
HAL Id: hal-01583575
https://hal.inria.fr/hal-01583575

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Experience Report: Trading Dependability,
Performance, and Security through Temporal

Decoupling
Lorenz Froihofer, Guenther Starnberger, Karl Goeschka

To cite this version:
Lorenz Froihofer, Guenther Starnberger, Karl Goeschka. Experience Report: Trading Dependability,
Performance, and Security through Temporal Decoupling. Pascal Felber; Romain Rouvoy. 11th
Distributed Applications and Interoperable Systems (DAIS), Jun 2011, Reykjavik, Iceland. Springer,
Lecture Notes in Computer Science, LNCS-6723, pp.228-242, 2011, Distributed Applications and
Interoperable Systems. <10.1007/978-3-642-21387-8_18>. <hal-01583575>

https://hal.inria.fr/hal-01583575
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Experience Report:
Trading Dependability, Performance, and
Security Through Temporal Decoupling

Lorenz Froihofer, Guenther Starnberger, and Karl M. Goeschka

Vienna University of Technology
Institute of Information Systems, Distributed Systems Group

Argentinierstrasse 8/184-1
1040 Vienna, Austria

{lorenz.froihofer, guenther.starnberger, karl.goeschka}@tuwien.ac.at

Abstract. While it is widely recognized that security can be traded for
performance and dependability, this trade-off lacks concrete and quan-
titative evidence. In this experience report we discuss (i) a concrete
approach (temporal decoupling) to control the trade-off between those
properties, and (ii) a quantitative and qualitative evaluation of the ben-
efits based on an online auction system. Our results show that trading
only a small amount of security does not pay off in terms of performance
or dependability. Trading security even more first improves performance
and later improves dependability.

Keywords: Temporal decoupling, Dependability, Security, Performance

1 Introduction

While it is widely recognized that security can be traded for performance and
dependability [8, 18, 33], this trade-off lacks concrete and quantitative evidence.
In this experience report we examine the implementation of a prototype that
allows trading these properties in first-price sealed-bid auctions as used for gov-
ernmental bonds and CO2 certificates.

Main motivation for examining this auction type are the high dependability
and performance requirements as the high monetary amount of traded goods
can lead to significant financial losses when auctions need to be canceled or
rescheduled. In addition, such auctions typically exhibit a high peak load shortly
before the auction’s deadline, as a late submission of bids allows bidders to better
optimize their bids due to continuously changing financial market conditions.
Moreover, cloud computing is not an option due to data ownership issues.

The core idea of our approach is to mitigate performance issues (high peak
loads) and dependability problems (fault tolerance of the auctioneer’s infras-
tructure as well as the network infrastructure between client and auctioneer)
by shifting them into the security domain and by subsequently solving the new
security challenges [26]. In first-price sealed-bid auctions this is possible by decou-
pling bid submission from bid transmission: Unlike eBay-style auctions, bidders



2 Lorenz Froihofer et al.

do not learn about other bids before the auction’s deadline. Therefore, we can
locally timestamp bids when they are placed on the client and transfer them
to the server later. This allows us to increase performance, as we can spread
the peak load in the temporal domain, and dependability, as we can reschedule
transmission of bids in case of errors. In addition to server-side failures we can
also mitigate client-side failures, which cannot be solved with traditional tech-
niques such as redundant server-side infrastructure. This increase of performance
and dependability introduces new security challenges as it allows adversaries to
attack the locally applied timestamps. Consequently, we introduced a smartcard-
based secure timestamping protocol that solves the new security challenges [28].

In addition to our temporal decoupling approach this paper contributes with
a quantitative and qualitative evaluation of temporal decoupling as means to
trade security for performance and dependability. In this section we first examine
the architecture of our prototype, followed by a discussion of the implementation.

1.1 Architecture

This section discusses the architecture of our prototype implementation to make
the results presented in the following sections better comprehensible. The server
side architecture of the prototype (Figure 1) leverages EJB (Enterprise Jav-
aBean) components and the JBoss Seam framework and is deployed to the JBoss
application server. In order to facilitate temporal decoupling we not only leverage
a Web browser at the client side, but also additional components:

The first prerequisite to temporal decoupling is a secure smart card running
the security-critical parts of the application such as time synchronization and
time stamping of bid submissions [25,28]. In order to enable the Web application
to talk to the smart card, we introduced the smart card proxy [27], a generic
secure approach to enable secure HTTP-based (Hypertext Transfer Protocol)
access to smart cards that do not offer an HTTP communication interface.

The second prerequisite is a client side storage facility, provided by Google
Gears, to store bids once they are timestamped. This prevents loss of valid bids
in case of client crashes so that bids can be sent to the server after client recovery.

1.2 Implementation

The prototype has been developed in two iterations: The first iteration used a
Java applet to fulfil the bid submission related tasks. Based on the drawbacks we
observed for the Java applet solution, we performed a feasibility study of a Web-
only solution (no Java applet required) during the second iteration of prototype
development and hence replaced the bid submission tasks with a GWT (Google
Web Toolkit) implementation, which has two core responsibilities with respect
to our decoupling approach:

– The client side GWT application communicates via the proxy with the smart
card in order to perform the time synchronization and time stamping tasks.

– After a bid has been placed, the client side GWT application persistently
stores the timestamped bid for later submission to the server. For persistent



Temporal Decoupling to Trade Dependability, Performance, and Security 3

Application server
(JBoss AS)

Application server
(JBoss AS)

Application server
(JBoss AS)

Database
(MySQL)

EJB container
(JBoss)

Web server
(Tomcat)

Web browser
(Firefox)

Smart card 
(.NET Card)

Plugin
(Google Gears)

Storage 
mechanism

(SQLite)

Network boundary

Load balancer
(Apache HTTPD)

Network boundary Network boundary

Client side infrastructure Communication 
providers
(Internet)

Server side infrastructure

HTTP
HTTP

JDBC

APDU

SQL

Application server 
cluster

Smart card 
proxy

HTTP

Fig. 1. Prototype architecture

storage, the Google Gears plug-in is required. Finally, the client side GWT
application submits bids to the server according to the implemented bid
submission strategy [26].

The smart card proxy is implemented as an HttpServlet according to the
Java Servlet specification and is executed in an Apache Tomcat Web application
container. It gets requests from the client side GWT application running in
the Web browser and performs the necessary translation between the HTTP
communication with the GWT application and the APDU (Application Protocol
Data Unit) communication with the smart card. The Servlet-based approach
has been taken for the proof-of-concept prototype implementation, but could be
replaced with any implementation converting from HTTP to the APDU protocol.

2 Evaluation of Temporal Decoupling

The previous section introduced the architecture and implementation of our de-
coupling approach from a technological perspective. This section goes beyond the
technological aspects and evaluates the benefits and drawbacks of the temporal
decoupling approach.

Our original idea was to delay all bid submissions for a random period of
time, which turned out to be only a sub-optimal solution, because it also delays
bid submission in times where the server(s) are not fully loaded. Therefore, we
invented and evaluated more sophisticated bid submission strategies [26] in order
to better utilize the server infrastructure. The interval-based submission strategy
limits clients to the submission of only a single bid within a certain time interval.
The group-based submission strategy partitions the set of clients into disjoint
groups and only the clients within a specific group might send bids to the server
at a specific point in time. In addition, each strategy can be used in two different
modes: With bid-queuing all bids submitted at the client are eventually delivered
to the server while with bid-overwriting a later bid overwrites any earlier bids
still queued at the client.



4 Lorenz Froihofer et al.

We discuss the performance improvements through temporal decoupling in
this section and compare the two strategies based on the following parameters:

– A bidder issues a bid every 30–40 seconds. This corresponds to real-world
data of governmental bond auctions just before the auction deadline.

– 1 500 bidders can be supported by a single server without temporal decou-
pling. This is the result of the performance measurements of our prototype
and specific to our hardware environment.

For analysis and comparison of the temporal decoupling improvement po-
tential we introduce the decoupling factor as decoupling period divided by the
original peak load duration (parameters illustrated in Figure 2).

The original peak load duration is the time between the start of the peak
load as it would be observed without our temporal decoupling approach, e.g.,
determined by exceeding a pre-defined threshold such as average submitted bids
per second, and the end of that peak load period, typically close to the deadline
for bids. Generally, we assumed five minutes of peak load duration according to
our application scenario.

The deadline for bids is the latest point in time where a bid has to be submit-
ted by a bidder while the deadline for messages is the latest point in time where
all bids have to be transmitted to the server. The time span between these two
deadlines is called decoupling period. If we have 5 minutes of original peak load
duration and 10 minutes decoupling period, for example, the decoupling factor
would be 2.

Fig. 2. Temporal decoupling approach

Figure 3 shows the performance improvement possible through temporal de-
coupling in terms of supportable bidders in relation to the decoupling period
(shown before the colon on the X-axis) and the decoupling factor (shown after
the colon on the X-axis). In this figure, we assume an original peak load duration
of five minutes.

The values of Figure 3 are calculated for the different submission strategies
based on the single-server bid submission performance without temporal decou-
pling. Moreover, we measured the best case scenario in order to verify the upper
bound of performance improvement based on temporal decoupling. The results
of these investigations are discussed in the following sections.



Temporal Decoupling to Trade Dependability, Performance, and Security 5

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0: 0 1: 0,2 2: 0,4 3: 0,6 4: 0,8 5: 1 6: 1,2 7: 1,4 8: 1,6 9: 1,8 10: 2 15: 3

S
u

p
p

o
rt

a
b

le
 b

id
d

e
rs

 
(s

in
g

le
 s

e
rv

e
r)

Decoupling period [min]: decoupling factor

Performance Improvement through
Temporal Decoupling

Interval with bid queuing Interval with bid overwriting

Rand delay with bid overwriting Collection after deadline

Collection after deadline (measured)

Fig. 3. Performance improvement through temporal decoupling

−1000 −500 0 500 1000
time [s]

0

20

40

60

80

100

bi
ds

pe
r

se
co

nd
[%

of
pe

ak
lo

ad
] delayed, queuing

original load

(a) 5 min peak load with 5 min random
delay, decoupling factor = 1

−1000 −500 0 500 1000
time [s]

0

20

40

60

80

100

bi
ds

pe
r

se
co

nd
[%

of
pe

ak
lo

ad
] delayed, queuing

original load

(b) 5 min peak load with 10 min random
delay, decoupling factor = 2

Fig. 4. Impact of decoupling parameters

2.1 Worst Case Scenario

The worst case with respect to performance improvements through temporal
decoupling is to use a uniform random delay between 0 and the decoupling
period together with bid queuing. For a decoupling factor ≤ 1, this only delays
the original peak load curve by half of the decoupling period, but does not
lead to an efficient load reduction. This behavior is illustrated in Figure 4(a).
Figure 4(b) shows that the random delay reduces load, but about 80% of the
original peak load for a decoupling factor of two is obviously sub-optimal.

2.2 Best Case Scenario

The best case scenario with respect to performance improvements through tem-
poral decoupling is a completely different submission strategy—the collection of
only the latest bid per bidder after the deadline for bids. In this case, no server



6 Lorenz Froihofer et al.

side resources are wasted on bids that are later overwritten by subsequent bids
and the limit with respect to supportable bidders only depends on the duration
of the decoupling period as well the hardware requirements imposed by a specific
implementation of this strategy.

Figure 5 illustrates this approach and shows how the load curve for collecting
the bids (“peak load with bid collection after deadline”) is fully decoupled from
the original “peak load without decoupling”. Up until the deadline for bids,
clients do not submit any bid to the auction servers. After the deadline for bids,
the auction servers start to collect the latest bid per client by “asking” the clients
to submit their bid. This is performed in a controlled way, so that server overload
is avoided.

Fig. 5. Collection of all bids after the deadline

A minor optimization to this method would be to start bid collection already
shortly before the deadline of bids in a time period where only a single bid can
be expected by a single bidder. In our scenario, this would be about 30 seconds
before the deadline for bids. However, this would also require to allow for bids
to be overwritten in the event that a bidder sends more than one bid within the
last 30 seconds before the deadline for bids.

Based on the results of our analysis this approach can already support about
2 600 bidders for a decoupling period of 1 minute and the number of supportable
bidders increases linearly with the increase of the decoupling period: within
five minutes, about 13 000 bidders can be supported, 26 000 bidders within ten
minutes and 39 000 bidders within a decoupling period of 15 minutes on a single
server. In practice, hardware requirements and maximum allowable decoupling
period limit the total number of supportable bidders.

To verify the calculated performance values, we implemented a version where
the clients first issue a request to the server, the server blocks the request until
it wants to receive the bid of the specific client, and then notifies the client with
the response to the blocked request to submit the bid. Mapped to Web client
technologies, this corresponds to an AJAX (Asynchronous JavaScript and XML)
push long-polling approach.

Due to the potentially high number of simultaneous open connections to the
server, this requires support for asynchronous processing of client requests at the
server side as introduced with Java Servlets 3.0 in the Java Enterprise Edition



Temporal Decoupling to Trade Dependability, Performance, and Security 7

(JEE) 6, for example. In our case, we used the JBoss-specific asynchronous
Servlet API (Application Programming Interface).

The results gained from the prototype measurements correspond quite well to
the values expected from calculations and show even better performance. Based
on our measurements the numbers of supportable bidders are about 3 200 bidders
for a decoupling period of 1 minute, 6 300 bidders for 2 minutes, and 8 700 bid-
ders for 3 minutes. About 8 000 bidders is the reasonable limit for a Pentium 4,
2.8 GHz, and 2 GB of RAM. Measurements with about 10 000 bidders were pos-
sible, but for this number nearly all of the RAM was used by the JBoss instance
and server-side bid processing was with about 38 processed bid submissions per
second already much slower than in the other measurements with a lower num-
ber of bidders, which allowed for about 50 bid submissions per second. Based
on additional measurements, increasing the RAM increases the number of bid-
ders by about 4 000 bidders per GB of RAM, consumed by the high number of
concurrent open client connections.

To increase the number of supportable bidders without increasing the hard-
ware resources would require a different implementation to control bid submis-
sion of the clients. Two possible options would be as follows:

– The clients could be partitioned into ordered groups of a specific size and
each group gets a specific timeslot for bid submission during the decoupling
period. We illustrate this with an example. Let’s assume we have a group size
of 8 000. From our measurements we know that we need less than 3 minutes
to collect the bids of these 8 000 bidders. When initiating the session for a
specific client, the client is assigned its group. We start from group number 1
and after we assigned 8 000 clients to group number 1, we start assigning
clients to group number 2 and so on. After the deadline for bids, we collect
the bids of clients in group 1. Three minutes after the deadline for bids, we
collect the bids of clients in group 2. Generally, we collect the bids of clients
in group i, (i− 1) · 3 minutes after the deadline.

– An alternate solution would be to use the distributed feedback channel as
detailed in [26]. Unfortunately, firewalls and network address translation
(NAT) are a major hindrance for the practical applicability of this solution.

While bid collection only after the deadline for bids delivers the best solution
with respect to performance, it also gives an attacker the most time between bid
creation and bid transmission. This trade-off between performance and security
is further elaborated in Section 2.4.

2.3 Intermediate Approaches

Between the worst case and the best case scenario, we illustrated three other
strategies in Figure 3: Interval-based bid queuing, interval-based bid overwriting,
and random delay with bid overwriting.

Using the interval-based bid queuing strategy, the number of supportable bid-
ders increases linearly with the decoupling factor and can generally be approx-
imated with the following formula: bidders with decoupling = bidders without



8 Lorenz Froihofer et al.

decoupling · (1 + decoupling factor). With this approach, a decoupling factor of
two (10 minutes decoupling period for 5 minutes original peak load duration)
already allows to support 4 500 bidders and a decoupling factor of 3 allows for
6 000 bidders instead of 1 500 bidders without temporal decoupling for a single
server scenario. Obviously, these numbers have to be multiplied by the number
of servers used in a server cluster. Therefore, we would be able to support 18 000
bidders with a decoupling factor of 3 on a three nodes server cluster compared
to 4 500 bidders without temporal decoupling.

For interval-based bid overwriting, Figure 3 shows that this strategy only
increases performance for a decoupling factor ≥ 1, compared to the interval-
based bid queuing approach. The reason for this is that only in this case bids
will be delayed long enough so that bid overwriting will actually take place at
the client side.

For the same reason, the interval-based bid overwriting approach does not
necessarily have an advantage over the random delay bid overwriting approach.
In the interval-based approach, the delay of a bid and hence the probability of
being overwritten depends on the decoupling factor (relative factor) while in the
random delay approach the delay of a bid depends on the decoupling period
(absolute factor). This can also be observed from Figure 3, where the random
delay bid overwriting approach generally performs better than interval-based
bid overwriting. However, this disadvantage could be reduced by requiring the
interval-based approach to use time intervals larger than the average time span
between two bid submissions of a bidder so that bid overwriting will become
generally effective.

2.4 Interpretation

In this section we provide an interpretation of the results presented in the pre-
vious sections as well as the insights gained from analysis of the prototype im-
plementation. In particular, we discuss the following trade-offs: Performance vs.
security, dependability vs. security, and dependability vs. performance.

Performance vs. Security. As illustrated in Section 2 the “collection of bids
after the deadline” variant shows the best performance, but also gives a malicious
adversary the most time for attacking the system, when considering the attacks
discussed in our trust model [28]. Other approaches allow to specify a maximum
delay after which a bid must have been received at the server. For the random
delay approach, the maximum time after which a bid must be received at the
server is the decoupling period duration. With an interval-based approach, a bid
has to be transmitted immediately, if no other bids are queued at the client,
or within the first interval for which no bid is already scheduled (which is the
immediate next interval in case of bid overwriting). As we have seen, these
approaches are only able to achieve sub-optimal performance as they also have
to process bids that will be overwritten by subsequent bid submissions.

Concluding, we have a trade-off between optimal performance and optimal
security. For optimal performance we would use the bid collection after deadline



Temporal Decoupling to Trade Dependability, Performance, and Security 9

strategy, giving a potential attacker the most time to attack the system between
bid creation and bid submission. For optimal security, we would send bids imme-
diately, facing the performance problems associated with the original peak load
curve. In order to target a solution in the middle, we can control this trade-off
by using different submission strategies to delay bid submission together with
client side bid overwriting. Which solution approach to take will depend on the
security and performance requirements of a specific customer, balanced with the
costs of the corresponding hardware requirements.

Dependability vs. Security. If only dependability and security are of concern,
but not performance, then bids should be transferred to the server immediately
in a healthy system. This prevents attacks on the timestamps applied at the
client side. However, if node or link failures occur, then bids should be queued
at the client using the bid-overwriting strategy and submitted to the server after
the failures are repaired.

If temporal decoupling with bid queuing is applied, the dependability vs.
security trade-off is influenced by two further aspects:

– The estimated or proven security of the used smart card as well as the soft-
ware running on it limits the maximum time span between bid creation and
bid transmission due to the requirement to guarantee fair auction conditions
to all bidders. If it is possible to (i) crack the smart card or to find out
the contained cryptographic keys and (ii) to reverse engineer the software
running on the smart card or to find out the used signature mechanism even
when no auctions are running, then the temporal decoupling approach must
not be applied.

– The accuracy of the smart card’s clock determines the maximum offline pe-
riod where a bidder can still submit bids at the client without time synchro-
nizing the smart card’s clock. This is a major issue as it has to be ensured
that the smart card’s clock cannot be influenced from the outside, as this
would considerably decrease the security of the system.

Dependability vs. Performance. The balancing of dependability and per-
formance in our case is a concern for server side clustering, especially in regard
to the performance implications of session replication for transparent fail-over in
case of server faults. During our evaluation we measured different configurations
and compared our prototype’s performance with and without session replica-
tion as well to an alternate implementation that was implemented with Java
ServerFaces (JSF) and Terracotta for session replication. While the performance
drawback of session replication for the prototype described in this paper was
about 15%, session replication in case of the alternate implementation already
reduced performance as soon as a second node was introduced.

With respect to the temporal decoupling approach, however, both depend-
ability and performance benefit from a larger allowable time span between bid
creation and bid transmission (more time to collect bids or intermediate repair)
and have a disadvantage from a lower time span or the requirement for immedi-
ate transmission.



10 Lorenz Froihofer et al.

decoupling 
period duration

decreased

increased
performance

dependability

security

Decoupling period long 
enough for intermediate repair.

Decoupling period long 
enough for efficient bid 
collection after deadline.

1 2 3

1

2

3

Security ↓

Security ↓
Performance ↑
Security ↓↑
Performance ↑
Dependability ↑

Fig. 6. Influence of decoupling period on different system properties (unquantified)

Balancing Conclusion. Summarizing the previous sections, Figure 6 quali-
tatively visualizes the different trade-offs, showing that with an increase of the
decoupling period, security decreases while dependability and performance in-
crease. The curves in Figure 6 are not quantified on a specific measurement unit
as the different properties depend on the specific requirements and threat sce-
narios of a specific application while we aim at a generic visualization. Based
on our investigations and the measurements performed on the prototype, we
conclude with the following observations:

1. Security decreases as soon as the temporal decoupling approach is facilitated
(Zone 1). How much security decreases depends on the security of the smart
card, including the security and accuracy of its clock, as well as an attacker’s
potential gain from a successful attack along with the reputation loss for the
system provider, i.e., the auctioneer in case of our application scenario.

2. A larger decoupling period (Zone 2) improves performance as collection of
bids after the deadline becomes efficiently possible. However, there is only
a low increase of dependability, as the decoupling period does not yet allow
for intermediate repair, e.g., of the auctioneer’s Internet connectivity.

3. As soon as the decoupling period is long enough to allow for intermediate
repair (Zone 3), dependability is increased significantly. Additionally, secu-
rity may increase through it’s availability attribute if the decoupling period
is long enough to submit bids after an intermediate denial of service attack.

Based on our measurements and these observations we recommend to gener-
ally facilitate the temporal decoupling approach for scenarios with a reasonably
long decoupling period duration, longer than about 4 minutes in our case, as
first benefits are only observable after this minimum time span.

3 Related Work

This section presents related work discussing the following interrelations: (i) de-
pendability/security, (ii) dependability/performance, and (iii) security/perfor-
mance.



Temporal Decoupling to Trade Dependability, Performance, and Security 11

3.1 Dependability/Security Interrelation

Research on viewing dependability and security as an integrated concept seems
to have started with a focus on intrusion tolerance [10], where research can be
traced back to 1985 [11]. One of the first works to establish a common view and
terminology on the dependability and security interrelation was published by the
IFIP (International Federation for Information Processing) Working Group on
Dependable Computing and Fault Tolerance [17]. This publication provides the
four dependability attributes availability, reliability, safety, and security, while
a later publication in 2004 [3] regards security and dependability to be at the
same level and integrates security through the traditional security attributes of
confidentiality, integrity, and availability.

Summarizing related work in this area, we observe two main directions for
an integrative view on dependability and security:

– Adding dependability means to traditional security mechanisms such as fire-
walls or cryptographic algorithms, e.g., through redundant/diverse imple-
mentations [6, 15,16,18].

– Investigation of security issues (intrusions) from a dependability perspective,
viewing malicious attacks as faults within a system—with the prominent
research area of intrusion tolerance [10,22,30,31].

In contrast to these works, we solve a dependability concern (high availabil-
ity) through temporal decoupling, thereby shifting it into the security domain
(attacks against the client side timestamps) and subsequently mitigate the re-
sulting security challenges.

3.2 Dependability/Performance Interrelation

With respect to the dependability/performance interrelation, degradable sys-
tems introduce a grey zone for differentiating between an available and unavail-
able system state (dependability concern), with different notions of a “slow”
system in between (performance concern). Investigation of the interrelation be-
tween dependability and performance reveals the following core directions:

– Performability as an integrative concept for degradable systems with differ-
ent performability levels based on which system worth is calculated with a
worth function [7, 20,21].

– User-perceived availability takes user sessions and user think time into ac-
count when calculating system/service availability. Consequently, only fail-
ures during user requests affect availability [13,14,19,23,32,34].

While our work allows for a degradable system, i.e., in cases of node or
link failures bids might be transferred to the server later, we do not aim at
explicit performability levels or user-perceived availability models. The goal in
our case is to keep the system parts necessary for secure bid submission available,
while tolerating faults in the global infrastructure. Therefore, the system might
degrade as bids have to be queued at the client for later delivery, for example,
leading to lower user-perceived availability and hence lower performability.



12 Lorenz Froihofer et al.

3.3 Security/Performance Interrelation

The interrelation of security with performance [8, 33] is an obvious relationship
that has already been researched within different areas:

– Competition for computational resources introduces a trade-off between se-
curity, e.g., because of encryption, and performance, e.g., measured in terms
of throughput [1, 4, 9, 12].

– Research in the area of packet routing where more complex routing pro-
tocols or lower bandwidth result in increased security while showing less
performance [2, 29].

– Security/performance trade-off with respect to traffic analysis where higher
bandwidth requirements increase traffic flow confidentiality [5, 24].

In contrast to related work, we don’t address the security/performance inter-
relation on a protocol or network level, but trade security for performance with
respect to throughput based on architectural trade-offs. For example, we give
an attacker more time for an attack in order to increase the number of bidders
processable on a given hardware.

Concluding, the interrelations of the different properties have been addressed
in several works. However, most of related work explicitly trades only two of the
three properties dependability, security, and performance while we contribute
with an integrated view on all three for a certain class of application scenarios.

4 Conclusions

In this experience report we showed how the system attributes dependabil-
ity, security, and performance can be traded in practice by means of tempo-
ral decoupling. Based on online auctions as our specific application scenario,
we showed how different system requirements demand different trade-offs, ad-
dressed through different bid submission strategies in our case. For example, we
can achieve higher performance at the price of additional attack possibilities if
bids are collected only after the auction deadline.

A considerable amount of research publications addresses trade-offs and in-
terdependencies between dependability, security, and performance already. How-
ever, most of these works either focus on the conceptual level or are targeted at
a specific trade-off for a certain system component such as security vs. perfor-
mance in cryptographic algorithms. Although we consider all three properties
in a system approach, we focused our investigations of security concerns to the
new challenges introduced through temporal decoupling. As our results show a
significant potential in explicitly balancing these trade-offs already, we see even
more potential in future research on these trade-offs and their – design-time and
run-time – balancing from a holistic system perspective.

Acknowledgments. This work has been partially funded by the Austrian Fed-
eral Ministry of Transport, Innovation and Technology under the FIT-IT project
TRADE (Trustworthy Adaptive Quality Balancing through Temporal Decou-
pling, contract 816143, http://www.dedisys.org/trade/).



Temporal Decoupling to Trade Dependability, Performance, and Security 13

References

1. Agi, I., Gong, L.: An empirical study of secure mpeg video transmissions. In:
Proceedings of the 1996 Symposium on Network and Distributed System Security
(SNDSS ’96). pp. 137–144. IEEE Computer Society, Washington, DC, USA (1996)

2. Andersen, D.G.: Mayday: Distributed filtering for internet services. In: 4th
USENIX Symposium on Internet Technologies and Systems (2003)

3. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.
1(1), 11–33 (2004)

4. Barka, E., Boulmalf, M.: On the impact of security on the performance of wlans.
JCM 2(4), 10–17 (2007)

5. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against tor. In: WPES ’07: Proceedings of the 2007 ACM workshop on
Privacy in electronic society. pp. 11–20. ACM, New York, NY, USA (2007)

6. Chen, Y., He, Z.: Simulating highly dependable applications in a distributed com-
puting environment. In: ANSS ’03: Proceedings of the 36th annual symposium on
Simulation. p. 101. IEEE Computer Society, Washington, DC, USA (2003)

7. Cho, B., Youn, H., Lee, E.: Performability analysis method from reliability and
availability. In: Lee, G., Howard, D., Kang, J.J., Slezak, D., Ahn, T.N., Yang,
C.H. (eds.) ICHIT. ACM International Conference Proceeding Series, vol. 321, pp.
401–407. ACM (2009)

8. Cortellessa, V., Trubiani, C., Mostarda, L., Dulay, N.: An architectural framework
for analyzing tradeoffs between software security and performance. In: Giese, H.
(ed.) ISARCS. LNCS, vol. 6150, pp. 1–18. Springer (2010)

9. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S., Grier,
A., Wagle, P., Zhang, Q.: Stackguard: automatic adaptive detection and prevention
of buffer-overflow attacks. In: SSYM’98: Proceedings of the 7th USENIX Security
Symposium. pp. 5–5. USENIX Association, Berkeley, CA, USA (1998)

10. Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing
systems. In: IEEE Symposium on Security and Privacy. pp. 110–121 (1991)

11. Fraga, J., Powell, D.: A fault- and intrusion-tolerant file system. In: Proceedings
of the 3rd Intl. Conf. on Computer Security. pp. 203–218 (1985)

12. Haleem, M.A., Mathur, C.N., Chandramouli, R., Subbalakshmi, K.P.: Opportunis-
tic encryption: A trade-off between security and throughput in wireless networks.
IEEE Trans. Dependable Secur. Comput. 4(4), 313–324 (2007)

13. Hariri, S., Mutlu, H.: Hierarchical modeling of availability in distributed systems.
IEEE Trans. Softw. Eng. 21(1), 50–58 (1995)

14. Kaaniche, M., Kanoun, K., Rabah, M.: A framework for modeling availability of e-
business systems. In: Computer Communications and Networks, 2001. Proceedings.
Tenth Intl. Conf. on. pp. 40–45 (2001)

15. Komari, I.E., Kharchenko, V., Lysenko, I., Babeshko, E., Romanovsky, A.: Diver-
sity and security of computing systems: Points of interconnection. part 2: Method-
ology and case study. MASAUM Journal of Open Problems in Science and Engi-
neering 1(2), 33–41 (October 2009)

16. Komari, I.E., Kharchenko, V., Romanovsky, A., Babeshko, E.: Diversity and se-
curity of computing systems: Points of interconnection. part 1: Introduction to
methodology. MASAUM Journal of Open Problems in Science and Engineering
1(2), 28–32 (October 2009)

17. Laprie (ed.), J. (ed.): Dependability: Basic Concepts and Terminology. Springer
(1992)



14 Lorenz Froihofer et al.

18. Littlewood, B., Strigini, L.: Redundancy and diversity in security. In: Samarati,
P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS. LNCS, vol. 3193, pp.
423–438. Springer (2004)

19. Mainkar, V.: Availability analysis of transaction processing systems based on user-
perceived performance. In: SRDS ’97: Proceedings of the 16th Symposium on Re-
liable Distributed Systems. p. 10. IEEE Computer Society (1997)

20. Meyer, J.F.: On evaluating the performability of degradable computing systems.
IEEE Transactions on Computers 29(8), 720–731 (1980)

21. Meyer, J.F.: Performability: a retrospective and some pointers to the future. Perfor-
mance Evaluation 14(3-4), 139 – 156 (1992), performability Modelling of Computer
and Communication Systems

22. Powell, D., Stroud (eds.), R.: Conceptual model and architecture of MAFTIA.
Tech. Rep. D21, MAFTIA EU Project (2003)

23. Shao, L., Zhao, J., Xie, T., Zhang, L., Xie, B., Mei, H.: User-perceived service
availability: A metric and an estimation approach. In: ICWS. pp. 647–654. IEEE
(2009)

24. Snader, R., Borisov, N.: A tune-up for tor: Improving security and performance in
the tor network. In: NDSS. The Internet Society (2008)

25. Starnberger, G., Froihofer, L., Goeschka, K.M.: Distributed timestamping with
smart cards using efficient overlay routing. In: Fifth Intl. Conf. for Internet Tech-
nology and Secured Transactions (ICITST 2010) (Nov 2010)

26. Starnberger, G., Froihofer, L., Goeschka, K.M.: Adaptive run-time performance
optimization through scalable client request rate control. In: Proc. 2nd Joint
WOSP/SIPEW Intl. Conf. on Performance Engineering (WOSP/SIPEW’11).
ACM (March 2011), (to appear)

27. Starnberger, G., Froihofer, L., Goeschka, K.M.: A generic proxy for secure smart
card-enabled web applications. In: Web Engineering, 10th Intl. Conf., ICWE 2010,
Vienna, Austria, July 5-9, 2010. Proceedings. LNCS, vol. 6189, pp. 370–384.
Springer (2010)

28. Starnberger, G., Froihofer, L., Goeschka, K.M.: Using smart cards for tamper-proof
timestamps on untrusted clients. In: ARES 2010, Fifth Intl. Conf. on Availability,
Reliability and Security, 15-18 February 2010, Kraków, Poland. pp. 96–103. IEEE
Computer Society (2010)

29. Timmerman, B.: A security model for dynamic adaptive traffic masking. In: NSPW
’97: Proceedings of the 1997 workshop on New security paradigms. pp. 107–116.
ACM, New York, NY, USA (1997)

30. Veŕıssimo, P., Neves, N.F., Cachin, C., Poritz, J.A., Powell, D., Deswarte, Y.,
Stroud, R.J., Welch, I.: Intrusion-tolerant middleware: the road to automatic se-
curity. IEEE Security & Privacy 4(4), 54–62 (2006)

31. Veŕıssimo, P., Neves, N.F., Correia, M.: Intrusion-tolerant architectures: Concepts
and design. In: de Lemos, R., Gacek, C., Romanovsky, A.B. (eds.) Architecting
Dependable Systems. LNCS, vol. 2677, pp. 3–36. Springer (2003)

32. Wang, D., Trivedi, K.S.: Modeling user-perceived service availability. In: Malek,
M., Nett, E., Suri, N. (eds.) ISAS. LNCS, vol. 3694, pp. 107–122. Springer (2005)

33. Wolter, K., Reinecke, P.: Performance and security tradeoff. In: Aldini, A.,
Bernardo, M., Pierro, A.D., Wiklicky, H. (eds.) SFM. LNCS, vol. 6154, pp. 135–
167. Springer (2010)

34. Xie, W., Sun, H., Cao, Y., Trivedi, K.: Modeling of user perceived webserver avail-
ability. In: Communications, 2003. ICC ’03. IEEE Intl. Conf. on. vol. 3, pp. 1796–
1800 vol.3 (May 2003)


