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Abstract. Gossip-based peer sampling protocols have been widely used as a
building block for many large-scale distributed applications. Howevetyvildx
Address Translation gateways (NATS) cause most existing gossipitacpis to
break down, as nodes cannot establish direct connections to ndued DATs
(private nodes). In addition, most of the existing NAT traversal algoritHor
establishing connectivity to private nodes rely on third party serversimgrat a
well-known, public IP addresses. In this paper, we pre€aar, a gossip-based
peer sampling service that: (i) provides uniform random samples in dsepce

of NATs, and (ii) enables direct connectivity to sampled nodes usingyadis-
tributed NAT traversal service, where connection messages requira single

hop to connect to private nodes. We show in simulation that Gozar pesstre
randomness properties of a gossip-based peer sampling servisbowehe ro-
bustness of Gozar when a large fraction of nodes reside behind NlTalso in
catastrophic failure scenarios. For example, if 80% of nodes aredBli#ifis, and

80% of the nodes fail, more than 92% of the remaining nodes stay codnétte
addition, we compare Gozar with existing NAT-friendly gossip-based gam-
pling services, Nylon and ARRG. We show that Gozar is the only system that
supports one-hop NAT traversal, and its overhead is roughly half tfrid/

1 Introduction

Peer sampling services have been widely used in large ststtédodted applications,
such as information dissemination [7], aggregation [17[ averlay topology man-
agement [14, 28]. A peer sampling service (PSS) periogiqatbhvides a node with a
uniform random sample of live nodes from all nodes in theesystwhere the sample
size is typically much smaller than the system size [15]. Sdmapled nodes are stored in
apartial viewthat consists of a set of node descriptors, which are upgeeddically
by the PSS.

Gossiping algorithms are the most common approach to ingréng a PSS [29,
9, 16]. Gossip-based PSS’ can ensure that node descripsodéséributed uniformly at
random over all partial views [18]. However, in the Internghere a high percentage
of nodes are behind NATs, these traditional gossip-bas&] B&ome biased. Nodes
cannot establish direct connections to nodes behind Ngfigate nodel and private
nodes become under-represented in partial views, whilesititat do support direct
connectivity,public nodesbecome over-represented in partial views [19].

The ability to establish direct connectivity with privatedes, using NAT traversal
algorithms, has traditionally not been considered by gebased PSS'. However, as



nodes are typically sampled from a PSS in order to connecteim there are natural
benefits to including NAT traversal as part of a PSS. Nylor {#8s the first system to
present a distributed solution to NAT traversal that uséstieg nodes in the PSS to help
in NAT traversal. Nylon uses nodes that have successfulbbéished a connection to
a private node as partners who will both route messages fritrete node (through its
NAT) and coordinate NAhole punchingalgorithms [8, 19]. As node descriptors spread
in the system through gossiping, this creates routing tfiees for paths that forward
packets to private nodes. However, long routing paths as&doth network traffic at
intermediary nodes and the routing latency to private noflise, routing paths become
fragile when nodes frequently join and leave the systemi(). Finally, hole punching
is slow and can take up to a few seconds over the Internet [27].

This paper introduceSozar, a gossip-based peer sampling service that (i) provides
uniform random samples in the presence of NATs, and (ii) lersatlirect connectivity
to sampled nodes by providing a distributed NAT traversalise that requires only a
single intermediary hop to connect to a private node. Gogas public nodes as both
relay serverg13] (to forward messages to private nodes) ermtlezvous servef8] (to
establish direct connections with private nodes using potehing algorithms).

Relaying and hole punching is enabled by private nodes findiblic nodes who
will act as both relay and rendezvopartnersfor them. For load balancing and fair-
ness, public nodes accept only a small bounded number daftprivodes as partners.
When references to private nodes are gossiped in the PSS pteshosing the PSS,
they include the addresses of their partner nodes. A node, tian use these partners to
either (i) gossip with a private node by relaying or (i) ddish a direct connection with
the private node by using the partner for hole punching. Weuarelaying over hole
punching when gossiping with private nodes due to the lomeotion setup time com-
pared to hole punching and also because the messages oheoé/emall and introduce
negligible overhead to public nodes. However, the hole pimgcservice can be used
by clients of the PSS to establish a direct connection wittmag@ed private node. NAT
hole punching is typically required by applications suchviago-on-demand [2] and
live streaming [22, 23], where relaying would introduce toach overhead on public
nodes.

A private node may have several redundant partners. Altmeadundancy intro-
duces some extra overhead on public nodes, it also reduesgyavhen performing
NAT traversal, as parallel connection requests can be eesaveral partners, with the
end-to-end connection latency being the fastest of theperto complete NAT traver-
sal. In this way, a more reliable NAT traversal service cabui#t over more unreliable
connection latencies, such as those widely seen on theé&tter

We evaluate Gozar in simulation and show how its PSS mamitsrrandomness
property even in networks containing large fractions of NAWVe validate its behaviour
through comparison with the widely used Cyclon protoco] [2éhich does not support
networks containing NATs). We also compare the performaricg@ozar with the only
other NAT-friendly PSS’ we found in the literature, Nylon9land ARRG [4], and
show how Gozar has less protocol overhead compared to NpldARRG, and is the
only NAT-friendly peer sampling system that supports ong NAT traversal.



2 Related work

Dan Kegel explored STUN [26] as a UDP hole punching soluttwiNAT traversal, and
Guha et al. extended it to TCP by introducing STUNT [10]. Heere studies [8, 10]
show that NAT hole punching fails 10-15% of the time for UDRI&0-40% of the time
for TCP traffic. TURN [13] was an alternative solution for NAfversal using relay
nodes that works for all nodes that can establish an outboandection. Interactive
connectivity establishment (ICE) [25] has been introduaed more general technique
for NAT traversal for media streams that makes use of both[26] and TURN [13].
All these technigues rely on third party servers running @lt-known addresses.

Kermarrec et al. introduce in Nylon [19] a distributed NA&versal technique that
uses all existing nodes in the system (both private and puiddes) as rendezvous
servers (RVPSs). In Nylon, two nodes become the RVP of eacér atthenever they
exchange their views. Later, if a node selects a private rfiodgossip exchange, it
opens a direct connection to the private node using a chda®vBs for hole punching.
The chains of RVPs in Nylon are unbounded in length, makinipifragile in dynamic
networks, and increasing traffic at intermediary nodes.

ARRG [4] supports gossip-based peer sampling in the presehblATs without
an explicit solution for traversing NATs. In ARRG, each nadaintains an open list
of nodes with whom it has had a successful gossip exchange ipast. When a node
view exchange fails, it selects a different node from thisrofist. The open list, how-
ever, biases the PSS, since the nodes in the open list antesetaore frequently for
gossiping.

Renesse et. al [20] present an approach to fairly distritmleey traffic over public
nodes in a NAT-friendly gossiping system. In their systerhjalv is not a PSS, each
node accepts exchange requests as much as it initiates x@hareges. Similar to Ny-
lon, they use chains of nodes as relay servers.

In [5], D’Acunto et. al introduce an analytical model to shitve impact of NATs on
P2P swarming systems, and in [21] Liu and Pan analyse therpsahce of bittorrent-
like systems in private networks. They show how the fraatibprivate nodes affects the
download speed and download time of a P2P file-sharing syslemeover, authors in
[6] and [27] study the characteristics of existing NAT d@gon the Internet, and show
the success rate, on the Internet, of NAT traversal algostfor different NAT types.
In addition, the distribution of NAT rule timeouts for NAT diees on the Internet is
described in [6], and in [24] an algorithm is presented, Basebinary search, to adapt
the time required to refresh NAT rules to prevent timeouts.

3 Background

In gossip-based PSS’, protocol execution at each node idedivinto periodic cycles
[18]. In each cycle, every node selects a node from its paitav to exchange a subset
of its partial view with the selected node. Both nodes subsetly update their partial
views using the received node descriptors. Implementsti@ny based on a number
of different policies in node selection (rand, tail), viemchange (push, push-pull) and
view selection (blind, heale, swapper) [18].



In a PSS, the sampled nodes should follow a uniform randotrnitdison. To en-
sure randomness of a partial view in an overlay network, treglay constructed by a
peer sampling protocol should ensure timategree distributionaverage shortest path
andclustering coefficientare close to a random network [18, 29]. Kermarrec et al-eval
uated the impact of NATs on traditional gossip-based PS§L% They showed that
the network becomes partitioned when the number of privaties exceeds a certain
threshold. The larger the view size is, the higher the tholestor partitioning is. How-
ever, increasing the nodes’ view size increases the nunilstale node descriptors in
views, which, in turn, biases the peer sampling.

There are two general techniques that are used to commenittt private nodes:
(i) hole punching8, 12] can be used to establish direct connections thaeitsavthe
private node’s NAT, and (iiyelaying [13] can be used to send a message to a private
node via a third party relay node that already has an edtalalisonnection with the
private node. In general, hole punching is preferable whegelamounts of traffic will
be sent between the two nodes and when slow connection gaegdre not a problem.
Relaying is preferable when the connection setup time shioelshort (typically less
than one second) and small amounts of data will be sent ogarathnection.

In principle, existing PSS’ could be adapted to work over NAThis can be done
by having all nodes run a protocol to identify their NAT tymeich as STUN [26].
Then, nodes identified as private keep open a connectionhwdadarty rendezvous
server. When a node wishes to gossip with a private node, itetprest a connection to
the private node via the rendezvous server. The rendezeousrghen executes a hole
punching technique to establish a direct connection betwleetwo nodes. Aside from
the inherently centralized nature of this approach, otheblpms include the success
rate of NAT hole punching for UDP is only 85-90% [8, 10], ane time taken to es-
tablish a direct connection using hole punching protocotggh and has high variance
(averaging between 700ms and 1100ms on the open Interngiarompany Peeri-
alism within Sweden [27]). This high and unpredictable NAd&versal time of hole
punching is the main reason why Gozar uses relaying whengjogs

4 Problem description

The problem Gozar addresses is how to design a gossip-basettibhdly PSS that
also supports distributed NAT traversal using a system as@qg of both public and
private nodes. The challenge with gossiping is that it agsuanode can communicate
with any node selected from its partial view. To communicgitl a private node, there
are three existing options:

1. Relay communications to the private node using a publéyneode,

2. Use a NAT hole-punching algorithm to establish a directnaztion to the private
node using a public rendezvous node,

3. Route the request to the private node using chains ofi¥ispen connections.

For the first two options, we assume that private nodes argreskto different public
nodes that act as relay or rendezvous servers. This leads firxablem of discovering
which public nodes act as partners for the private nodesmilasi problem arises for



the third option - if we are to route a request to a private nmldag a chain of open
connections, how do we maintain routing tables with entfdesall reachable private
nodes. When designing a gossiping system, we have to deciddich option(s) to
support for communicating with private nodes. There aresd\factors to consider.
How much data will be sent over the connection? How long Imétithe connection
be? How sensitive is the system to high and variable latenniestablishing connec-
tions? How fairly should the gossiping load be distributeeropublic versus private
nodes?

For large amounts of data traffic, the second option of haleching is the only
really viable option, if one is to preserve fairness. Howeifea system is sensitive to
long connection establishment times, then hole-punchiag not be suitable. If the
amount of data being sent is small, and fast connection s$ighgs are important, then
relaying is considered an acceptable solution. If it is intguat to distribute load as fairly
as possible between public and private nodes, then optienaBractive. In existing
systems, it appears that Skype supports both options 1 aadd?¢can considered to
have a solution to the fairness problem that, by virtue oivitdespread adoption, can
be considered acceptable to their user community [3].

5 The Gozar protocol

Gozaris a NAT-friendly gossip-based peer sampling protocol vétlpport for dis-
tributed NAT traversal. Our implementation of Gozar is lthea thetail, push-pull
and swapperpolicies for node selection, view exchange and view selactiespec-
tively [18] (although we also run experiments, ommittedehr brevity, showing that
Gozar also works with different policies introduced in L8]

In Gozar, node descriptors are augmented with the node’s typ& (private or
public) and the mapping, assignment and filtering policitenined for the NAT [27].
A STUN-like protocol is run on a bootstrap server when a naiesjthe system to
determine its NAT type and policies. We consider running STasice at bootstrap time
acceptable, as, although some corporate NAT devices cargettheir NAT policies
dynamically, the vast majority of consumer NAT devices haviexed NAT type and
fixed policies.

In Gozar, each private node connects to one or more publieq@alledartners
Private nodes discover potential partners using the P$$,dhprivate nodes select
public nodes from their partial view and sepdarinering requests to them. When a
private node successfully partners with a public node, dsails partner address to
its own node descriptor. As node descriptors spread in theegythrough gossiping,
a node that subsequently selects the private node from ritglpdaew communicates
with the private node using one of its partners as a relayeseRelaying enables faster
connection establishment than hole punching, allowingsfarter periodic cycles for
gossiping. Short gossiping cycles are necessary in dynaetworks, as they improve
convergence time, helping keep partial views updated imalyi manner.

However, for distributed applications that use a PSS, saanéne gaming, video
streaming, and P2P file sharing, relaying is not acceptabéetd the extra load on
public nodes. To support these applications, the privatesigpartners also provide a



rendezvous service to enable applications that samplesnggirg the PSS to connect
to them using a hole punching algorithm (if hole punchingasgible).

5.1 Partnering

Whenever a new node joins the system, it contactbtutstrap serveand asks for a
list of nodes from the system and also runs the modified STWopol to determine its
NAT type and policies. If the node is public, it can immedigtedd the returned nodes
to its partial view and start gossiping with the returned egdf the node is private,
it needs to find a partner before it can start gossiping. #cieln public nodes from
the returned nodes and sends each of themranering request. Public nodes only
partner a bounded number of private nodes to ensure thegpagrioad is balanced
over the public nodes. Therefore, if a public node cannotiad partner, it returns a
NACK. The private node continues sending-tnering requests to public nodes until
it finds a partner, upon which the private node can now stessiging. Private nodes
proactively keep their connections to their partners opgrsdéndingping messages
to them periodically. Authors in [6] showed that unused NA&pping rules remain
valid for more than 120 seconds for 70% of connections. Inimyementation, the
private nodes send the ping messages every 50 secondsashrafhigher percentage
of mapping rules. Moreover, private nodes use the pingeepb detect the failure of
their partners. If a private node detects a failed parthegstarts the partner discovery
process.

5.2 Peer sampling service

Each node in Gozar maintains a partial view of the nodes irsyiséeem. A node de-
scriptor, stored in a partial view, contains the addres$iefrtode, NAT type, and the
addresses of the node’s partners, which are initially em\ftyen a node descriptor is
gossiped or sampled, other nodes learn about the node’s WAT and any partners.
Later on, a hode can gossip with a private node by relayingages through the pri-
vate node’s partners.

Each node periodically executes algorithm 1 to exchange and updataetv. The
algorithm shows that in each iteratigrfirst updates the age of all nodes in its view, and
then chooses a node to exchange its view with. After selgetimode;, p removes that
node from its view. Node, then, selects a subset of random nodes from its view, and
appends to the subset its own node descriptor (the nodeAftsype, and its partners).

If the selected nodeis a public node, thep sends thehuffle requeshessage directly
to ¢, otherwise it sends thghuffle requesas arelay messagéo one of¢’s partners,
selected uniformly at random.

Algorithm 2 shows how a nodg selects another node to exchange its view with.
Nodep selects the oldest node in its view (the tail policy), whisleither a public node,
or a private node that has at least one partner.

Algorithm 3 is triggered whenever a node receives a shuffjaest message. Once
nodeq receives the shuffle request, it selects a random subsetlefdescriptors from
its view and sends the subset back to the requestermdfig is a public nodeg sends
the shuffle responsback directly to it, otherwise it uses one @6 partners to relay



Algorithm 1 Shuffle view.
1: procedure ShuffleView(this)

2: this.view.updateAge()
3: q < SelectANodeToShuf fleWith(this.view) > See algorithm 2
4: this.view.remove(q)
5: pView < this.view.subset() > a random subset from's view
6: pView.add(p, p.natType, p.partners)
7. if g.natType is publicthen
8: SendShuf fleRequest(pView, p)to q
9. else
10: gPartner < random partner frony.partners
11: SendRelay(shuf fleRequest, pView, q) to gPartner
12:  endif

13: end procedure

Algorithm 2 Select a node to shuffle with.

1: procedure SelectANodeToShuffleWith(this.view)
for all node; in this.view do
if node;.natType = publicOR (node;.natType = privateAND node;.partners # @) then
candidates < node;
end if
end for
q <+ oldest node froneandidates
Return ¢

end procedure

Algorithm 3 Handling the shuffle request.

1: upon event(SHUFFLEREQUEST| pView, p) from m > m can bep or g.partner
2: qView < this.view.subset() > a random subset from's view
3: if p.natType is publicthen

4. SendShuf fleResponse(qView, q) top

5. else

6: pPartner < random partner fromp.partners

7. SendRelay(shuf fleResponse, gView, p) to pPartner

8: end if

9: UpdateView(qView, pView)

10: end event

Algorithm 4 Handling the shuffle response.

1: upon event{SHUFFLERESPONSE| ¢View, ¢) from n > n can beqg or p.partner
: UpdateView(pView, gView)

3. endevent

Algorithm 5 Updating the view.

procedure UpdateView(sentView, receivedView)
for all node; in receivedView do
if this.view.contains(node;) then
this.view.updateAge(node;)
else ifthis.view has free entriethen
this.view.add(node;)
else
node; < sentView.poll()
this.view.remove(node;)
10: this.view.add(node;)
11: end if
12:  endfor

13: end procedure
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Algorithm 6 Handling the relay message.

1: upon event(RELAY | natType, view, y) from z

2: if natType is shuf fleRequest then

3: SendShuf fleRequest(view,z)t0y
4: else

5: SendShuf fleResponse(view, z) 0oy
6 end if

7: end event

Algorithm 7 NAT Traversal to private nodes.
1: procedure SendData(q, data)

2: if g.natType is publicthen
3: Senddata to q
4: else
5: RV P < random partner frong.partners
6: > Determine hole punching algorithm for the combination of NAT types
7. hp < hpAlgorithm(p.natType, g.natType)
8: > Start hole punching @&V P using the hole punching algorithhp.
9: holePunch(hp, p, q, RV P)
10: Senddata to g
11: end if

12: end procedure

the response. Again, nogeselects’s relaying node uniformly at random from the list
of p's partners. Finally, node updates its view. A node updates its view whenever it
receives a shuffle response (algorithm 4).

Algorithm 5 shows how a node updates its view using the recklist of node
descriptors. Node merges the node descriptors received frpmith its current view
by iterating through the received list, and adding the dpsmns to its own view. If its
view is not full, it adds the node, and if a node descriptoreaierged already exists
in p’s view, p updates its age (if more recent). If the view is fyllceplaces one of the
nodes it had sent towith the node in received list (the swapper policy).

Algorithm 6 is triggered whenever a partner node receiveslayrmessage from
another node. The node extracts the embedded messagerttet ashuffle request or
shuffle response, and forwards it to the destination privatke.

If a client of the PSS, nodg, wants to establish a direct connection to a ngde
it uses algorithm 7 that implements the hole punching sernAégorithm 7 shows that
if ¢ is a public node, thep sends data directly tg. Otherwise,p selects uniformly
at random one of’s partners as a rendezvous nod&/(P), and determines the hole
punching algorithm/{p) using the combination of its own NAT type aptd NAT type
RV P [27]. Then,p starts the hole punching process through RiéP [27]. After
successfully establishing a direct connection, nedends data directly tg.

6 Evaluation

In this section, we compare in simulation the behavior of &agith Nylon [19] and
ARRG [4], the only two other NAT-friendly gossip-based P$& found in the liter-
ature. In our experiments, we use Cyclon as a baseline fopaoson, where Cyclon



experiments are executed using only public nodes. Cyclershawn in simulation that
it passes classical tests for randomness [29].

6.1 Experiment setup

We implemented Gozar, Cyclon, Nylon and ARRG on the Komplatfgrm [1]. Kom-
pics provides a framework for building P2P protocols andsadite event simulator for
simulating them using different bandwidth, latency androhmodels. Our implemen-
tations of Cyclon, Nylon and ARRG are based on the systenrigéisns in [29], [19]
and [4], respectively. Nylon differs from Gozar in its noddestion and view merging
policies: Gozar uses tail and swapper policies, while Nyleas rand and healer poli-
cies [19]. For a cleaner comparison with the NAT-friendlgitigres of Nylon, we use the
tail and swapper policies in our implementation of Nylon.

In our experimental setup, for all four systems, the size abde’s partial view
is 10, and the size of subset of the partial view sent in eaeWw exchange is 5. The
iteration period for view exchange is set to one second.riciés between nodes are
modelled on Internet latencies, using a latency map basdteoKing data-set [11].
In all simulations, 1000 nodes join the system following asBon distribution with
an inter-arrival time of 10 milliseconds, and unless statibetrwise, 80% of nodes are
behind NATs. In Gozar, each private node has 3 public nodparisers, and they keep
a connection to their partners open by sending ping messageg 50 seconds.

The experiment scenarios presented here are a comparigbe cindomness of
Gozar with Cyclon, Nylon and ARRG; a comparison of the protaverhead of Gozar
and Nylon for different percentages of private nodes, arallfinwe evaluate the be-
haviour of Gozar in dynamic networks.

6.2 Randomness

Here, we compare the randomness of the PSS’ of Gozar withr\yhal ARRG. Cy-
clon is used as a baseline for true randomness. In the firstriexpnt, we measure the
local randomnesgroperty [18] of these systems. Local randomness showstthe n
ber of times that each node in the system is returned by thef&®#Sfich node in the
system. For a truly random PSS, we expect that the returnddsnimllow a uniform
random distribution. In figure 1(a), we measure the locatloamess of all nodes in
the system, after 250 cycles. For a uniform random distiobythe expected number
of selections for each node is 25. As we can see, Cyclon hakrastuniform ran-
dom distribution, while Nylon’s distribution is slightlyi@ser to uniform random than
Gozar's distribution. ARRG, on the other hand, has a loilgdadistribution, where
there are a few nodes that are sampled many times (the puldiesnstored in pri-
vate nodes’ caches [4]). For Gozar, we can see two spikegepnesenting the private
nodes, that is roughly four times higher than the other atimgj of the public nodes.
This slight skew in the distribution results from the facatttpublic nodes are more
likely to be selected during the first few cycles when privateles have no partners.

In addition to the local randomness property, we useglbbal randomnessmet-
rics, defined in [18], to capture important global corralat of the system as a whole.
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Fig. 1. Randomness properties.

The global randomness metrics are based on graph thebpmtiperties of the system,
including theindegree distributiopaverage path lengthndclustering coefficient

Figure 1(b) shows the indegree distribution of nodes afiér& cles (the out-degree
of all nodes is 10). In a uniformly random system, we expeat the indegree is dis-
tributed uniformly among all nodes. Cyclon shows this béhavas the node indegree
is almost distributed uniformly among nodes. We can seeaheglistribution in Gozar
and Nylon - their indegree distributions are very close t@lGy. Again, due to high
number of unsuccessful view exchanges in ARRG, we see teatdle indegree is
highly skewed.

In figure 1(c), we compare the average path length of the 8ystems, with Cyclon
as a baseline. The path length for two nodes is measured asitiraum number of
hops between two nodes, and the average path length is tregavef all path lengths
between all nodes in the system. Figure 1(c) also shows #rage path length for the
system in different cycles. Here, we can see the averagégragth of Gozar and Nylon
track Cyclon very closely, but ARRG has higher average pattigth. As we can see,
in the first few cycles, the path length of Gozar is high bugraftassing 50 cycles (50
seconds), the path length decreases. That is because whéhihat private nodes need
to find their partners and add them to their node descriptors.

Finally, we compare the clustering coefficient of the systeihe clustering coef-
ficient of a node is the number of links between the neighbbtheonode divided by
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Fig. 2. Protocols overhead.

all possible links. Figure 1(d) shows the evolution of thestéring coefficient of the
constructed overlay by each system. We can see that Goz&tydod almost have the
same clustering coefficient as Cyclon, while the value folR&Ris higher.

6.3 Protocol overhead

In this section, we compare the protocol overhead of GozdrNylon in different
settings, where the protocol overhead traffic is the extrasages required to route
messages through NATs. Protocol overhead traffic in Gozasists of relay traffic and
partner management, while in Nylon it consists of routirafftc. Figure 2(a) shows
the protocol overhead when 80% of nodes are behind NAT. Thex¥4 shows the to-
tal overhead, and the Y2-axis shows the average overheaacbfpublic and private
node. In this experiment, each private node in Gozar hag thublic nodes as part-
ners, but only one partner is used to relay a message to aenwde. Nylon, however,
routes messages through more than two intermediate nodageoage (see [19] for
comparable results). Figure 2(a) shows that after 250 sytbke relay traffic and part-
ner management overhead in Gozak(800K B, while the routing traffic overhead in
Nylon is roughly37000K B.

Now, we compare the protocol overhead for Gozar and Nylodifterent percent-
ages of private nodes. To show the overhead in adding motegpay we consider two
settings for Gozar: private nodes have one partner, andtprivodes have three part-
ners. In figure 2(b), we can see that when 80% of nodes are &, the protocol
overhead for all nodes in Nylon is aroun80K Bs after 250 cycles. The correspond-
ing overhead in Gozar, when the private nodes have threermngartners, are around
70K Bs and40K Bs, respectively. The main contributory difference between ro-
tocol overhead in the two different partner settings is naiffle requesindshuffle re-
sponsenessages become larger for more partners, as all partroressads are included
in private nodes’ descriptors. The increase in traffic isracfion of the percentage of
private nodes (as only their descriptors include partndresses), but is independent
of the size of the partial view.
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Fig. 3. Behaviour of the system after catastrophic failure.

6.4 Fairness and connectivity after catastrophic failure

We evaluate the behaviour of Gozar if high numbers of nodegléhe system or crash.
Our experiment models a catastrophic failure scenarioy2les after 1000 nodes have
joined, 50% of nodes fail following a Poisson distributioittwinter-arrival time of 10
milliseconds.

Our first failure experiment shows the level of fairness lestw public and private
nodes after the catastrophic failure. In figure 3(a), theaXis-shows the average traffic
on each public node and private node for different numberaotners, and the Y2-
axis shows the average number of unsuccessful view exchdogeach node. Here,
80% of nodes are private nodes and we capture the resultsc8s@fter 50% of the
nodes fail. As we can see in figure 3(a), the higher the numbparmners the private
nodes have, the more overhead traffic generated, againpdhe tncreasing the size
of messages exchanged among nodes. The Y2-axis shows thattiMprivate nodes
have only one partner, the average number of unsuccessfulaxchanges is higher
than when the private nodes have more than one partner.ilfatgonode has more than
one partner, then in case of failure of any of them, there it®ther partners that can
be used to communicate with the private node. An interegityggrvation here is that
we cannot see a big decrease in the number of unsuccessfuéx@anges when the
private nodes has more than two partners. This observdtawever, is dependent on
our catastrophic failure model, and high churn rates mightfit more from more than
two partners.

Finally, we measure the size of biggest cluster after a traasc failure. Here, we
assume that each private node has three partners. Figyreh®{s the size of biggest
cluster for varying percentages of private nodes, wheningmumbers of nodes fail.
We can see that Gozar is resilient to node failure. For exaniplthe case of 80%
private nodes, when 80% of the nodes fail, the biggest dlssile covers more than
92% of the nodes.
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7 Conclusion

In this paper, we presentésozar, a NAT-friendly gossip-based peer sampling service
that also provides a distributed NAT traversal service ient$ of the PSS. Public nodes
are leveraged to provide both the relaying and hole punchéngices. Relaying is only
used for gossiping to private nodes, and is preferred tofatehing or routing through
existing open connections (as done in Nylon), as relayirsgdwer connection latency,
enabling a faster gossiping cycle, and the messages redagetnall, thus, adding only

nodes are enabled by every private node partnering with 8 samaber of (redundant)
public nodes and keeping a connection open to them. We eedlematie descriptors for
private nodes to include the addresses of their partnesghsa a node wishes to send
a message to a private node (through relaying) or estabtigieet connection with the
private node through hole punching, it sends a relay or cdioremessage to one (or
more) of the private node’s partners.

We showed in simulation that Gozar preserves the randonpnegsrties of a gossip-
based peer sampling service. We also show that the proteedh@ad in our system is
less than that of Nylon in different network settings andedént percentages of private
nodes. We also showed that the extra overhead incurred big putnles is acceptable.
Finally, we show that if 80% of the nodes are private, and whe% of the nodes
suddenly fail, more than 92% of nodes stay connected.

In future work, we will integrate our existing P2P appliceis with Gozar, such as
our work on video streaming [22, 23], and evaluate their bieha on the open Internet.
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