N. Amenta, S. Choi, T. K. Dey, and N. Leekha, A SIMPLE ALGORITHM FOR HOMEOMORPHIC SURFACE RECONSTRUCTION, International Journal of Computational Geometry & Applications, vol.96, issue.01n02, pp.125-141, 2002.
DOI : 10.1145/142920.134011

H. [. Attali, Y. Edelsbrunner, and . Mileyko, Weak witnesses for Delaunay triangulations of submanifolds, Proceedings of the 2007 ACM symposium on Solid and physical modeling , SPM '07, pp.143-150, 2007.
DOI : 10.1145/1236246.1236267

J. Boissonnat, R. Dyer, and A. Ghosh, Constructing intrinsic Delaunay triangulations of submanifolds
URL : https://hal.archives-ouvertes.fr/hal-00804878

J. Boissonnat, R. Dyer, and A. Ghosh, THE STABILITY OF DELAUNAY TRIANGULATIONS, International Journal of Computational Geometry & Applications, vol.27, issue.5, pp.303-334, 2013.
DOI : 10.1007/s10711-008-9261-1

URL : https://hal.archives-ouvertes.fr/hal-01022371

J. Boissonnat, R. Dyer, and A. Ghosh, DELAUNAY STABILITY VIA PERTURBATIONS, International Journal of Computational Geometry & Applications, vol.24, issue.02, pp.125-152, 2014.
DOI : 10.1145/1667053.1667060

URL : https://hal.archives-ouvertes.fr/hal-01097086

J. Boissonnat, R. Dyer, and A. Ghosh, A probabilistic approach to reducing algebraic complexity of computing Delaunay triangulations, Proceedings of the 23rd Annual European Symposium on Algorithms, pp.595-606, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153979

[. Boissonnat and J. Flötotto, A coordinate system associated with points scattered on a surface, Computer-Aided Design, vol.36, issue.2, pp.161-174, 2004.
DOI : 10.1016/S0010-4485(03)00059-9

[. Boissonnat and A. Ghosh, Manifold Reconstruction Using Tangential Delaunay Complexes, Discrete & Computational Geometry, vol.26, issue.1, pp.221-267, 2014.
DOI : 10.1137/S1064827502419154

URL : https://hal.archives-ouvertes.fr/hal-00487862

J. Boissonnat, L. J. Guibas, and S. Y. Oudot, Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes, Discrete & Computational Geometry, vol.33, issue.2, pp.37-70, 2009.
DOI : 10.1023/A:1023705401078

URL : https://hal.archives-ouvertes.fr/hal-00488434

[. Boissonnat and C. Maria, The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Algorithmica, vol.132, issue.23, pp.406-427, 2014.
DOI : 10.1063/1.3445267

URL : https://hal.archives-ouvertes.fr/hal-00707901

[. Boissonnat and M. Yvinec, Algorithmic Geometry, 1998.
DOI : 10.1017/CBO9781139172998

[. Cheng and M. Chiu, Dimension Detection via Slivers, Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1001-1010, 2009.
DOI : 10.1137/1.9781611973068.109

[. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S. Teng, Sliver exudation, Proceedings of the fifteenth annual symposium on Computational geometry , SCG '99, pp.883-904, 2000.
DOI : 10.1145/304893.304894

[. Cheng, T. K. Dey, and E. A. Ramos, Manifold Reconstruction from Point Samples, Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1018-1027, 2005.

G. Carlsson and V. Silva, Topological estimation using witness complexes, Proceedings of the Symposium on Point Based Graphics, pp.157-166, 2004.

[. Cheng, S. Funke, M. J. Golin, P. Kumar, S. Poon et al., Curve reconstruction from noisy samples, Computational Geometry, vol.31, issue.1-2, pp.63-100, 2005.
DOI : 10.1016/j.comgeo.2004.07.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Carlsson, T. Ishkhanov, V. De-silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, Proceedings of the 24th ACM Symposium on Computational Geometry, pp.1-12, 2008.
DOI : 10.1007/BF00188924

M. Caroli and M. Teillaud, Delaunay Triangulations of Closed Euclidean d-Orbifolds, Discrete & Computational Geometry, vol.55, issue.8
DOI : 10.1145/1810959.1811004

URL : https://hal.archives-ouvertes.fr/hal-01294409

[. Cheng, Y. Wang, and Z. Wu, PROVABLE DIMENSION DETECTION USING PRINCIPAL COMPONENT ANALYSIS, International Journal of Computational Geometry & Applications, vol.20, issue.05, pp.415-440, 2008.
DOI : 10.1137/0914008

S. [. Dey and . Goswami, Provable surface reconstruction from noisy samples, dS08] V. de Silva. A weak characterisation of the Delaunay triangulation. Geometriae Dedicata, pp.124-14139, 2006.
DOI : 10.1016/j.comgeo.2005.10.006

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. H. Fed59 and . Federer, Curvature Measures. Transactions of the, pp.418-491, 1959.

]. A. Gho12 and . Ghosh, Piecewise linear reconstruction and meshing of submanifolds of Euclidean space, 2012.

S. [. Guibas and . Oudot, Reconstruction Using Witness Complexes, Discrete & Computational Geometry, vol.33, issue.2, pp.325-356, 2008.
DOI : 10.2307/2315138

URL : https://hal.archives-ouvertes.fr/hal-00488434

]. T. Gon85 and . Gonzalez, Clustering to Minimize the Maximum Intercluster Distance, Theoretical Computer Science, vol.38, pp.293-306, 1985.

U. [. Giesen and . Wagner, Shape Dimension and Intrinsic Metric from Samples of Manifolds, Discrete & Computational Geometry, vol.32, issue.2, pp.245-267, 2004.
DOI : 10.1007/s00454-004-1120-8

]. J. Mat02 and . Matou?ek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, 2002.

S. [. Niyogi, S. Smale, and . Weinberger, Finding the Homology of Submanifolds with High Confidence from??Random??Samples, Discrete & Computational Geometry, vol.33, issue.11, pp.419-441, 2008.
DOI : 10.1007/b97315

S. [. Niyogi, S. Smale, and . Weinberger, A Topological View of Unsupervised Learning from Noisy Data, SIAM Journal on Computing, vol.40, issue.3, pp.646-663, 2011.
DOI : 10.1137/090762932

D. [. Trefethen and . Bau, Numerical linear algebra, Society for Industrial Mathematics, 1997.
DOI : 10.1137/1.9780898719574