
HAL Id: hal-01583317
https://inria.hal.science/hal-01583317

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamic Soundness in Resource-Constrained Workflow
Nets

María Martos-Salgado, Fernando Rosa-Velardo

To cite this version:
María Martos-Salgado, Fernando Rosa-Velardo. Dynamic Soundness in Resource-Constrained Work-
flow Nets. 13th Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS) / 31th International Conference on FORmal TEchniques for Networked and Distributed
Systems (FORTE), Jun 2011, Reykjavik„ Iceland. pp.259-273, �10.1007/978-3-642-21461-5_17�. �hal-
01583317�

https://inria.hal.science/hal-01583317
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Dynamic Soundness in

Resource-Constrained Workflow Nets⋆

Maŕıa Martos-Salgado, and Fernando Rosa-Velardo

Sistemas Informáticos y Computación,
Universidad Complutense de Madrid

E-mail: mrmartos@estumail.ucm.es,fernandorosa@sip.ucm.es

Abstract. Workflow Petri nets (wf-nets) are an important formalism for
the modeling of business processes. For them we are typically interested
in the soundness problem, that intuitively consists in deciding whether
several concurrent executions can always terminate properly. Resource-
Constrained Workflow Nets (rcfw-nets) are wf-nets enriched with static
places, that model global resources. In this paper we prove the unde-
cidability of soundness for rcwf-nets when there may be several static
places and in which instances are allowed to terminate having created or
consumed resources. In order to have a clearer presentation of the proof,
we define an asynchronous version of a class of Petri nets with dynamic
name creation. Then, we prove that reachability is undecidable for them,
and reduce it to dynamic soundness in rcwf-nets. Finally, we prove that
if we restrict our class of rcwf-nets, assuming in particular that a sin-
gle instance is sound when it is given infinitely many global resources,
then dynamic soundness is decidable by reducing it to the home space
problem in P/T nets for a linear set of markings.

1 Introduction

Workflow Nets have been identified and widely used as a solid model of business
processes [1], with a rich theory for their analysis and verification, sustained in
more than 40 years of development of the theory of Petri Nets. Workflow nets
(wf-nets) model business processes, that start in a given initial state and must
eventually finish (under a strong fairness assumption) in a final state in which
its task has been completed. One of the central problems in this area is that
of soundness, that of checking whether a wf-net can always reach its final state
properly [2].

Here we follow the works in [3, 4]. In them, the authors study extensions of wf-
nets in which processes must share some global resources. Resource-constrained
workflow nets (rcwf-nets) are wf-nets in which some places are dynamic and
some are static. Following a terminology from OOP, a rcwf-net can be seen
as the definition of a class, with its local and static attributes, represented by

⋆ Work supported by the MEC Spanish project DESAFIOS10 TIN2009-14599-C03-01,
and Comunidad de Madrid program PROMETIDOS S2009/TIC-1465.

2 M. Martos-Salgado and F. Rosa-Velardo

dynamic and static places, respectively. Then, the rcwf-net can be instantiated
several times, but every instance must share the tokens in static places.

Even if a singe instance of a rcwf-net is sound, several instances could dead-
lock because of static places. In [3] the authors define dynamic soundness, which
essentially amounts to the condition stating that any number of instances run-
ning simultaneously can always reach the final state, that in which all the tasks
have been completed.

In both works, the authors consider rcwf-nets that do not create or consume
static resources, that is, rcwf-nets that always return a global resource after
using it. In particular, the behavior of a single instance of a rcwf-net is such
that the number of tokens in the static places in the initial and final markings
coincide. Under this assumption, the number of tokens in the static places is
bounded by the number of tokens in the initial marking. The authors prove
in [3] that dynamic soundness is decidable whenever there is only a single static
place, that is, whenever there is a single type of global resources. Recently, [4]
further studies the problem of dynamic soundness, extending the previous result
to rcwf-nets with any number of static places, but considering a fixed number
of initial resources (unlike in [3], in which the existence of a minimal number of
resources for which the rcwf-net is sound is part of the problem). Under these
assumptions, it is enough for the authors to study the absence of deadlocks.

In this paper we continue the works in [3, 4] by studying the problem of
dynamic soundness for rcwf-nets with any number of static places, and with-
out restricting their behavior so that instances can terminate their task having
created new global resources or having consumed some.

We prove that dynamic soundness under these hypotheses is undecidable. It is
to the best of our knowledge the first undecidability result regarding soundness in
wf-nets (without special arcs like inhibitor or reset arcs [5]). The proof considers
a class of colored Petri nets with dynamic fresh name creation that we have
defined in previous works [6], called ν-PN. It is based on a non-trivial reduction
of reachability in ν-PN, which is undecidable [7, 8], to dynamic soundness in rcwf-
nets. Moreover, we believe that the simulation of ν-PN by means of rcwf-nets,
and the reduction of the reachability problem, are interesting by themselves, and
could be used to obtain other decidability/undecidability results.

Finally, we consider the same problem for a subclass of rcwf-nets, arguably
a sensible subclass of rcwf-nets. We will consider rcwf-nets which are sound for
a single instance (that is, such that a single instance can always finish properly)
whenever it is provided with infinitely many resources, and such that every
transition may contribute to the completion of the task. We will prove that
dynamic soundness in this case can be reduced to a home space problem in
ordinary P/T nets, which is decidable [9, 10].

The rest of the paper is organized as follows. Section 2 presents the basic
concepts we will need, like P/T nets and ν-PN. Section 3 defines asynchronous
ν-PN and proves undecidability of reachability for them. In Sect. 4 we present
our rcwf-nets, in terms of asynchronous ν-PN. Section 5 proves that dynamic
soundness is undecidable for rcwf-nets. In Sect. 6 we consider a restricted version

Dynamic Soundness in Resource-Constrained Workflow Nets 3

of the problem, and prove decidability in this case. Finally, Sect. 7 presents our
conclusions and directions for further study.

2 Preliminaries

A (finite) multiset m over a set A is a mapping m : A → N. We denote by A⊕

the set of finite multisets over A. For two multisets m1 and m2 over A we define
m1+m2 ∈ A⊕ by (m1+m2)(a) = m1(a)+m2(a) and m1 ⊆ m2 if m1(a) ≤ m2(a)
for every a ∈ A. When m1 ⊆ m2 we can define m2−m1 ∈ A⊕ by (m2−m1)(a) =
m2(a) − m1(a). We denote by ∅ the empty multiset, that is, ∅(a) = 0 for every
a ∈ A. Finally, for λ ∈ N and m ∈ A⊕ we define λ ∗ m = m + λ... + m ∈ A⊕.

Petri Nets. A Place/Transition Net [11] (P/T net for short) is a tuple N =
(P, T, F), where P is a finite set of places, T is a finite set of transitions (disjoint
with P) and F : (P × T) ∪ (T × P) → N is the flow function. P/T nets are
depicted as usual: places are drawn by circles, transitions are drawn by boxes
and F is represented by arrows labeled by a natural, that is, we draw an arrow
from x to y labeled by F (x, y) (or without any label if F (x, y) = 1). We do not
show the arrow whenever F (x, y) = 0.

A marking of N is an element of P⊕. For a transition t we define •t ∈ P⊕

as •t(p) = F (p, t). Analogously, we take t•(p) = F (t, p). A marking m enables
a transition t ∈ T if •t ⊆ m. In that case t can be fired, reaching the marking

m′ = (m − •t) + t•, in which case we write m
t
→m′.

Given a P/T net N = (P, T, F) with initial marking m0, we say that a place
p ∈ P is bounded if there exists b ∈ N such that for each reachable marking m,
m(p) ≤ b. It is bounded if all its places are bounded. Boundedness is decidable
for P/T nets. Moreover, the problem of deciding whether a place is bounded, is
also decidable [10]. Given a P/T net N , a marking m0 and a set H of markings
of N , we say that H is a home space if for every reachable marking m, there is
a marking m′ ∈ H reachable from m.

The problem of deciding whether a linear set of markings is a home space is
decidable too [10, 9]. A linear set of markings of a P/T net N is a set of markings
that can be obtained as linear combinations of markings of N . More precisely,
a marking m0 and a finite set of markings {m1, ..., mn} define the linear set of
markings L = {m0 +

∑n

i=1
λi ∗ mi | λi ∈ N}.

Workflow Petri Nets. We will use the definition in [4]. A workflow Petri net
(shortly a wf-net) is a P/T net N = (P, T, F) such that:

– there are in, out ∈ P with •in = ∅ and out• = ∅,
– for each p ∈ P \ {in, out}, •p 6= ∅ and p• 6= ∅.

The second condition intuitively states that all the places contribute to the
completion of the task. In this paper, we can always force that condition to be
satisfied, so that we will from now on ignore it.

4 M. Martos-Salgado and F. Rosa-Velardo

a a

a

b b

p1 q1

p2 q2

t

x x

y ν

→
a a

a

b c

(c fresh)

p1 q1

p2 q2

t

x x

y ν

Fig. 1. Two simple ν-PN

Petri Nets with dynamic name creation. Now we briefly define ν-PN [6].
We consider an infinite set Id of names, a set Var of variables and a subset of
special variables Υ ⊂ Var for name creation. A ν-PN is a tuple N = (P, T, F),
where P and T are finite disjoint sets, and F : (P × T) ∪ (T × P) → Var⊕.

A marking is a mapping m : P → Id⊕. We denote by ∅ the empty marking,
that which satisfies ∅(p) = ∅ for all p ∈ P . We write Id(m) to denote the set
of names that appear in m. We denote by Var(t) the set of variables in arcs
adjacent to t. Analogously, we will write Var(p) for the set of variables adjacent
to a place p. A mode is a mapping σ : Var(t) → Id . A transition t can be
fired with mode σ for a marking m if for all p ∈ P , σ(F (p, t)) ⊆ m(p) and

for every ν ∈ Υ , σ(ν) /∈ m(p) for all p. In that case we have m
t
→m′, where

m′(p) = (m(p) − σ(F (p, t))) + σ(F (t, p)) for all p ∈ P .
In order to keep usual notations in P/T nets, we will assume that there is

a “distinguished” color • ∈ Id . By “name” we mean any color different from •.
Moreover, we will use a distinguished variable ǫ that can only be instantiated
to •, which will be omitted in our figures. Thus, we can manage ordinary black
tokens with the same notations as in P/T nets.

The reachability problem is undecidable for ν-PN [7, 8], that is, given m0

and mf , markings of a ν-PN N , the problem of deciding whether m0 →∗ mf

is undecidable. By following a standard reduction that removes mf , we can
prove that the problem of deciding whether the empty marking is reachable is
also undecidable. Moreover, without loss of generality we can assume that m0

contains a single token.

3 Asynchronous ν-PN

Intuitively, one can see each name in a ν-PN as a process. Then, we can see a
firing of a transition in which different names are involved as a synchronization
between the corresponding processes.

Next, we prove that we can assume that actually each process can only
synchronize with a global shared memory, so that a synchronization between
two processes must be achieved via this shared memory. Technically, we will use
ordinary black tokens to represent this global memory, and names to represent
processes.

Definition 1. An asynchronous ν-PN is a ν-PN (P, T, F) such that:

Dynamic Soundness in Resource-Constrained Workflow Nets 5

a a

b a

a

a

a

A,

A,

A,

x x

x

ν

p1

p2

q1

q2

tx

ty

tν

Fig. 2. Simulation of the ν-PN in the left of Fig. 1 by an asynchronous ν-PN

– for each t ∈ T , either Var(t) ⊆ {ν, ǫ} or Var(t) ⊆ {x, ǫ},
– for each p ∈ P , either Var(p) = {x} or Var(p) = {ǫ}.

We call static places those p ∈ P with Var(p) = {ǫ}, and dynamic places
those p ∈ P with Var(p) = {x}. We will write P = PS ∪ PD, with PS the
set of static places and PD the set of dynamic places. Thus, we will disallow a
situation in which x, y ∈ Var(t). Let us now see that asynchronous ν-PN can
simulate ν-PN so that reachability is preserved.

Proposition 1. Let N be a ν-PN, and m0 a marking of N . There is an asyn-
chronous ν-PN N ′ and a marking m′

0
of N ′ such that m0 →∗ ∅ iff m′

0
→∗ ∅.

Proof (sketch). We simulate each transition t by the sequential firing of several
transitions satisfying the requirement above. Assume Var(t) = {x1, ..., xn}. We
add transitions t1, ..., tn so that ti is used to remove and add the tokens to which
xi is instantiated (using each of them a single variable x for that purpose).
In order to guarantee that they are fired sequentially, we add auxiliary places,
controlled by arcs labeled by ǫ. One of these auxiliary places also guarantees
that the simulation of a transition is done atomically, that is, whenever such a
simulation is started, no other simulation can start until the former has finished.
Notice that this simulation can introduce deadlocks (for instance, when we fire
t1 but we cannot continue with t2 due to abscess of tokens), but it does preserve
reachability. Fig. 2 illustrates the previous construction when Var(t) = {x, y}.

Corollary 1. Reachability of ∅ is undecidable for asynchronous ν-PN.

4 Resource-constrained workflow nets

We propose here a presentation of rcwf-nets slightly different from the presenta-
tion of [3], though equivalent. We directly define rcwf-nets using (asynchronous)
ν-PN, in order to shorten the gap between rcwf-nets and ν-PN.

Given a ν-PN N = (P, T, F) and x ∈ Var we define the P/T net Nx =
(P, T, Fx), where Fx(n, m) = F (n, m)(x). Moreover, for Q ⊆ P , by F |Q we
mean F restricted to (Q × T) ∪ (T × Q). We are now ready to define rcwf-nets.

6 M. Martos-Salgado and F. Rosa-Velardo

Definition 2. A resource constrained wf-net (or rcwf-net) is an asynchronous
ν-PN N = (P, T, F) such that:

– for all t ∈ T , ν /∈ Var(t),

– Np = (PD, T, F |PD
)x is a wf-net.

Np is the P/T net obtained by removing static places, which we call produc-
tion net of N . Then, a rcwf-net is an asynchronous ν-PN that does not create
new tokens (because the variable ν does not label any arc) and such that its
production net is a wf-net. In particular, it contains two special places in and
out given by the definition of wf-nets. When there is no confusion we will simple
refer to these places as in and out, respectively.

Definition 3. Let N = (P, T, F) be a rcwf-net and m0 ∈ P⊕

S . For any k ≥ 0,
we define mk

0
, as the marking of N given by:

– mk
0
(s) contains m0(s) black tokens, for each s ∈ PS,

– mk
0
(in) contains k pairwise different names,

– mk
0
(d) is empty for every d ∈ PD \ {in}.

Moreover, for mk
0

we define the set of final markings Mk
out that contain the same

k names in out, and empty in the rest of the dynamic places.

Notice that in the final markings we are not fixing the amount of tokens in
static places, unlike in [3, 4].

Definition 4. Let N = (P, T, F) be a rcwf-net and m0 ∈ P⊕

S . We say N is
dynamically sound for m0 if for each k ≥ 0 and for each m reachable from mk

0
,

we can reach some marking in Mk
out.

5 Undecidability of dynamic soundness

In this section we prove undecidability of dynamic soundness for rcwf-nets by
reducing reachability for asynchronous ν-PN, which is undecidable, to it.

For this purpose, given an asynchronous ν-PN N , an initial marking m0 of
N (which we can assume to contain a single token in a given place i), we are
going to construct a rcwf-net N ′ which is dynamic sound if and only if the empty
marking is not reachable from m0. Intuitively, the runs of N ′ will be divided into
four steps: In the first step, the net gets ready for the simulation; in the second
step, the initial marking m0 of N is set; the third step simulates N ; and finally,
the last step is intuitively used to force that ∅ is not reachable if and only if N ′

is dynamically sound.

Let us explain with detail the four steps. In order to control in which step
we are in, we consider four static places step1, step2, step3 and step4, that will
be marked in mutual exclusion. Initially, step1 is marked.

Dynamic Soundness in Resource-Constrained Workflow Nets 7

a, a,

a,

a,

a,

a,

A, A,

A,

in

t1 tr1

tout

out

step1

step2

d

colours

x

x x

x x

x

x

x

Fig. 3. Step 1

5.1 Step 1: Getting ready

First of all, as we want to build a rcwf-net, we add two special places in and out.
We add a transition tout which can move a token from in to out. This transition
does not have any other precondition, so that it can be fired in any of the steps.

We will also consider two dynamic places, d and colours. The purpose of d
will be explained in the last step. The place colours will store all the colours that
we will use in the simulation of N , so that each transition in the construction
which takes a token from in, will add it to colours. We store all the colours in
order to be able to add them to out even if N consume all the tokens of some
color. We need the place colours because N could erase some names, but we
cannot do this in N ′ without being dynamically unsound.

In this first step, a transition t1 is fired, removing a token from in and adding
it to the two dynamic places d and colours. The purpose of placing a token in
d will be explained later, in the last step. It also moves the toke from step1 to
step2, thus moving on to the next step.

Finally, we need the firing of t1 to be “reversible” (for the case in which we
have a single name in in). Therefore, we add a new transition tr1 which moves
a token from step2 to step1, removes the tokens in colours and d, and adds a
token of the same color to out (not to in, since it cannot have incoming arcs).
Fig. 3 illustrates the first step.

5.2 Step 2: Setting the initial marking

In order to simulate the behavior of N , we consider in N ′ the set of places of
N . In this step we set the initial marking, which consists only of a name in the
place of N that we call i. Therefore, we take a token from in and put it both in
i and in colours. Moreover, we move the token from step2 to step3.

8 M. Martos-Salgado and F. Rosa-Velardo

a,

a,

a,

a,

a, a,

a,

t
t

t3

ν

x

x
xp

in

colours

step3 step4

qp

Fig. 4. Step 3

5.3 Step 3: Simulating N

In this step we simulate the behavior of N . Since N is an asynchronous ν-PN,
it only uses variables x, ν and ǫ. Since N ′ is a rcwf-net, we have to simulate the
creation of new names without using ν. We do it analogously as in the previous
steps, by taking from in a name whenever one must be created, and placing it
both in colours and whatever places pointed by arcs labeled by ν. Since all the
names contained in the place in are different, this is a correct simulation of the
creation of a fresh name.

It may be the case that at some point there are no more tokens in the place
in, so that no more name creations can be simulated. Therefore, a run of N ′

with k different names in the place in simulates a run of N in which at most k
names are used (actually, k − 1 because of the name that is put in d). Notice
that the dynamic soundness has to do with the behavior of a rcwf-net from any
initial marking, so that all the behaviors of N will be considered.

In this step we add step3 both as precondition and postcondition of any
transition in N , so that transitions in N can only be fired in this step. At any
point, we can fire a transition t3 that moves the token from step3 to step4, thus
finishing the simulation of N . Moreover, it also puts a black token in a new static
place q, whose purpose we will explain later. Figure 4 shows the simulation of a
transition with a ν.

5.4 Step 4: Reducing reachability to dynamic soundness

When the fourth step starts, there is a name in d, a black token in step4 (which
will stay there until the end of the execution of N ′) and in q, the set of names
that have been used along the execution of the rcwf-net is stored in colours and
the places of N are marked with a marking which is reachable in N .

We add a transition tf , which can move all the tokens from colours to out,
and with step4 both as precondition and postcondition, so that it cannot be
fired until this step starts.

We want to force N ′ to be dynamically unsound whenever ∅ is reachable.
Since we can move names directly from in to out, we need to build a marking
from which it is not possible to remove names from places different from out.

Dynamic Soundness in Resource-Constrained Workflow Nets 9

a,

a,

a,

a,

a, a,

A,

A,

A,

A,

A,

b

b

x x

SIMULATION

OF N

step4

colours

out

q

remove

tp

rp

tf

x

x

x d

Fig. 5. Step4

We add to N ′ a transition tp for each place p of N . When q is marked, there
is a choice between all the transitions tp, each of which removes a token from
p, and puts a black token in a static place remove. Intuitively, we are only able
to fire some tp if the current marking of N is not ∅. Otherwise, if t3 was fired
exactly from ∅, then no transition tp can be fired.

If we are able to fire some tp then we have a token in remove. In that case,
we can fire transitions rp for each dynamic place p (different from colours, in
and out), that removes a token from p, and puts the token back to remove.
Therefore, if remove is marked, we can empty every dynamic place different
from colours, in and out. In particular, the firing of rd is the only way to remove
the token in d. Figure 5 sketches how the fourth step is performed.

5.5 Undecidability

Now we are ready to prove that the previous construction reduces reachability
for asynchronous ν-PN to dynamic soundness for rcwf-nets.

Proposition 2. Given a ν-PN N with initial marking m0, the rcwf-net N ′ built
is dynamically sound if and only if ∅ is not reachable from m0 in N .

Proof. First, let us suppose that ∅ is reachable from m0 in N . Let n be the
number of different names created in some run that reaches ∅. If we consider the
net N ′ with n + 1 or more instances (that is, with at least n + 1 different names
in the place in), then we can reach a marking m′ of N ′ in which the places of N
are unmarked, the names that have been used in the computation are stored in
colours, d is marked by a color and step4 and q are marked with black tokens.
From this marking, we cannot fire any of the tp transitions, and therefore, we
cannot remove the token from q. Therefore, remove cannot be marked, which

10 M. Martos-Salgado and F. Rosa-Velardo

is the only way in which the name in d can be removed. Summing up, from the
initial marking with n+1 different names in in we have reached a marking from
which we cannot reach a final marking of N ′ (that in which the only marked
dynamic place is out), so that N ′ is not dynamically sound.

Conversely, let us suppose that ∅ is not reachable. We have to prove that
for each k ≥ 0 and for each m reachable from mk

0
, we can reach some marking

in Mk
out. Let us consider several cases, depending on which step the considered

marking is in.

– If step1 is marked in m then all the names are either in the place in or in
out. Therefore, we can fire tout repeatedly, transferring all the tokens in in
to out, and we are done.

– If step2 is marked in m we can fire tr1, reaching a marking in which step1
is marked, so we can apply the previous case.

– If step3 is marked in m we can fire t3, reaching a marking in which step4 is
marked. We discuss this case next.

– If step4 is marked in m we can fire tf repeatedly, putting all the names that
have been used by the construction in out, thus emptying colours. Moreover,
we can fire tout repeatedly, moving all the tokens which remain in in to out.
Therefore, all the tokens that initially were set in in, are set in out, so we
only have to prove that we can empty the other dynamic places. If step4
is marked then there must be a token in q or remove. If the token is in q,
since ∅ is not reachable, there is some name in some place p of N . Therefore,
we can fire the transition tp from m, reaching a marking in which remove
is marked. Finally, if remove is marked in m, we can remove all the tokens
from the dynamic places different from colours, in and out, reaching the
desired marking.

The previous result proves that reachability of the empty marking in asyn-
chronous ν-PN, which is undecidable, can be reduced to dynamic soundness for
rcwf-nets. Therefore, we finally obtain the following result:

Corollary 2. Dynamic soundness is undecidable for rcwf-nets.

6 Decidability of dynamic soundness for a subclass of

rcwf-nets

We have proved that dynamic soundness is undecidable in general. However, if
we consider more restrictive requirements for our rcwf-nets, dynamic soundness
turns decidable. In the literature, several notions of rcwf-nets and soundness have
been studied, most of them being more restrictive than our general definition.
In particular, in [3] the authors consider wf-nets which satisfy the following
condition, which we have not required: for each node n, there are paths from in
to n and from n to out. We are going to consider a less restrictive requirement,
namely that every transition has some dynamic postcondition. In that case, and
considering some very reasonable requirements, dynamic soundness is decidable

Dynamic Soundness in Resource-Constrained Workflow Nets 11

even if shared resources can be consumed or created by instances. This reasonable
requirement is the following: when a single instance is given arbitrarily many
global resources, then it evolves properly. This is equivalent to just removing
static places.

Let N = (P, T, F) be a wf-net. We denote by min the marking of N given
by min(in) = 1 and min(p) = 0 for p 6= in. Analogously, we define mout as the
marking of N given by mout(out) = 1 and mout(p) = 0 for p 6= out. A wf-net N
is sound [2] if for every marking m reachable from min, mout is reachable from
m. We are now ready to define our subclass of rcwf-nets:

Definition 5. We say that a rcwf-net N = (P, T, F) is a proper rcwf-net if the
two following conditions hold:

– for each t ∈ T , t• ∩ PD 6= ∅,
– the production net Np of N is sound.

Intuitively, the behavior of Np represents the maximal behavior of each in-
stance of N . In particular, if m is a reachable marking of a rcwf-net N , then
the markings of Np obtained by projecting m to each of the names in m are all
reachable too.

In [3, 4] other classes more restricted than proper rcwf-nets are defined.1

However, the previous conditions are enough for our decidability result, and
indeed our requirement can be deduced from the conditions required in [3, 4].

Lemma 1. The production net Np of a proper rcwf-net N is bounded.

Proof. Let us suppose that Np is sound and unbounded (assuming the initial
marking m1

0
). Then, there are markings of Np, m1, m2, and m′

1
such that m1

0
→∗

m1 →∗ m2 = m1 + m′
1

with m′
1

non empty. Since Np is sound, m1 → out, so
that m2 = m1+m′

1
→∗ out+m′

1
. Again, by soundness of Np, it must be the case

that out + m′
1
→∗ out. Since out• = ∅, it must be the case that m′

1
→∗ ∅, but

this is not possible because N is proper (and, in particular, all the transitions of
Np have postconditions).

Actually, in the proof of decidability of dynamic soundness for proper rcwf-
nets, we only need that the production net is bounded (and boundedness is
decidable for P/T nets). By the previous result, we know that the production
net of a proper rcwf-net is bounded, but even if our rcwf-net is not proper, we
can still check whether its production net is bounded, in which case our proof
still holds. We reduce dynamic soundness to a home space problem in P/T nets.

Let us explain intuitively how the construction works. It is similar to a con-
struction used in [4]. Given a proper rcwf-net N , we know that Np is bounded.
Then, we can consider the state machine associated to the reachability graph of
Np. More precisely, if m is a reachable marking in Np, then we will consider a
place also denoted by m. A token in m stands for an instance of N in state m.

1 E.g., by demanding that there are paths from in to every node, and from every node
to out.

12 M. Martos-Salgado and F. Rosa-Velardo

aaa

p1

a • a
s

aaa

in

aaa

out

aaa
p3

aaa
p2

aaa
p4

t4

t1 t2

t3 t5

Fig. 6. A proper rcwf-net N

new

aaa src aaa
ok

stop

aaa

{p1}

a • a

s

a • a

{in}

aaa

{out}

aaa

{p2, p3}

aaa

{p4}

t4

t1 t2

t3 t5

Fig. 7. N tr obtained by applying Def. 6 to N in Fig. 6 (omitting the arcs from ok)

Notice that this is correct because all the markings reachable in N must be reach-
able in Np (after projecting). So far, it is like in [4]. Moreover, the static places
will be considered as places of the new net too, and will be pre/postconditions
of the transitions we add, in the same way as they were in the original net.

Finally, we have to consider one more place src in order to set the initial
number of instances that we are going to consider for the net. Let us denote
by R(N) the set of markings reachable in a wf-net net N from min. Now we
are ready to define the construction which will let us prove the decidability of
dynamic soundness.

Definition 6. Let N = (P, T, F) be a proper rcwf-net and ms
0
∈ P⊕

S . We define
the P/T net N tr = (P tr, T tr, F tr) as follows:

– P tr = PS ∪R(Np) ∪ {src, ok},

– T tr = {(m1, t, m2) ∈ R(Np) × T ×R(Np) | m1

t
→ m2 in Np} ∪ {new, stop},

– F tr is such that:
• F tr(m1, (m1, t, m2)) = F tr((m1, t, m2), m2) = 1,
• F tr(src, stop) = F tr(stop, ok) = 1,
• F tr(src, new) = F tr(new, src) = F tr(new, in) = 1,
• F tr(ok, (m1, t, m2)) = F ((m1, t, m2), ok) = 1,
• If s ∈ PS, F tr((m1, t, m2), s) = F (t, s) and F tr(s, (m1, t, m2)) = F (s, t),
• F tr(x, y) = 0, otherwise.

Dynamic Soundness in Resource-Constrained Workflow Nets 13

The initial marking of N tr is mtr
0

, given by mtr
0

(src) = 1, mtr
0

(m) = 0 for
m ∈ R(Np) and mtr

0
(s) = ms

0
(s) for s ∈ PS.

Figure 7 shows the previous construction for the net in Fig. 6. Note that
N tr is finite because Np is bounded, so that it can be effectively computed.
Intuitively, N tr creates by means of transition new several instances in its initial
state, after which if fires stop, marking place ok, which is a precondition of the
rest of the transitions, so that from then on they can be fired.2 Each token in
a place m ∈ R(Np) of N tr represents an instance of N , running concurrently
with other instances and sharing the resources in the static places with them.
Therefore, the net will simulate runs of as many instances of the original net as
times the transition new has been fired. Let us define a correspondence between
the markings of N and the markings of N tr.

Definition 7. Given a marking m of N , we define the marking mtr of N tr

as follows: mtr(src) = 0, mtr(ok) = 1, mtr(s) = m(s)(•) for s ∈ PS, and
mtr(m′) = |{a ∈ Id(m) | m(p)(a) = m′(p) ∀p ∈ PD}|, that is, the number of
instances in state m′.

Notice that all the markings reachable in N tr with ok marked are of the
form mtr for some marking m reachable in N . The following result is trivial by
construction of N tr.

Lemma 2. mk
0
→∗ m in N if and only if mtr

0

newk
·stop

−→ (mk
0
)tr →∗ mtr. More-

over, all the computations in N tr start by firing new k ≥ 0 times, possibly
followed by stop, in which case (mk

0
)tr is reached.

Finally, we are ready to prove that this construction reduces the dynamic
soundness problem for proper rcwf-nets to the home space problem for P/T
nets. We denote by ep the marking given by ep(p) = 1 and ep(q) = 0 for p 6= q.

Proposition 3. Let N be a proper rcwf-net. N is dynamically sound if and only
if the linear set L generated by {out} ∪ {es | s ∈ PS} is a home space for N tr.

Proof. We start by remarking that L contains markings with any number of
tokens in out and in static places, and empty elsewhere. Notice also that each
transition different from new and stop has exactly one precondition in R(Np)
and one postcondition in R(Np). Therefore, after the firing of stop, the total
number of tokens in places in R(Np) remains constant. Therefore, if new is fired
k times and a marking in L is reached, then necessarily this marking has k
tokens in out. Finally, notice that m ∈ Mk

out iff mtr ∈ L and it contains exactly
k tokens in out.

Let us first suppose that N is not dynamically sound. Then, there is a k > 0
and a marking m reachable from mk

0
from which no marking in Mk

out is reachable.
By Lemma 2, the marking mtr is reachable after firing new k times. Then, from

2 Actually, the construction still works without place ok, though it simplifies the forth-
coming explanations.

14 M. Martos-Salgado and F. Rosa-Velardo

mtr no marking in L can be reached. Indeed, if some marking m′tr in L is reached
from mtr it has necessarily k tokens in out and again by Lemma 2, m′ ∈ Mk

out

is reached in N , contradicting our first hypothesis. Then, L is not a home space
and we conclude this implication.

Reciprocally, let us assume that L is not a home space. Then, there is a
reachable marking of N tr from which no marking of L can be reached. Let us
suppose that this marking is of the form mtr (otherwise, we consider the marking
obtained after firing stop, and no marking of L can be reached from it). Let us
suppose that there are k tokens in places in R(Np) in mtr. Then, by Lemma 2
and the previous remarks (analogously to the previous case) no marking in Mk

out

can be reached from m, so that N is not dynamically sound.

Finally, as the home space problem is decidable for linear sets of markings
of P/T nets [9], we obtain the following result:

Corollary 3. Dynamic soundness for proper rcwf-nets is decidable.

7 Conclusions and future work

In this paper we have continued the study of concurrent workflow processes
that share some global resources, first studied in [3] and more recently in [4]. In
particular, we consider resource-constrained workflow nets in which each instance
is allowed to consume or create new resources.

We have first established the undecidability of dynamic soundness for rcwf-
nets when the use of resources is unrestricted, so that each instance is allowed
to terminate a run having consumed or created global resources. Such result is
achieved by means of an alternative presentation of rcwf-nets which is closer to
ν-PN. More precisely, we have defined a subclass of ν-PN in which processes can
only interact asynchronously with each other via a global shared memory, thus
bringing together ν-PN and rcwf-nets. We have then seen that the undecidabil-
ity of the reachability problem for ν-PN can be transfered to its asynchronous
subclass. Although we have focused on reachability, we claim that most un-
decidability results can also be transfered, so that both classes are essentially
equivalent. Then we have reduced this reachability problem to dynamic sound-
ness of rcwf-nets. This reduction is not at all trivial, even though the alternative
presentation of rcwf-nets eases the simulation of ν-PN by means of them (third
step of the reduction).

Then we have considered a subproblem of the latter. In the first place, we
assume that each instance is sound when it is given infinitely many resources
(which amounts to saying that its behavior is not restricted by global resources).
Moreover, we assume a technical condition, which is weaker than the standard
“path property”, that intuitively meas that all transitions are significant in the
completion of the task. Under these hypotheses, we prove that dynamic sound-
ness is decidable, by reducing it to a home space problem for a linear set of home
markings, which is decidable.

Dynamic Soundness in Resource-Constrained Workflow Nets 15

There are many ways in which this work must be continued. The most im-
portant one could be to bridge the gap between our undecidability and our
decidability result. In other words, we must address the problem of dynamic
soundness whenever the path property holds, without assuming that a single
instance of the net is necessarily sound (and always without assuming that in-
stances give back the resources they use). Notice that our undecidability proof is
no longer valid if we assume that property (indeed, the step 4 of our construction
has transitions without postconditions), and it does not seem possible to easily
fix this issue.

A dynamically sound rcwf-nets in which some proper runs may consume
global resources without returning them must necessarily have other runs in
which there is no need to consume global resources. Intuitively, the first run
may be more desirable than the second one in terms of some measure which lies
outside of the model. In this sense, a priced extension of rcwf-nets [12] in which
runs from in to out have an associated cost could be interesting to be studied.

References

1. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press (2002)

2. van der Aalst, W.M.P.: Verification of workflow nets. In Azéma, P., Balbo, G., eds.:
ICATPN. Volume 1248 of Lecture Notes in Computer Science., Springer (1997)
407–426

3. van Hee, K.M., Serebrenik, A., Sidorova, N., Voorhoeve, M.: Soundness of resource-
constrained workflow nets. In Ciardo, G., Darondeau, P., eds.: ICATPN. Volume
3536 of Lecture Notes in Computer Science., Springer (2005) 250–267

4. Juhás, G., Kazlov, I., Juhásová, A.: Instance deadlock: A mystery behind frozen
programs. In Lilius, J., Penczek, W., eds.: Petri Nets. Volume 6128 of Lecture
Notes in Computer Science., Springer (2010) 1–17

5. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets with reset arcs.
T. Petri Nets and Other Models of Concurrency 3 (2009) 50–70

6. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. Fundam. Inform. 88 (2008) 329–356

7. Rosa-Velardo, F., de Frutos-Escrig, D., Alonso, O.M.: On the expressiveness of
mobile synchronizing petri nets. Electr. Notes Theor. Comput. Sci. 180 (2007)
77–94

8. Rosa-Velardo, F., de Frutos-Escrig, D.: Decision problems for petri nets with
names. CoRR abs/1011.3964 (2010)

9. de Frutos-Escrig, D., Johnen, C.: Decidability of home space property. Technical
Report LRI-503, Univ. de Paris-Sud, Centre d’Orsay, Laboratoire de Recherche en
Informatique (1989)

10. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bulletin of
the EATCS 52 (1994) 244–262

11. Reisig, W.: Petri Nets: An Introduction. Volume 4 of Monographs in Theoretical
Computer Science. An EATCS Series. Springer (1985)

12. Abdulla, P.A., Mayr, R.: Minimal cost reachability/coverability in priced timed
petri nets. In de Alfaro, L., ed.: FOSSACS. Volume 5504 of Lecture Notes in
Computer Science., Springer (2009) 348–363

