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Abstract. Analyzing Border Gateway Protocol (BGP) instances is a crucial step
in the design and implementation of safe BGP systems. Today, the analysis is a
manual and tedious process. Researchers study the instances by manually con-
structing execution sequences, hoping to either identify an oscillation or show
that the instance is safe by exhaustively examining all possible sequences. We
propose to automate the analysis by using Maude, a tool based on rewriting logic.
We have developed a library specifying a generalized path vector protocol, and
methods to instantiate the library with customized routing policies. Protocols can
be analyzed automatically by Maude, once users provide specifications of the
network topology and routing policies. Using our Maude library, protocols or
policies can be easily specified and checked for problems. To validate our ap-
proach, we performed safety analysis of well-known BGP instances and actual
routing configurations.

1 Introduction

The Internet today runs on a complex routing protocol called the Border Gateway Pro-
tocol or BGP in short. BGP enables Internet-service providers (ISP) world-wide to ex-
change reachability information to destinations over the Internet, and simultaneously,
each ISP acts as an autonomous system that imposes its own import and export routing
policies on route advertisements exchanged among neighboring ISPs.

Over the past few years, there has been a growing consensus on the complexity
and fragility of BGP routing. Even when the basic routing protocol converges, con-
flicting policy decisions among different ISPs have led to route oscillation and slow
convergence. Several empirical studies [11] have shown that there are prolonged pe-
riods in which the Internet cannot reliably route data packets to specific destinations
due to routing errors induced by BGP. In response, the networking community has pro-
posed several alternative Internet architectures [18] and policy constraints (or “safety
guidelines”) that guarantee protocol convergence if universally adopted [8,6,16].

One of the key requirements for designing new routing architectures and policy
guidelines is the ability to study BGP network instances. These instances can come in
the form of small topology configurations (called “gadgets”), which serve as examples
of safe systems, or counterexamples showing the lack of convergence. They can also



come from actual internal router (iBGP) and border gateway (eBGP) router configu-
rations. Today, researchers and network operators analyze these instances by manually
examining execution sequences. This process is tedious and error-prone.

The main contribution of this paper is that we present an automated tool for ana-
lyzing BGP instances, and thus relieve researchers and network operators of manual
analysis. Our tool uses Maude [4], a language and tool based on rewriting logic. We
encode in Maude the BGP protocol as a transition system driven by rewriting rules.
Consequently, we can use the high-performance rewriting engine provided by Maude
to analyze BGP instances automatically. Our tool can simulate execution runs, as well
as exhaustively explore all execution runs for possible divergence.

More specifically, we developed a set of Maude libraries specifying a generalized
path vector protocol that is common to all BGP instances. The generalized path vector
protocol utilizes a set of unspecified routing policy functions. These unspecified func-
tions serve as the interface for specific routing policies which are formalized as Stable
Path Problems (SPP) [10]. To use our library, users only need to input the network
topology and customize routing policies functions in the form of SPP. We illustrate the
use of our tool by analyzing various BGP instances.

2 Background

2.1 BGP

BGP assumes a network model in which routers are grouped into various Autonomous
Systems (AS) administrated by Internet Server Provider (ISP). An individual AS ex-
changes route advertisements with neighboring ASes using the path-vector protocol.
Upon receiving a route advertisement, a BGP node may choose to accept or ignore the
advertisement based on its import policy. If the route is accepted, the node stores the
route as a possible candidate. Each node selects among all candidate routes the best
route to each destination based on its local route rankings. Once a best route is selected,
the node advertises it to its neighbors. A BGP node may choose to export only selected
routes to its neighboring ASes based on its export policy.

BGP systems come in two flavors: external BGP (eBGP), which establishes routes
between ASes; and internal BGP (iBGP), which distributes routes within an AS. At
the AS-level, a BGP system can be viewed as a network of AS nodes running eBGP.
Each AS is represented by one single router node in the network (its internal structure
ignored), and its network state includes its neighbors (ASes), selected best path and a
routing table. Route advertisements constitute the routing messages exchanged among
them. Within an AS, a BGP system can be viewed as a network of two kinds of net-
work nodes running iBGP: gateway routers and internal routers whose network states
are similar to eBGP routers. iBGP allows internal routers to learn external routes (to
destinations outside the AS) from gateway routers.

We model both eBGP and iBGP systems as network systems with two components:
routing dynamics and routing policies. Routing dynamics specify how routers exchange
routing messages, and how they update their network states accordingly. Routing poli-
cies are part of the static configuration of each router, by which the ISP operator ex-
presses his local traffic interests and influences route decisions.



In our library, we adopt the use of Stable Paths Problems (SPP) [10] as the formal
model of routing policies. An instance of the SPP S is a tuple (G, o, P, Λ), where G
is a graph, o is a specific destination node 4, P is the set of permitted (usable) paths
available for each node to reach o, and Λ is the ranking functions for each node. For
each node v, λv is its ranking function, mapping its routes to natural numbers (ranks),
and P v are its permitted paths, the set of available paths to reach o. A path assignment
is a function π that maps each network node v ∈ V to a path π(v) ∈ P v . A path
assignment is stable if each node u selects a path π(u) which is (1) the highest ranked
path among its permitted paths, and (2) is consistent with the path chosen by the next-
hop node. Consistency requires if π(u) = (uv)P then for the next-hop node v, we must
have π(v) = P . A solution to the SPP is a stable path assignment.

In this paper, we are interested in analyzing BGP convergence (safety) property
in the SPP formalism. A BGP system converges and is said to be safe, if it produces
stable routing tables, given any sequence of routing message exchanges. We can study
BGP convergence by analyzing its SPP representation: SPP instance for a safe BGP
system converges to a solution in all BGP executions. Note that, the existence of an
SPP solution does not guarantee convergence.

For example, Figure 1 presents an SPP in-
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Fig. 1: Disagree Gadget.

stance called the Disagree “gadget”. The per-
node ranking functions are λ1([n1 n2 n0]) =
1, λ1([n1 n0]) = 2, λ2([n2 n1 n0]) = 1, and
λ2([n2 n0]) = 2. The permitted paths for each
node are listed besides the corresponding node.
The order in which the paths are listed is based
on the ranking function: Nodes prefer higher ranked
routes, e.g. node n1 prefers route [n1 n2 n0] over [n1 n0]. Disagree has two stable path
assignment solutions: ([n1 n2 n0], [n2 n0]) and ([n2 n1 n0], [n1 n0]). However, Dis-
agree is not guaranteed to convergebecause there exists an execution trace where route
assignments keep oscillating. Consider the execution where node n1 and n2 update and
exchange routing messages in a synchronized manner, and their network states oscil-
late between two unstable path assignments ([n1 n0]) ([n2 n0]) and ([n1 n2 n0] [n2

n1 n0]) forever.

2.2 Rewriting Logic and Maude
Rewriting logic [13] is a logical formalism that is based on two simple ideas: states of
a system can be represented as elements of an algebraic data type, and the behavior of
a system can be given by transitions between states described by rewrite rules. By al-
gebraic data type, we mean a set whose elements are constructed from atomic elements
by application of constructors. Functions on data types are defined by equations that
allow one to compute the result of applying the function. A rewrite rule has the form
t ⇒ t′ if c where t and t′ are patterns (terms possibly containing variables) and c is a
condition (a boolean term). Such a rule applies to a system state s if t can be matched
to a part of s by supplying the right values for the variables, and if the condition c holds
when supplied with those values. In this case the rule can be applied by replacing the
part of s matching t by t′ using the matching values for variables in t′.

4 Assuming the Internet is symmetric, we can study its routing behavior by studying routing to
a single destination.



Maude [4] is a language and tool based on rewriting logic [12]. Maude provides
a high performance rewriting engine featuring matching modulo associativity, com-
mutativity, and identity axioms; and search and model-checking capabilities. Given a
specification S of a concurrent system, Maude can execute this specification and allows
one to observe possible behaviors of the system. One can also use the search function-
ality of Maude to check if a state meeting a given condition can be reached during
the system’s execution. Furthermore, one can model-check S to check if a temporal
property is satisfied, and if not, Maude will produce a counter example. Maude also
supports object-oriented specifications that enable the modeling of distributed systems
as a multiset of objects that are loosely coupled by message passing. As a result, Maude
is particularly amenable to the specification and analysis of network routing protocols.

3 A Maude Library for Encoding BGP Protocols

This section presents our Maude library for analyzing BGP instances. This library pro-
vides specification of the protocol dynamics that are common to BGP instances, and
defines a routing policy template in terms of the Stable Path Problem (SPP) so that net-
work designers can customize it to analyze a specific instance. Our library also provides
support for detecting route oscillation.

BGP system Maude interpretation
Network nodes (Router) objects
Routing messages Terms of type Msg

Global Network Multiset of router objects and terms representing messages
Protocol dynamics Local rewriting rules
Global network behaviors Concurrent rewrites using local rules
Route oscillation support A Logger object recording the histories of route assignments

and rewriting rules updating the Logger object

Table 1: Overview and Interpretation of Maude Library

Our library is organized into a hierarchy of Maude modules. Table 1 presents the
correspondence between concepts in BGP protocols and the Maude code. We first show
how our library represents a single network state of BGP system (Section 3.1). Then we
explain how to capture the dynamic behavior of a local BGP router using rewrite rules.
In doing so, the global network behaviors can be viewed as concurrent applications of
the local rewriting rules (Section 3.2). Finally, we discuss the component in the library
that detects route oscillation (Section 3.3).

3.1 Network State

A network state is represented by a multiset of network nodes (routers) and routing
messages used by routers to exchange routing information. Each network node is rep-
resented by a Maude object, whose attributes consist of its routing table, best path and



neighboring table. We omit the detailed Maude sort definitions, but provide an example
encoding of the network node n1 in Disagree gadget show in Figure 1 as follows.

[n1 : router |
routingTable: (source: n1,dest: n0,pv:(n1 n0),metric: 2),
bestPath: (source: n1,dest: n0,pv:(n1 n0),metric: 2),
nb: (mkNeigh(n0,2) mkNeigh(n2,1))]

The constructor for a node is [ : | , , ]. The first two elements (n1:router) specify the
node’s id n1, and its object class router. The next three elements are the attributes. At
a given state, the routing table attribute constructed from routingTable: contains n1’s
current available routes. Each routing table entry stores the routing information for one
particular next-hop. Here, the routing table attribute only contains one entry (source:

n1, dest: n0, pv:(n1 n0), metric: 2). This route is specified by its source (source: n1),
destination (dest: n0), the path vector that contains the list of nodes along the path (pv:
(n1 n0)), and the cost of the route (metric: 2). This route is also used for the best path
attribute, constructed from bestPath: , which contains n1’s current best path. The last
attribute is the neighbor table, constructed from nb: . To extract a node’s local neighbor
table from the network topology, we further introduce an operator mkNeigh. The first
argument of mkNeigh is the identifier of the neighboring node, and the second argument
the metric associated with the link to that node. Node n1 has two neighbors, node n0, the
cost to which is 2 (mkNeigh(n0,2)); and node n2, the cost to which is 1 (mkNeigh(n2,1)).

Besides router objects, the second part of a network state is routing messages in
the network. Typically, network nodes exchange routing information by sending each
other routing messages carrying newly-learned routes. In our library, a routing message
is constructed from sendPacket( , , , , ). For example, in the Disagree gadget, the ini-
tial routing message sent by node n1 to its neighbor n2 is represented by message term:
sendPacket(n1,n2,n0,2,n1 n0). This message carries n1’s routes to destination n0 with
path vector n1 n0 at cost 2. In general, the first two arguments of sendPacket( , , , , )

denote the sender’s identifier (node n1), and the receiver’s identifier (node n2) respec-
tively. The rest of the arguments specify the identifier of the destination (node n0), the
metric representing the cost of the route (2), and the path vector of the routing path (n1
n0).

3.2 Protocol Dynamics

We now show how to specify network system dynamics in Maude. By modeling a BGP
system as a concurrent system consisting of router objects (and the routing messages),
to specify the global BGP evolution, we only need to specify the local rewrite rules
governing the state transition of each BGP router.

A BGP node’s dynamics can be captured by various equivalent state transitions. To
reduce search space in analysis, we adopt a one-state transition: for each BGP node N,
when it receives routing messages from a neighbor S, N computes the new path from the
received message, updates N’s routing table and re-selects best path accordingly, and
finally sends out routing messages carrying its new best path information if a different
best path is selected. This state transition is encoded as a single rewrite rule of the
following form:



rl [route-update] :
sendPacket(S, N, D, C, PV)
[ N : router | routingTable: RT, bestPath: Pb, nb: NB ]
=>
if (case 1) then best path re-selects (promotion)
else (if (case 2) then best path remains same

else (if (case 3) then best path re-selection (withdraw)
else error processing
fi) fi) fi.

Here, r1 is the identifier of this rule, and route-update is the name of this rule. Rule r1 is
fired when the left-hand side is matched; that is, when a node N consists of routingTable
RT, bestPath Pb, and neighboring table NB receives a route advertisement message from
neighbor S. The result of applying the rule is shown on the right-hand side: the routing
message is consumed, and attributes of router N are updated. Based on the result of the
re-selected bestPath attribute, there are three different cases for N to update its state as
specified in the three branches. Next, we explain these three cases.

Best path promotion. In any case, node N needs to first compute the new path based on
its neighbor S’s message asserting that S can reach D via a path PV. We define a function
newPath that takes a routing message and the neighbor table as arguments, and returns the
new path by first prepending N to the path announced by S, setting the new path attribute
according to the local ranking function lookUpRank, and then imposing the import policy
by modifying the path metric according to BGP routing policy configuration (import
function). Here import and lookUpRank are unspecified routing policy functions. Together
with export that we will introduce shortly, they constitute our library’s specification
interface for defining BGP routing policy. To specify a particular BGP instance’s routing
policy, the user only needs to specify import, lookUpRank and export accordingly.

The first branch (case 1) is specified below. The newly computed path is compared
with the current bestPath Pb, if the new one is preferred over the old value Pb, the
bestPath attribute will be updated to this new path. Furthermore, if the export policy
allows, the new best path value will be re-advertised to all of N’s neighbors by sending
them routing messages.

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and
prefer?(newPath(sendPacket(S,N,D,C,PV),NB),Pb)==true

then
([ N : router |

routingTable: updatedRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),
bestPath: newPath(sendPacket(S,N,D,C,PV),NB),
nb: NB ]

multiCast(NB, export(newPath(sendPacket(S,N,D,C,PV),NB))))

Here the new state of N is obtained by updating the old routingTable attribute RT

(updateRT function), and updating the bestPath attribute by setting it to the new value of
bestPath. The updateRT function recursively checks the routing table, and for each next-
hop entry, it either inserts the new path (newPath(...)) if no available route is presented;
or replaces the old value with the new path. To complete the state transition, for all N’s
neighbors, routing messages carrying the new path are generated by multiCast function.
To impose the export routing policy, before sending the new best path, export is applied
to the new path to filter out the routes which are intended to be hidden from neighbors.
Similar to import, export is to be instantiated by the user when analyzing a particular



BGP instance. If the export routing policy prohibits the new path to be announced,
export will transform it to emptyPath, which multiCast will not generate any message.

Best path remains the same. In the second branch (case 2), a new path newPath(...)

is computed from the received message as before. However, the new path is no better
than the current bestPath Pb. But the next-hop node of the new path and Pb are different,
implying that the new path is just an alternative path 5 for N to reach the destination. As
a result, the current bestPath value Pb is unchanged, and only the routingTable will be
updated with this alternative path (newPath(...)). No routing messages will be gener-
ated:

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and
getNext(newPath(sendPacket(S,N,D,C,PV),NB))=/=getNext(Pb) and
prefer?(Pb,newPath(sendPacket(S,N,D,C,PV),NB))==true

then
[ N : router |

routingTable: updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),
bestPath: Pb,
nb: NB ]

Best path withdraw. The same as in the second branch, in case 3, the newly computed
path newPath(...) is worse than the current bestPath Pb, but it is now routed through the
same next-hop S as current bestPath Pb. The fact that S now sends a less preferred path
indicates that the previous learned route Pb is no longer available at S. Therefore, we
need to withdraw Pb by dropping Pb from routing table, shown as follows:

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and
getNext(newPath(sendPacket(S,N,D,C,PV),NB))==getNext(Pb) and
prefer?(Pb, newPath(sendPacket(S,N,D,C,PV),NB))==true

then
([ N : router |

routingTable: updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),
newBest(newPath(sendPacket(S,N,D,C,PV),NB),

updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT)),
nb: NB ]

multiCast(NB,export(newBest(newPath(sendPacket(S,N,D,C,PV),NB),
updateRT(newPath(sendPacket(S,N,D,C,PV),NB),

RT))))

Here, updateRT replaces (therefore removes) the outdated Pb with the new path
(newPath(...)), and newBest function re-computes the best path from newPath(...) and
the remaining paths in routing table. As in case 1, to complete the state transition, the
newly selected best path is sent to its neighbors by multiCast(...).

3.3 Route Oscillation Detection Support

Our library also provides extra definitions to help detect route oscillation. Our method
is based on the observation that if route oscillation occurs during network system evolu-
tion, there is at least one path assignment (at a given state for a BGP system, we define
the path assignment to be the collection of best paths currently selected by all network
nodes) that is visited twice. Therefore, we use the following simple heuristic: we main-
tain a record of all path assignments for all visited states in BGP execution, and check

5 Different next-hop implies the route is learned from a different neighbor.



for recurring path assignment. Note that a path assignment (best path attribute of router
object) only constitutes a sub-set of the entire system state (the router objects attributes
and routing messages), consequently our heuristic based on this partial system state can
have false positives: our analysis may report a false route oscillation when two states are
identical only in path assignments, but not the entire system states. Nevertheless, our
heuristic is sound and is still helpful in detecting all potential route oscillation: when
route oscillation occurs, a recurring path assignment state must occur.

More concretely, in our Maude library, we create a global logger object to keep track
of the history of path assignments. For each snapshot of the network state, i.e. whenever
a network node makes a local state transition and updates its best path attribute, the
logger object is synchronized to create a new path assignment entry that corresponds to
the updated best path. We then provide a function that checks for recurring entries in
the list of visited path assignments, which can be used directly in Maude’s exhaustive
search to detect route oscillation.

Logger object. The global logger is represented by an object pa of Logger class which
has one attribute history. At a given state, this attribute contains a list (history) of path
assignments, each entry of which contains the snapshot of the network’s collection of
best paths in a visited state.An example logger object for the disagree gadget is the
following:

{pa : Logger | history: ({[n1 n2 n0] [n2 n0]}
{[n1 n2 n0] [n2 n1 n0]}
{[n1 n2 n0] [n2 n0]}
{[n1 n0] [n2 n0]})}

The above logger records four snapshots of the Disagree’s best paths. For example, the
first path assignment {[n1 n2 n0] [n2 n0]} denotes the network latest state where node
1’s best path to 0 is [n1 n2 n0] and node 2’s best path is [n2 n0]. And line 4 {[n2 n0] [n2

n0]} records Disagree’s path assignment at its initial (oldest) state. Note that, this object
content actually exhibits route oscillation (line 1 and line 3) described in Section 3.2.

Synchronized logging. To log all path assignment changes, we only need to slightly
modify the single rewrite rule for route update, such that whenever the rule is fired to
apply local state transition for some node, the global object pa is synchronized and its
path assignment is updated to reflect changes in the local node’s best path attribute,
shown as follows:

rl [route-update-logging] :
sendPacket(S, N, D, C, PV)
[ N : router | routingTable: RT, bestPath: Pb, nb: NB ]
{ pa : Logger | history: HIS }

=>

*** first branch: bestPath re-selects (promotion)
if ... then ...
{ pa : Logger | history:

historyAppend(updateAt(index(N),
[getPV(newPath(sendPacket(S,N,D,C,PV),NB))],
head(HIS)),HIS)})

else ... fi .

On the left-hand side, two objects: a router N and the global logger pa are matched to
trigger the transition. As described in 3.2, in the first branch of route update where the



node’s best path attribute is set to newPath(...), the logger pa updates its path assignment
attribute as follows: First, it creates a new path assignment entry to record newPath(...)

by function updateAt(...). Then, the new entry updateAt(...) is inserted into the list of
previous path assignments HIS by function historyAppend. Here, the new path assignment
entry updateAt(...) is computed by updating the latest path assignment entry head(HIS)

with newPath(...). The rest of branches 2 and 3 are modified similarly.

Route oscillation detection. A network state is now a multiset of router objects, routing
messages, and one global logger object. The function detectCycle detects re-curring
path assignments, as follows:

eq detectCycle([ N : router | routingTable: RT,
bestPath: Pb,nb: NB] cf)

= detectCycle (cf) .
eq detectCycle(message cf) = detectCycle (cf) .
eq detectCycle({ pa : Logger | history: HIS } cf)
= containCycle? (HIS) .

The first two equations ignore router objects and routing messages in the network
state, and the last equation examines logger pa by function containCycle? to check for
recurring path assignment entries in HIS. We will revisit the use of detectCycle to search
for route oscillation in Section 5.

4 Specifying BGP Instance

Given a BGP instance with its network topology and routing policies, we show how to
specify the instance as a SPP in our library. We discuss examples for both eBGP and
iBGP.

4.1 eBGP instance

An eBGP instance can be directly modeled by an SPP instance S = (G, o, P, Λ): G, o
specifies the instance’s network topology, and P,Λ specifies the resulting per-node route
ranking function after applying the eBGP instance’s routing policies. Our library pro-
vides Maude definitions for each SPP element.

Network topology. An eBGP instance’s initial network state is generated from its
network topology, which is represented by a list of network nodes and links. Our library
declares two constants top-Nodes and top-BGP to represent network nodes and links. For
example, to specify the topology of the Disagree gadget, the user defines top-Nodes,

top-BGP as follows:

eq top-Nodes = n1 n2 .
eq top-BGP = (n1,n0 : 2) (n1,n2 : 1) (n2,n1 : 1) (n2,n0 : 2) .

Here, n0 is the identifier of the destination node (o). Each link is associated with its
cost. Based on the value of top-Nodes and top-BGP that are input by the user, our library
automatically generates Disagree’s initial state by init-config function:



eq gadget = init-config (top-Nodes, top-BGP) .

The resulting gadget is a network state which consists of the two network router
objects n1,n2, the four initial routing messages, and the initial logger pa, as shown in
Section 5.1. In this initial state, the three attributes of each network node – the routing
table and best-path and neighbor tables are computed as follows: init-config parses the
BGP links in network topology (top-BGP), for each link (ni,nj : M), a new routing table
entry for nj with cost M is created, and if nj == n0, then set ni’s best path to the one-hop
direct path ni n0, and its routing tables containing this one-hop direct route; otherwise if
there is no direct link from ni to n0, set ni’s best path and the routing table to emptyPath.
Initial routing messages and logger pa are computed in a similar manner.

Routing policy. The route ranking function Λ and permitted paths P are the result
of applying three BGP policies functions: import, export and lookUpRank. As we have
discussed in Section 3, import,export,lookUpRank are three user-defined functions that
serve as the specification interface for routing policies.

Functions import and lookUpRank are used to compute new routing paths from a
neighbor’s routing message: import filters out un-wanted paths, and lookUpRank assigns
a rank to the remaining permitted paths. Note that the metric value lookUpRank (N PV)

assigned by lookUpRank also determines the route’s preference in route selection. export
is used to filter out routes the router would like to hide.

As an example, the policy functions for Disagree are defined as follows.

eq export (P) = P . eq import (P) = P .
eq lookUpRank (n1 n2 n0) = 1 . eq lookUpRank (n1 n0) = 2 .
eq lookUpRank (n2 n1 n0) = 1 . eq lookUpRank (n2 n0) = 2 .

The first line says Disagree does not employ additional import/export policies.
Whereas the second and third line asserts that Disagree’s two nodes prefers routes
through each other: For example the second line encodes node n1’s ranking policy that
it prefers path (n1 n2 n0) (with higher rank 1) through n2 over the direct path (n1 n0)

(rank 2).

4.2 iBGP Instance

Our technical report [19] shows our SPP encoding of iBGP instances. The main dif-
ferences between an iBGP and eBGP instances are: (1) iBGP network topology distin-
guishes between internal routers and gateway routers. Gateway routers runs eBGP to
exchange routing information with (gateway routers of) other ISPs, while simultane-
ously running iBGP to exchange the external routing information with internal routers
in the AS. (2) iBGP routing policy utilizes a separate IGP protocol to select best route.
Internal to an AS, the ISP uses its own IGP protocol to compute shortest paths among
all routers. The shortest path distance between internal routers and gateway routers are
used in iBGP route selection: iBGP policy requires the internal routers to pick routes
with shortest distance to its gateway router.

As a result, iBGP requires encoding two types of topologies: a signaling topology
for gateway routers and internal routers to exchange routes within the AS, and a physical



topology on which the IGP protocol is running. Further, an additional destination router
denoting the special SPP destination o is added as an external router which is connected
with all gateway routers. In our library, we implement and run separately in Maude an
IGP protocol (for computing all-pairs shortest paths) and pass the resulting shortest path
distances to iBGP protocol.

5 Analysis

To analyze BGP instances, our library allows us to (1) execute the Maude specification
to simulate possible execution runs; and (2) exhaustively search all execution runs to
detect route oscillation.

5.1 Network Simulation

Network initialization. For any analysis, we need to first generate a BGP instance’s ini-
tial network state. For a given BGP instance, we have shown how to generate its initial
state gadget from its network topology and routing policy, as described in section 4. For
example, the initial state generated for Disagree is as follows:
{pa : Logger | history:{[n1 n0] [n2 n0]}}
[n1 : router | routingTable: (source: n1, dest: n0,

pv:(n1 n0), metric: 2),
bestPath: (source: n1, dest: n0,

pv:(n1 n0), metric: 2),
nb: (mkNeigh(n0,2) mkNeigh(n2,1))]

[n2 : router | ... ]
sendPacket(n1,n0,n0,n2,n1 n0) sendPacket(n1,n2,n0,n2,n1 n0)
sendPacket(n2,n0,n0,n2,n2 n0) sendPacket(n2,n1,n0,n2,n2 n0)

This state consists of Disagree’s initial logger object pa that holds the initial path as-
signment [n1 n0] [n2 n0], two router objects n1,n2, and four initial routing messages.

Execution. Unlike many formal specification paradigms used in static network analysis,
a Maude specification is executable. To explore one possible execution run from a given
initial state gadget, we can directly use Maude’s rewrite and frewrite (fair rewriting)
commands. For example, we could tell Maude to execute the Disagree gadget with the
following command: frew gadget . This command terminates and returns the following
final state:
{pa : Logger |

history: ({[n1 n0] [n2 n1 n0]} ... {[n1 n0] [n2 n0]})}
[n1 : router |...

bestPath: (source: n1,dest: n0,pv:(n1 n0),metric: 2), ...]
[n2 : router |...

bestPath: (source: n2,dest: n0,pv:(n2 n1 n0),metric: 1),...]

Note that this final state corresponds to one of the stable path assignments of Disagree
described in Section 2, where node n1 sets its best path to [n1 n0], and node n2 sets its
best path to [n2 n1 n0].

On the other hand, with the rew command which employs a different rewriting strat-
egy, divergence scenario is simulated and route oscillation is observed in the simulation.
This is because frewrite employs a depth-first position-fair rewriting strategy, while
rewrite employs a left-most, outer-most strategy that coincides with the execution trace
that leads to divergence.



5.2 Route Oscillation Detection

While Maude commands frew/rew explore a small portion of possible runs of the in-
stance, the search command allows us to exhaustively explore the entire execution
space. To exhaustively search BGP execution for route oscillation, we only need to
first input the BGP instance’s network topology and routing policy to generate the cor-
responding initial state, as described in Section 4; and then use the search command to
automatically search for oscillation. For example, for Disagree, we run:

search [1] gadget =>+ X such that detectCycle(X) = true .

Here, gadget is Disagree’s initial state, and =>+ X tells Maude to search for any reach-
able network state X such that at that state, the logger pa contains recurring path assign-
ment (detectCycle(X)=true). search command exhaustively explores Disagree runs and
returns with the first Disagree state that exhibits oscillation:

{pa : Logger | history: ({[n1 n2 n0] [n2 n0]}
{[n1 n2 n0] [n2 n1 n0]}
{[n1 n2 n0] [n2 n0]}
{[n1 n0] [n2 n0]})}

[n1 : router |...] [n2 : router |...] ...

Here, the resulting path assignment content in pa exhibits an oscillation (line 1, line 3).
In general, Maude allows us to exhaustively search for violation of a safety property

P by running the following command:

search initialNetwork =>+ X:Configuration such that P(X) == false.

which tells Maude to exhaustively search for a network state X that violates P along all
possible execution traces from the initial state initialNetwork. If Maude returns with No

solution, we can conclude property P holds for all execution traces.

5.3 Case Studies

We have analyzed well-known eBGP instances, including good gadget, bad gadget,
disagree [10]. In addition, we analyze two iBGP configuration instances: a 9-node iBGP
gadget [7] that is known to oscillate, and a 25-node configuration randomly extracted
from the Rocketfuel [17] dataset. Rocketfuel is a well-known dataset on actual iBGP
configurations that are made available to the networking community. Given that an ISP
has complete knowledge of its internal router configurations, the Rocketfuel experiment
presents a practical use case for using our tool to check an actual BGP configuration
instance for safety.

For each BGP instance, we simulate its possible executions using rewriting com-
mands (Simulation), and check for route oscillation using exhaustive search (Exhaus-
tive). We summarize our analysis results are as follows:

We have carried out these analysis on a laptop with 1.9 GB memory and 2.40GHz
dual-cores running Debian 5.0.6. The version of Maude is Maude 2.4. While route os-
cillation detection explores the entire state space of the instance execution, the analysis
time for rewriting based execution are measured for only one possible terminating exe-
cution (that converges to a stable path assignment).



Disagree Bad Good 9-node iBGP 25-node iBGP
Simulation 2 NA 4 20 31
Exhaustive 2,10,No 181,641,No 10997,37692,Yes 20063,52264,No 723827,177483,Yes

Table 2: Summary of BGP analysis in Maude. In the first row, each entry shows the simulation
time in milliseconds. In the second row, for each entry, the first value denotes exhaustive search
time in milliseconds, the second denotes number of states explored, and the third on whether our
tool determines the instances to be safe (“Yes”) or unsafe (“No”).

Here we summarize findings from our case studies. Single-trace simulation is help-
ful in finding permanent routing oscillation. When simulating the execute trace that
diverges, Maude does not terminate (e.g., in executing Bad gadget 6). However, simula-
tion can miss temporary oscillations which are only manifested on a particular executing
trace. When Maude terminates, single-trace simulation time increases when network
size grows. On the other hand, exhaustive search always provides a solid safety proof.
For instances of similar network size, the search time for a safe instance (good) is con-
siderably longer than that of an unsafe instance (bad). For instances of different sizes,
as network size grows, exhaustive search time grows exponentially. Nevertheless, even
for the 25-node scenario, exhaustive search can be completed in 12 minutes. As future
work, we are going to scale our analysis technique to larger networks.

6 Related Work

Maude is a widely used tool for a variety of protocol analysis. In addition to our use
of Maude for analyzing BGP instances, there is also a huge literature of using Maude
for other complex systems, such as security protocols [9] , real-time systems [14], and
active networking [5].

Theorem proving and model checking techniques have been applied to formal ver-
ification of network protocols. For instance, in [3], a routing protocol standard is for-
malized in the SPIN model checker and HOL theorem prover, where SPIN is used to
check convergence of small network instances, and HOL is used to generalize the con-
vergence proof for arbitrary network instances. Their work focuses on basic intra-AS
routing protocols such as the distance-vector protocol, and does not consider policy in-
teractions that occur in inter-AS routing protocols such as BGP. However, while our
proofs are automated by Maude’s built-in simulation and exhaustive search capabili-
ties, we are restricted to analyzing specific network instances. As future work, we plan
to generalize our instance-based proofs towards more general properties on BGP stabil-
ity, by leveraging Maude’s connection with existing theorem provers such as PVS [15].

Arye et al. [2] has attempted a similar formalization of eBGP gadgets in SPP using
the Alloy [1] tool. Our approach differs from theirs in the overall goal of the formaliza-
tion: Ayre et al. uses Alloy to synthesize eBGP instances that exhibit certain behaviors

6 Bad gadget always diverges and does not have any stable path assignment, therefore, when
we simulate bad gadget with rewriting, Maude does not terminate, and we do not record the
statistics.



such as divergence, whereas our approach takes an eBGP instance as input and analyzes
it via simulation runs and exhaustive search. Our overall goal is to provide an easy-to-
use library in Maude that eases the entire process of specifying and analyzing a BGP
instance. Besides, in addition to eBGP gadgets, our library also supports iBGP instances
and handles iBGP route ranking generation based on a separate IGP protocol 4.2.

7 Conclusion and Future Work

This paper presents our development of a Maude library for specifying and analyz-
ing BGP instances. Our work aims to automate an important task for network de-
signers when designing BGP protocols and safe policy guidelines. Our library uses
Maude’s object-based specification language and enables the user to easily generate
Maude specification by only requiring them to define the network topology and routing
policies. To validate the feasibility of our library, we explored a variety of well-known
BGP gadgets and an actual BGP instance obtained from the Rocketfuel dataset, and
demonstrated the use of Maude’s analysis capabilities to detect possible divergence. All
Maude code described in this paper is available at http://netdb.cis.upenn.
edu/discotec11.

In addition to integrating our framework with the PVS theorem prover, our ongoing
work includes: (1) more case studies on BGP instances and recent guidelines to explore
the limits of our library, leading to possible extensions of our Maude library; and (2)
releasing our tool for network designers to use.
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