UNADA: Unsupervised Network Anomaly Detection Using Sub-space Outliers Ranking

Abstract : Current network monitoring systems rely strongly on signa-ture-based and supervised-learning-based detection methods to hunt out network attacks and anomalies. Despite being opposite in nature, both approaches share a common downside: they require the knowledge provided by an expert system, either in terms of anomaly signatures, or as normal-operation profiles. In a diametrically opposite perspective we introduce UNADA, an Unsupervised Network Anomaly Detection Algorithm for knowledge-independent detection of anomalous traffic. UNADA uses a novel clustering technique based on Sub-Space-Density clustering to identify clusters and outliers in multiple low-dimensional spaces. The evidence of traffic structure provided by these multiple clusterings is then combined to produce an abnormality ranking of traffic flows, using a correlation-distance-based approach. We evaluate the ability of UNADA to discover network attacks in real traffic without relying on signatures, learning, or labeled traffic. Additionally, we compare its performance against previous unsupervised detection methods using traffic from two different networks.
Type de document :
Communication dans un congrès
Jordi Domingo-Pascual; Pietro Manzoni; Sergio Palazzo; Ana Pont; Caterina Scoglio. 10th IFIP Networking Conference (NETWORKING), May 2011, Valencia, Spain. Springer, Lecture Notes in Computer Science, LNCS-6640 (Part I), pp.40-51, 2011, NETWORKING 2011. 〈10.1007/978-3-642-20757-0_4〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01583411
Contributeur : Hal Ifip <>
Soumis le : jeudi 7 septembre 2017 - 11:57:53
Dernière modification le : mercredi 12 décembre 2018 - 15:23:37

Fichier

978-3-642-20757-0_4_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Pedro Casas, Johan Mazel, Philippe Owezarski. UNADA: Unsupervised Network Anomaly Detection Using Sub-space Outliers Ranking. Jordi Domingo-Pascual; Pietro Manzoni; Sergio Palazzo; Ana Pont; Caterina Scoglio. 10th IFIP Networking Conference (NETWORKING), May 2011, Valencia, Spain. Springer, Lecture Notes in Computer Science, LNCS-6640 (Part I), pp.40-51, 2011, NETWORKING 2011. 〈10.1007/978-3-642-20757-0_4〉. 〈hal-01583411〉

Partager

Métriques

Consultations de la notice

126

Téléchargements de fichiers

260