∈ S. A next function over S, denoted η, is a
map S × {dom(S) → Colors} → S in which dom(S) = [dom(T ) for any T ∈ S]
is the domain of any coloring in

⋃
T∈S T .

Coloring tables that consist of 2-colorings for the previously discussed primitives
appear in the third row of Table 1. For instance, the top coloring of Sync denotes
the presence of flow between A and B; its bottom coloring denotes the absence
of flow. The middle coloring of LossySync denotes that data items flow only at
A, causing them to get lost before reaching B.



To compute the behavior of a composed connector whose constituents have
coloring tables and next functions as semantic model, we use the composition
operators for coloring tables and next functions. The formal definitions appear
below; shortly, we discuss an example (LossySync).

Definition 7 (Composition of colorings [3]). Let c1 and c2 be colorings such
that c1(n) = c2(n) for all n ∈ dom(c1) ∩ dom(c2). Their composition, denoted
c1 ∪ c2, is defined as:

c1 ∪ c2 =

{
n 7→ κ

∣∣∣∣n ∈ dom(c1) ∪ dom(c2) and κ =

(
c1(n) if n ∈ dom(c1)
c2(n) otherwise

) }
Definition 8 (Composition of coloring tables [3]). Let T1 and T2 be col-
oring tables. Their composition, denoted T1 · T2, is defined as:

T1 · T2 =

{
c1 ∪ c2

∣∣∣∣ c1 ∈ T1 and c2 ∈ T2 and
c1(n) = c2(n) for all n ∈ dom(c1) ∩ dom(c2)

}
Definition 9 (Composition of next functions [5]). Let η1 and η2 be next
functions over sets of coloring tables S1 and S2, respectively, and let S1 ∗ S2 =
{ T1 ·T2 | T1 ∈ S1 and T2 ∈ S2 }. Their composition, denoted η1⊗ η2, is defined
as:

η1 ⊗ η2 =

{
(T1 · T2, c1 ∪ c2) 7→ η1(T1) · η2(T2)

∣∣∣∣T1 · T2 ∈ S1 ∗ S2

and c1 ∪ c2 ∈ T1 · T2

}
The expressiveness of connector coloring depends on the instantiation of

Colors in Definitions 4, 5, and 6. With two colors, we obtain 2-coloring mod-
els in which Colors = { , }. Whereas 2-coloring models can express
synchronization, they cannot express context-dependency: to model context-
sensitive connectors, three colors seem necessary. With three colors, we obtain
3-coloring models in which Colors = { , . , / }. Instead of one no-
flow color as in 2-coloring models, two colors to express the absence of flow exist
in 3-coloring models. As a result, in 3-coloring models, one can express why data
does not flow, whereas in 2-coloring models, one can express only that data does
not flow. More precisely, in 3-coloring models, the direction of the arrow of the
no-flow colors indicates where the reason for the absence of flow comes from.
Loosely speaking, an arrow pointing in the same direction as the flow indicates
that a node has no pending write requests, while an arrow pointing in the op-
posite direction indicates that a node has no pending take requests. In text,
we associate . with the former case and / with the latter. We prefix
“coloring” by “2-” (respectively, “3-”) if Colors in Definitions 4, 5, and 6 accords
with 2-coloring (respectively, 3-coloring) models.

To illustrate the previous, 3-colorings for Sync, LossySync and FIFO1 appear
in the fourth row of Table 1, and composed 2-coloring and 3-coloring tables
for LossyFIFO1 appear in the two bottom–left cells of Table 2. The middle col-
oring in the 2-coloring table of the empty LossyFIFO1 describes an inadmissi-
ble behavior: if A fires, but B does not, LossySync loses a data item between



Table 3.M-transformation of common primitives.

M(Sync) M(LossySync) M(FIFO1) (Empty) M(FIFO1) (Full)

A B

A B

A B

A B

A B

A B

A B

A B

2
-C

o
lo

u
ri

n
g

A and B despite the empty buffer. Such a coloring does not exist in the 3-
coloring table of the empty LossyFIFO1. Thus, 3-coloring models can capture
context-dependency—through the propagation of the reason for the absence of
flow—whereas 2-coloring models cannot.

Finally, we define colored connectors (respectively, 2-colored, 3-colored con-
nectors), which are connectors whose semantics are defined in terms of a coloring
model (respectively, 2-coloring model, 3-coloring model), and their composition
operator, which preserves well-formedness by Proposition 3.3.5 in [5].

Definition 10 (Colored connectors). A colored connector over a set of col-
oring tables S, denoted CCol, is a tuple 〈C, η〉 in which C = 〈N,B,E〉 is a
connector, and η is a next function over S such that dom(S) = N .

Definition 11 (Composition of colored connectors). Let CCol1 = 〈C1, η1〉
and CCol2 = 〈C2, η2〉 be colored connectors. Their composition, denoted CCol1 ×CCol2 ,
is defined as: CCol1 × CCol2 = 〈C1 × C2, η1 ⊗ η2〉.

3 From Three to Two Colors

In the literature, 2-coloring models are considered not expressive enough to cap-
ture context-dependency of connectors. In this section, however, we show the
converse: at the expense of making the models of the primitives more complex, we
encode context-dependent behavior using only two colors (and without altering
the existing composition operators for coloring models). Our encoding comprises
a generic transformation from 3-colored connectors to 2-colored connectors. Es-
sentially, we trade a more complex semantic model—i.e., 3-coloring—with simple
primitives for a simpler semantic model—i.e., 2-coloring—with more complex
primitives. We start by introducing our transformation operator, denoted M,
which we liberally overload for different types of arguments for notational conve-
nience. In Section 3.1, we prove the correctness of the transformation by showing
that flow through nodes of a 3-colored connector CCol implies corresponding flow



through its transformation M(CCol) (a 2-colored connector); in Section 3.2, we
discuss the distributivity properties—important for compositionality—of M.

We begin with the M-transformation for connectors. Informally, this trans-
formation clones all nodes in a connector and inverts the direction of the flow
through these clones. The latter facilitates the backwards propagation of the
reason for the absence of flow in case the connector lacks appropriate take
requests (in a similar spirit as the / color). Henceforth, we call a node
n of the original connector a base node and its unique clone, denoted n, a
context node. Base and context nodes correspond one-to-one, and we consider
them each other’s duals. Next, let N be a set of base nodes. We define its M-
transformation, denotedM(N), asM(N) =

⋃
n∈N{n, n}, that is, the set of base

nodes and their duals. Finally, let inv be the inverse map of “i” and “o”, that
is, inv = {“i” 7→ “o”, “o” 7→ “i”}. We can now defineM for connectors, starting
with a definition of M for primitives.

Definition 12 (M-transformation of primitives). Let P = (nj11 , . . . , n
jk
k )

be a primitive. Its M-transformation, denoted M(P ), is defined as: M(P ) =(
nj11 , . . . , n

jk
k , n

inv(j1)
1 , . . . , n

inv(jk)
k

)
.

Definition 13 (M-transformation of connectors). Let C = 〈N,B,E〉 be
a connector. Its M-transformation, denoted M(C), is defined as: M(C) =
〈M(N),M(B),M(E)〉 in which M(E) = { M(P ) | P ∈ E }.

One can straightforwardly show that M for primitives yields primitives, that
is, preserves well-formedness with respect to Definition 1 [6]. The same holds
for M for connectors (the proof uses preservation of well-formedness by M for
primitives).

Proposition 1 (M-transformation of primitives and connectors pre-
serves well-formedness). M-transforming a primitive yields a primitive. M-
transforming a connector yields a connector.

The M-transformations of Sync, LossySync, and FIFO1 appear in the first
row of Table 3, while the top–right cell of Table 2 depicts theM-transformation
of LossyFIFO1. The figures exemplify that data flow in the opposite direction
through context nodes when compared with the direction of the flow through
base nodes. As mentioned before, this resembles how the 3-coloring model com-
municates the reason for no-flow backwards through the connector. Furthermore,
context nodes nowhere communicate with base nodes: they form a context circuit
that influences the behavior of the base circuit and vice versa, but data items
cannot flow from one of these circuits to the other. The M-transformation of
LossySync exemplifies this influence: the new dotted arrow tangent to the orig-
inal dashed arrow indicates that data may disappear between A and B iff data
flow through B.

To describe the behavior ofM-transformed connectors, we proceed with the
definition ofM for colorings, coloring tables, and next functions. We first present
their formal definitions, and clarify these afterwards.



Definition 14 (M-transformation of colorings). Let c be a 3-coloring. Its
M-transformation, denoted M(c), is defined as:

M(c) =
⋃

n∈dom(c)

{ n 7→ , n 7→ } if c(n) = .
{ n 7→ , n 7→ } if c(n) = /
{ n 7→ , n 7→ } if c(n) =

Definition 15 (M-transformation of coloring tables). Let T be a 3-color-
ing table. Its M-transformation, denoted M(T ), is defined as: M(T ) =
{ M(c) | c ∈ T }.

Definition 16 (M-transformation of next functions). Let η be a next func-
tion over a set of 3-coloring tables S. Its M-transformation, denoted M(η), is
defined as: M(η) = { (M(T ),M(c)) 7→ M(η(T, c)) | T ∈ S and c ∈ T }.

Informally,M applied to a 3-coloring c clones its domain (similar to the wayM
for connectors clones nodes) and maps each node in the new domain to either

or . The idea behind these mappings follows below.

– If c maps n to ,M(c) also maps n to , while it maps n to .
This ensures that data never flow through the same parts of the base and
the context circuits synchronously. If we would allow such synchronous flow,
for instance, data items could flow between the base nodes and through
the context circuit of a LossySync (i.e., this LossySync has pending write
and take requests) at the same time. This would mean, however, that this
LossySync may lose the data item flowing through its base circuit without
reason (because of the pending take request). This is inadmissible behavior.

– If c maps n to / (i.e., the no-flow color indicating that n lacks take re-
quests),M(c) maps n to (because flow cannot appear out of nowhere),
while it maps n to (because the absence of pending take requests may
cause lossy channels to lose data items).

– If c maps n to . (i.e., the no-flow color indicating that n lacks write re-
quests),M(c) maps n to (because flow cannot appear out of nowhere),
and the same holds for n (because the absence of pending write requests may
never cause loss of data).

Next, we discuss preservation of well-formedness [6]. Let c be a 3-coloring. We
make two observations: (i) because context nodes correspond one-to-one to base
nodes, M(c) maps all nodes in M(dom(c)) exactly once, and (ii) M(c) maps
all nodes in its domain to either or . Hence, M(c) defines a 2-
coloring over the set M(dom(c)). Well-formedness of M for 3-coloring tables
then follows immediately. Finally, we argue thatM for next functions preserves
well-formedness; let η be a next function over a set of 3-coloring tables S. Since
M for 3-colorings (respectively, 3-coloring tables) yields well-formed 2-colorings
(respectively, 2-coloring tables), and since S is a set of 3-coloring tables, M(η)
defines a map from [2-coloring tables and 2-colorings] to 2-coloring tables. Hence,
M(η) defines a next function over a set of 2-coloring tables.



Proposition 2 (M-transformation of colorings, coloring tables, and
next functions preserves well-formedness).M-transforming a 3-coloring c
yields a 2-coloring over M(dom(c)). M-transforming a 3-coloring table yields a
2-coloring table.M-transforming a next function over a set of 3-coloring tables S
yields a next function over a set of 2-coloring tables M(S) = { M(T ) | T ∈ S },
and dom(M(S)) = dom(M(T )) for any T ∈ S.

Finally, we present the M-transformation of colored connectors. Both the def-
inition and its preservation of well-formedness turn out straightforwardly. To
M-transform a colored connector, we take the M-transformations of its con-
stituents; preservation of well-formedness then follows from Propositions 1 and 2.

Definition 17 (M-transformation of colored connectors). Let CCol =
〈C, η〉 be a colored connector over a set of 3-coloring tables. Its M-transforma-
tion, denoted M(CCol), is defined as: M(CCol) = 〈M(C),M(η)〉.

Proposition 3 (M-transformation of colored connectors preserves
well-formedness). M-transforming a colored connector over a set of 3-color-
ings yields a colored connector over a set of 2-colorings.

3.1 Correctness of M

In this subsection, we show the correctness of M for colored connectors. To
define “correctness” in this context, we first introduce the concept of paintings,
which are, essentially, (infinite) executions of a colored connector.

Definition 18 (Painting). Let CCol = 〈C, η〉 be a colored connector over S and
T0 ∈ S the coloring table corresponding to its initial configuration. A painting of
CCol is a sequence [T0, c0, T1, c1, . . .] such that ci ∈ Ti, and Ti+1 = η(Ti, ci) for
all i ≥ 0. The set of all CCol’s paintings is denoted Painting(CCol).

We call M for colored connectors correct if, for each painting of CCol, there
exists a corresponding painting ofM(CCol) and vice versa; paintings correspond
if, for all indexes, (i) the respective colorings assign flow to the same shared
nodes—i.e., nodes that occur in both of the colored connectors—and (ii) the
respective coloring tables correspond to the same configuration. We formulate
our correctness theorem more formally below; a proof follows shortly.

Theorem 1 (Correctness of M). Let CCol = 〈C, η〉 be a colored connector
over a set of 3-coloring tables S and M(CCol) = 〈M(C),M(η)〉 a colored con-
nector over a set of 2-coloring tables M(S) (by Proposition 3). Then:

i. if: [T0, c0, . . .] ∈ Painting(CCol)
then: [M(T0),M(c0), . . .] ∈ Painting(M(CCol)) such that for all 0 ≥ i :

{ n | ci(n) = } = { n ∈ dom(ci) | (M(ci))(n) = }

ii. if: [M(T0),M(c0), . . .] ∈ Painting(M(CCol))
then: [T0, c0, . . .] ∈ Painting(CCol) such that for all 0 ≥ i :

{ n | ci(n) = } = { n ∈ dom(ci) | (M(ci))(n) = }



Later, we sketch a proof by induction that establishes the theorem. For the sake
of conciseness, however, we first move large parts of the inductive step to the
following two lemmas. Lemma 1 states thatM for next functions over 3-coloring
tables preserves the flow behavior of the connector. That is, if an untransformed
coloring assigns flow to some base node, the M-transformed coloring (i) exists,
and (ii) also assigns flow to this base node. The same must hold in the opposite
direction. Lemma 2 states that M for next functions preserves transitions from
one configuration to the next. Note that these two lemmas correspond to the
two conditions for “correspondence” given above.

Lemma 1 (M for colored next functions preserves flow). Let η be a next
function over a set of 3-coloring tables S, let M(η) be its M-transformation,
that is, a next function over a set of 2-coloring tables M(S) (by Proposition 2),
and let n ∈ dom(S) be a node. Then:(

T ∈ S and c ∈ T
and c(n) =

)
iff

(
M(T ) ∈M(S) and M(c) ∈M(T )

and (M(c))(n) =

)
Proof. We first prove the left-to-right direction (only if), and proceed with the
right-to-left direction ( if).

only if — We start by deriving the first two conjuncts of the right-hand side
(RHS) from the first two conjuncts of the left-hand side (LHS). This turns
out straightforwardly: T ∈ S implies M(T ) ∈ M(S) by the definition of
M(S) in Proposition 2, and c ∈ T implies M(c) ∈ M(T ) by Definition
15 of M for 3-coloring tables. Finally, we derive the RHS’s third conjunct
from the third conjunct of the LHS. By the premise, c(n) = . Then,
by Definition 14 of M for 3-colorings, { n 7→ , n 7→ } ⊆ M(c).
Hence, (M(c))(n) = .

if — The first two conjuncts of the LHS follow from the first two conjuncts of
the RHS similar to the only if case. Next, by the premise, (M(c))(n) =

, that is, n 7→ ∈ M(c). By Definition 14 of M for 3-colorings,
this happens only if c(n) = . ut

Lemma 2 (M for colored next functions preserves transitions). Let
η be a next function over a set of 3-coloring tables S, let M(η) be its M-
transformation, that is, a next function over a set of 2-coloring tables M(S)
(by Proposition 2), and let n ∈ dom(S) be a node. Then:(

T, T ′ ∈ S and c ∈ T
and η(T, c) = T ′

)
iff

(
M(T ),M(T ′) ∈M(S) and M(c) ∈M(T )

and (M(η))(M(T ),M(c)) =M(T ′)

)
Proof. The implication, in both directions, follows from the definition of M(S)
in Proposition 2 (first conjunct), Definition 15 ofM for 3-coloring tables (second
conjunct), and Definition 16 of M for next functions (third conjunct). ut

Finally, given the previous two lemmas, we sketch a proof of Theorem 1.



Proof (Of Theorem 1; Sketch). Both i. and ii. follow from induction on the length
of a painting’s prefix. The base case (prefix of length 1) follows from preservation
of well-formedness of M for next functions (recall M(S) = { M(T ) | T ∈ S }),
and because T0 ∈ S by Definition 18. To prove the inductive step, first, suppose
there exists a painting with prefix of length 2j − 1 on which the theorem holds,
for some j ≥ 1 (note that the (2j−1)-th element is a coloring table). Next, apply
Lemma 1 to establish that there exists a painting with a prefix of length 2j on
which the theorem holds (note that the (2j)-th element is a coloring). Finally,
apply Lemma 2 to establish that there exists a painting with a prefix of length
2j + 1 = 2(j + 1)− 1 on which the theorem holds. ut

3.2 Distributivity of M

Previously, we showed that by applyingM to a 3-colored connector, we obtain a
corresponding 2-colored connector. Though an essential result, it not yet suffices:
to properly construct a complex 2-colored connector from context-dependent
constituents, we still must compose a corresponding 3-colored connector from
3-colored primitives first. Only thereafter, we can apply M to obtain the de-
sired 2-colored connector. Instead, we would prefer (i) to apply M only once
to the 3-colored primitives (yielding, among others, the primitives in Table 3),
and (ii) to construct context-dependent 2-colored connectors by composing these
M-transformed primitives. We prefer this approach, because we speculate that
an implementation of Reo that operates on 2-coloring models can compute con-
nector composition more efficiently than an implementation that operates on
3-coloring models. In this section, we develop the theory that accommodates
this: we show the compositionality of M. This means that it does not matter
whether we (a) first applyM to 3-colored connectors and then the composition
operator on the resulting 2-colored connectors, or (b) first apply the composi-
tion operator on 3-colored connectors and thenM to the resulting composition.
Specifically, we show that M distributes over composition of connectors (Def-
inition 2) and composition of next functions (Definition 9). Distributivity over
composition of colored connectors (Definition 10) then follows straightforwardly.

We start, however, with a proposition stating that M for sets of nodes (de-
fined in the second paragraph of Section 3) distributes over the set operators
∪, ∩, and \. Our complete proof [6] consists of a series of straightforward ap-
plications of the definitions and the distributivity laws of these operators, while
making use of the one-to-one correspondence between base and context nodes.

Proposition 4 (M for sets of nodes distributes over ∪,∩, \ for sets).
Let N1, N2 ⊆ Node be sets of nodes. Then: M(N1) ∪M(N2) = M(N1 ∪ N2),
M(N1) ∩M(N2) =M(N1 ∩N2), and M(N1) \M(N2) =M(N1 \N2).

We proceed with a compositionality lemma that concerns M for connectors.

Lemma 3 (M for connectors distributes over × for connectors). Let C1

and C2 be connectors. Then: M(C1)×M(C2) =M(C1 × C2).



Proof. Suppose C1 = 〈N1, B1, E1〉 and C2 = 〈N2, B2, E2〉 (without loss of gen-
erality). Applying Definition 13 of M for connectors and Definition 2 of × to
rewrite the above equation, we obtain the following:〈M(N1) ∪M(N2),
M(B1) ∪M(B2) \M(B1) ∩M(B2),
M(E1) ∪M(E2)

〉
=

〈M(N1 ∪N2),
M(B1 ∪B2 \B1 ∩B2),
M(E1 ∪ E2)

〉
(i)

(ii)
(iii)

Sub-equations (i) and (ii) follow from Proposition 4. Sub-equation (iii) holds
because, by Definition 13 of M for sets of primitives: M(E1) ∪ M(E2) =
{ M(P ) | P ∈ E1 } ∪ { M(P ) | P ∈ E2 } = { M(P ) | P ∈ E1 ∪E2 } =M(E1 ∪
E2) =M(E1 ∪ E2). ut

To show that M distributes over composition of next functions, we, as be-
fore, start with a proposition. More specifically, Proposition 5 states that M
distributes over composition of colorings and coloring tables. We consider our
complete proofs [6], though rather technical and detailed, straightforward. They
rely on the following observations: (i) context nodes correspond one-to-one to
base nodes, (ii) the colors assigned to a base node and its dual context node by an
M-transformed 2-coloring uniquely define the color assigned to the base node by
the 3-coloring (by Definition 14 ofM for 3-colorings), and (iii) each context node
that corresponds to a base node in the domain-intersection of two untransformed
3-colorings occurs in the domain-intersection of their M-transformations.

Proposition 5 (M for colorings and coloring tables distributes over
∪ for colorings and · for coloring tables). Let c1 and c2 be 3-colorings.
Then, M(c1) ∪M(c2) =M(c1 ∪ c2). Let T1 and T2 be 3-coloring tables. Then,
M(T1) · M(T2) =M(T1 · T2).

We proceed with a compositionality lemma that concernsM for next functions.

Lemma 4 (M for next functions distributes over ⊗ for next functions).
Let η1 and η2 be next functions over sets of 3-coloring tables S1 and S2. Then:
M(η1)⊗M(η2) =M(η1 ⊗ η2).

Proof. Follows from Table 4. ut
Finally, we present the compositionality theorem of M, which states that M
distributes over composition of colored connectors. As mentioned before, this
result follows straightforwardly from the previous lemmas.

Theorem 2 (Compositionality of M). Let CCol1 and CCol2 be colored connec-
tors over sets of 3-coloring tables. Then: M(CCol1 )×M(CCol2 ) =M(CCol1 × CCol2 ).

Proof. Suppose CCol1 = 〈C1, η1〉 and CCol2 = 〈C2, η2〉 (without loss of generality).
Applying Definition 17 of M for 3-colored connectors and Definition 11 of × to
rewrite the above equation, we obtain the following:〈

M(C1)×M(C2),
M(η1)⊗M(η2)

〉
=

〈
M(C1 × C2),
M(η1 ⊗ η2)

〉
(i)

(ii)

Sub-equation (i) follows immediately from Lemma 3, while sub-equation (ii) fol-
lows from Lemma 4. ut



Table 4. Proof: M(η1)⊗M(η2) =M(η1 ⊗ η2).

M(η1)⊗M(η2)
= /∗ By Definition 9 of ⊗ /∗

〈M(T1) · M(T2),M(c1) ∪M(c2)〉7→

(M(η1))(T1, c1) · (M(η2))(T2, c2)

∣∣∣∣∣∣
M(T1) · M(T2) ∈M(S1) · M(S2)

and
M(c1) ∪M(c2) ∈M(T1) · M(T2)


= /∗ By the distributivity of M over ∪ and · in Proposition 5 /∗

〈M(T1 · T2),M(c1 ∪ c2)〉7→

(M(η1))(T1, c1) · (M(η2))(T2, c2)

∣∣∣∣∣∣
M(T1 · T2) ∈M(S1 · S2)

and
M(c1 ∪ c2) ∈M(T1 · T2)


= /∗ Because, by the definition of M(S) in Proposition 2, M(T ) ∈ M(S) iff T ∈ S,

and because, by Definition 15 ofM for 3-coloring tables,M(c) ∈M(T ) iff c ∈ T /∗
〈M(T1 · T2),M(c1 ∪ c2)〉7→

(M(η1))(T1, c1) · (M(η2))(T2, c2)

∣∣∣∣∣∣
T1 · T2 ∈ S1 · S2

and
c1 ∪ c2 ∈ T1 · T2


= /∗ Because, by Definition 16 of M for next functions,

(M(η1))(T1, c1) =M(η1(T1, c1)) and (M(η2))(T2, c2) =M(η1(T2, c2)) /∗
〈M(T1 · T2),M(c1 ∪ c2)〉7→

M(η1(T1, c1)) · M(η2(T2, c2))

∣∣∣∣∣∣ T1 · T2 ∈ S1 · S2 and c1 ∪ c2 ∈ T1 · T2


= /∗ By the distributivity of M over · in Proposition 5 /∗{

〈M(T1 · T2),M(c1 ∪ c2)〉 7→
M(η1(T1, c1) · η2(T2, c2))

∣∣∣∣ T1 · T2 ∈ S1 · S2 and c1 ∪ c2 ∈ T1 · T2

}
= /∗ By Definition 16 of M for next functions, /∗

M
({
〈T1 · T2, c1 ∪ c2〉 7→
η1(T1, c1) · η2(T2, c2)

∣∣∣∣ T1 · T2 ∈ S1 · S2 and c1 ∪ c2 ∈ T1 · T2

})
= /∗ By Definition 9 of ⊗ /∗

M(η1 ⊗ η2)

4 Application: Context-Dependency in Vereofy

As an application, we present an implementation of our encoding in a constraint
automata based model checker, which is considered as not expressive enough
for the verification of context-dependent connectors. Specifically, we extend the
Vereofy [7] model checking tool for the analysis of Reo connectors, developed at
the TU of Dresden.3 Vereofy uses two input languages: the Reo Scripting Lan-
guage (a textual version of Reo) and the guarded command language CARML (a
textual version of constraint automata). Vereofy allows the verification of tem-
poral properties expressed in LTL and CTL-like logics and supports bisimulation
equivalence checks. Moreover, it can generate counterexamples and provides a
GUI integration with the Eclipse Coordination Tools (ECT).4

3 Vereofy homepage: http://www.vereofy.de
4 ECT homepage: http://reo.project.cwi.nl



1 #inc lude " b u i l t i n "
2 / / Non-deterministic LossyFIFO:
3 CIRCUIT L O S S Y _ F I F O _ N D {
4 new L O S S Y _ S Y N C _ N D ( A ; M ) ;
5 new F I F O 1 ( M ; B ) ;
6 M = NULL;
7 }

EMPTY FULL
{A}

{A}
{B}

{A,B}

{A}

8 #inc lude " b u i l t i n _ C D . c a r m l "
9 / / Context-dependent LossyFIFO:

10 CIRCUIT L O S S Y _ F I F O _ C D {
11 new L O S S Y _ S Y N C _ C D ( A , n M ; M , n A ) ;
12 new F I F O 1 _ C D ( M , n B ; B , n M ) ;
13 M = NULL; n M = NULL;
14 }

EMPTY FULL
{A}

{A,B}

{B}
{B}

{A,B}

{A,B}

{B}

Fig. 1. Non-deterministic (left) vs. context-dependent (right) LossyFIFO1 in Vereofy.

Vereofy operates on constraint automata and, thus, does not natively support
context-dependent behavior. However, in the previous section, we showed that
we can transform 3-colored connectors to 2-colored connectors, while preserving
their context-sensitive semantics. Moreover, 2-coloring models and constraint
automata correspond to each other (informal arguments appear in [3, 5], while
[6] contains a formal account). Hence, by using the M-transformation, we can
construct context-dependent constraint automata as follows. First, we trans-
form the 3-colored primitives to context-dependent 2-colored primitives. Next,
we compute the constraint automata corresponding to the resulting 2-colored
primitives. Note that the resulting automata can have context-sensitive behav-
ior (because the 2-colored primitives to which they correspond can have such
behavior). Finally, we compose the resulting constraint automata to form more
complex context-sensitive connectors (possible due to Theorem 2). Although
simple and straightforward, this recipe enables the analysis of context-sensitive
connectors in Vereofy. For this purpose, we have adapted Vereofy’s library of
built-in primitives: using the M-transformation, we wrote a new library con-
taining context-dependent versions of the basic Reo primitives.5

As an example, Figure 1 depicts a listing of the non-deterministic and the
context-dependent versions of the LossyFIFO1 example, and two constraint au-
tomata generated from them using Vereofy. For simplicity, we have hidden the
internal node M , used a singleton set as data domain, and removed all data
constraints in the generated automata. The constraint automata on the left and
right correspond to the non-deterministic and the context-dependent versions,
respectively. The latter uses our new context-dependent primitives. The crucial
difference between the two is that the non-deterministic version contains an ille-
gal transition via port A in the EMPTY state. This corresponds to the connector
losing a data item in a situation where the FIFO1 buffer is empty and should,
in any case, accept the data item. In the context-sensitive version, however, this
illegal transition does not exists. (Note that if we hide all context nodes—i.e.,

5 CD-Library and examples: http://reo.project.cwi.nl/vereofy_CD.tar.gz



A B

EMPTY FULL
{A}

{B}

{A,B}
{B}

{B}

EMPTY FULL
{A,B}

{B}

{A,B}
{B}

{B,A}

{B}

{A}

Fig. 2. SyncFIFO1: its composition (left), its ordinary constraint automaton (top–
right), and its context-dependent constraint automaton (bottom–right).

disregard all gray transitions in Figure 1—we obtain the non-deterministic au-
tomaton without the illegal transition.)

A more complex example concerns SyncFIFO1, a connector with an input
node, an output node, and a buffer of size 1. SyncFIFO1 behaves identically to
FIFO1, except for the case in which it has an empty buffer and pending I/O-
requests on both of its nodes: then, SyncFIFO1 routes a data item from its input
node past its buffer to its output node in one atomic step (thus behaving as a
Sync). Instead of modeling SyncFIFO1 as a primitive without inner structure, we
can construct it by composing other primitives as depicted in Figure 2 (left);
for reasons of space, we do not discuss the interaction and characteristics of the
primitives involved in this composition (more details appear in [6]).

A first attempt to model SyncFIFO1 using our library of context-sensitive
primitives failed due to the presence of causality loops in the resulting com-
position.6 Since one cannot detect and remove causality loops from constraint
automata, we removed the colorings that contain causality loops from the com-
posed 3-coloring model of SyncFIFO1 and, afterwards, appliedM to this filtered
model. This process yielded a 2-coloring model, whose equivalent constraint au-
tomaton we encoded in CARML. In Figure 2, we depict the constraint automa-
ton resulting from the procedure just sketched (bottom–right). Additionally, we
depict the constraint automaton that one obtains when composing the ordi-
nary primitives (top–right) instead of the context-sensitive ones. (As before, we
hide internal nodes.) At first sight, these automata seem very similar. In fact, if
we hide all context nodes in the context-dependent constraint automaton—i.e.,
disregard its gray transitions—we obtain two identical automata.

The crux of the difference between the two automata, therefore, lies ex-
actly in these context nodes: in contrast to LossyFIFO1, SyncFIFO1 itself exhibits

6 Causality loops may occur if a composed connector has one or more circular sub-
circuits (as in the case of SyncFIFO1) and can cause, among other anomalous phe-
nomena, a reason for the absence of flow to appear out of nowhere. Colorings that
contain causality loops, therefore, describe inadmissible behavior. In [5], Costa pro-
poses an algorithm for the detection of colorings that contain causality loops.



context-dependent behavior (instead of only the primitives that constitute it,
namely LossySync). Recall that in the EMPTY state, if output node B lacks a
take request, a write request on A causes a data item to flow into the buffer.
However, if B has a pending take request, a write request on A causes a data
item to flow immediately to node B. The ordinary constraint automaton of Sync-
FIFO1 does not capture this difference, which means that an implementation of
this constraint automaton would non-deterministically choose one of these two
options in case of a pending write request on A and a pending take request on
B. In contrast, an implementation of the context-dependent constraint automa-
ton of SyncFIFO1 always chooses the appropriate option, because in the absence
of a take requests on B, data items with irrelevant content—i.e., signals—flow
through B. To illustrate this, we encourage the interested reader to compose
SyncFIFO1 and FIFO1 in the same way we composed LossySync and FIFO1.7

5 Related Work

In [8], Arbab et al. introduce a coalgebra-based semantic model—the first—for
Reo. Some years later, in [2], Baier et al. present an automaton-based ap-
proach, namely constraint automata (CA), and prove correspondences with the
coalgebra-based model. In [3], however, Clarke et al. observe that neither of
these models can handle context-sensitivity, and they introduce the 2-coloring
and 3-coloring models to mend this deficiency. Since then, other semantic models
with the same aim have come to existence. In [5], Costa introduces intentional
automata (IA) as an operational model with constructs for context-dependency.
Unlike CA, whose states correspond one-to-one to the internal configurations of
connectors, IA have more states than the connectors they model; each state of
an IA contains information about not only the configuration of the connector,
but also about the nodes that intend to fire (i.e., with a pending I/O-request).
Similarly, transition-labels consist of two sets of nodes: those that intend to fire,
and those that actually fire. By maintaining information about I/O-request on
nodes, IA capture context-dependency. The number of states, however, quickly
grows large, whereas our approach yields succinct CA. In [9], Bonsangue et al.
introduce guarded automata (GA) as another automaton-based model for cap-
turing context-dependency. Like CA, the states of GA correspond one-to-one to
the configurations of connectors, which makes them significantly more compact
than IA. To encode context-sensitivity, every transition-label of a GA consists

7 The constraint automaton that results from composing the ordinary constraint au-
tomata of SyncFIFO1 and FIFO1 includes a transition that describes an inadmissible
behavior in which, in case both SyncFIFO1 and FIFO1 have empty buffers, the input
node of SyncFIFO1 fires and causes its own buffer to become full (while the buffer
of FIFO1 remains empty). The constraint automaton that results from composing
the context-dependent constraint automata of SyncFIFO1 and FIFO1, in contrast,
does not include such a transition: if the input node of SyncFIFO1 fires when both
SyncFIFO1 and FIFO1 have empty buffers, the buffer of FIFO1 becomes full (while
the buffer of SyncFIFO1 remains empty).



of a guard and a string. Together, they express which nodes can fire (the string),
given the presence and absence of requests at certain nodes (the guard). Guarded
automata seem very similar to the CA we obtain with our approach: instead of
guards that contain negative occurrences of (base) nodes to specify that these
nodes have no pending I/O-requests, we make these negative occurrences explicit
with the introduction of (flow through) context nodes.

Besides Vereofy, other approaches to model checking Reo connectors exist.
In [10], Kokash et al. employ the mCRL2 toolset, developed at the TU of Eind-
hoven, for model checking connectors, combined with a translation tool that
automatically generates mCRL2 specifications from graphical models of Reo
connectors. The tool’s original algorithm operated on constraint automata, mak-
ing it impossible to verify context-dependent connectors using this approach.
Later, however, Kokash et al. incorporated (3-)coloring information in the tool,
thus facilitating verification of context-dependent connectors. This advantage
of mCRL2 over Vereofy, which could not handle context-dependent connectors
up to now, seems no longer valid as we have shown how to encode context-
sensitivity in Vereofy. An advantage of Vereofy over mCRL2, on the other hand,
is its ability to generate counterexamples, which mCRL2 cannot do. In [11],
Kemper introduces a SAT-based approach to model checking timed constraint
automata (TCA). In her work, Kemper represents TCA as formulas in proposi-
tional logic and uses existing SAT solvers for verification. This approach allows
for model checking timed properties of Reo connectors, but it cannot handle
context-dependency. In [12], Mousavi et al. develop a structural operational se-
mantics in Plotkin’s style for Reo, encode this semantics in the Maude term-
rewriting language, and use Maude’s LTL model checking module to verify Reo
connectors. In [13], Khosravi et al. introduce a mapping from Reo to Alloy,
a modeling language based on first-order relational logic, and apply the Al-
loy Analyzer for verification. Although the approach can handle some context-
dependent connectors—using a maximal progress rule that removes undesired
behavior—Khosravi et al. admit to have considerable performance issues.

6 Conclusions and Future Work

We showed how to encode context-sensitivity in the 2-coloring model and con-
straint automata by adding fictitious nodes to primitives, while both these mod-
els are considered incapable of capturing context-dependent behavior. Our ap-
proach, constituted by the M-transformation, enables the application of tools
and algorithms devised for such simpler semantic models to context-dependent
connectors. As an example, we demonstrated how Vereofy can model check
context-sensitive connectors, which seemed impossible up to now.

With respect to future work, we would like to investigate whether Reo’s im-
plementation can benefit from the results presented in this paper. We speculate
that algorithms for the computation of connector composition run faster onM-
transformed 2-colored connectors (or their corresponding constraint automata)
than on the original 3-colored connectors, because of the simpler semantic model.



Furthermore, we would like to study the relation between other formalisms for
Reo that facilitate the proper modeling of context-dependent behavior (e.g., in-
tentional automata and guarded automata).

Acknowledgments We are grateful to the Vereofy team for their support.
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