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Abstract.  Media Independent Handover (MIH) is an emerging standard which supports 

the communication of network-critical events to upper layer mobility protocols. One of 

the key features of MIH is the event service, which supports predictive network 
degradation events that are triggered based on link layer metrics. For set route vehicles, 

the constrained nature of movement enables a degree of network performance prediction. 

We propose to capture this performance predictability through a Traffic Route Adapted 
Weighted Learning (TRAWL) algorithm. TRAWL is a feed forward neural network 

whose output layer is configurable for both homogeneous and heterogeneous networks. 

TRAWL uses an unsupervised back propagation learning mechanism, which captures 
predictable network behavior while also considering dynamic performance 

characteristics. We evaluate the performance of TRAWL using a commercial 

metropolitan heterogeneous network. We show that TRAWL has significant performance 
improvements over existing MIH link triggering mechanisms. 

Keywords: MIH, vehicular systems, handover, neural networks  

1. Introduction 

The IEEE 802.21 working group propose the MIH standard [1] to support the 

communication of network critical events to upper layer mobility protocols. While the 

MIH standard defines the interface for communication of link layer metrics to upper 

layer mobility protocols it does not provide specifics on the mechanisms which 

should be employed to trigger such events. Many existing algorithms [2][3][4] define 

static thresholds for performance metrics such as RSS. When these thresholds are 

exceeded events such as Link_Going_Down (LGD) and Link_Down (LD) are 

triggered. For set route vehicle systems such approaches are limited as they do not 

consider how the predictable nature of movement enables historic performance 

metrics to influence predictive link triggering.  

In this paper we focus on the optimisation of network handover for set route 

vehicles such as public transport busses and trains. Such vehicles typically operate in 

preconfigured routes which are repeated at routine intervals sometimes many times a 

day. We propose TRAWL, an unsupervised feed forward neural network, which 

captures repetitive network behaviour while also considering the dynamic 

performance characteristics of heterogeneous networks. 
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TRAWL consists of 2 major components; Route Identification and Management 
(RIM) and an Unsupervised Vehicle Learning Algorithm (UVLA). RIM is responsible 
for the configuration and removal of routes in the system. RIM also maintains the 
relationship between Access Points (APs) and vehicle routes. UVLA consists of a feed 
forward neural network which implements the decision logic for TRAWL. UVLA 
input consists of a selection of normalised performance metrics. The number of 
neurons in the output layer is dependent on the network configuration; 1 for 
homogeneous networks, 2 or more for heterogeneous networks. When the stimulation 
of a neuron exceeds a user defined activation threshold, the neuron “fires” producing a 
binary positive output. Positive binary output triggers path switchover to the path 
specified by the inputs. UVLA aims to maximise throughput per route cycle. In order 
to determine the learning rate we calculate the rate of change of a linear regression line 
through historic cycle throughput. A large rate of change results in a large alteration of 
weights. A small rate of change results in a small alteration of weights.  
We evaluate our approach against the standard MIH approach used in [2] using 

performance metrics from a commercial heterogeneous network installation. The 
standard MIH approach is limited as uses a static RSS threshold of typically -80dBm to 
-85dBm to determine when connection termination should occur. For a commercial 
heterogeneous network implementation where APs are positioned for hot spot 
coverage, RSS ranging for -80dBm to -90dBm is common.  By exploiting historic 
performance trends TRAWL determines that significant throughput can still be 
achieved at this RSS level, particularly for uncongested heterogeneous networks. 
Results illustrate that TRAWL has up to a 400% performance improvement over [2].   
This paper is organised as follows; related work is described in section 2. An 

introduction to neural networks is provided in section 3. In section 4 TRAWL is 
described. In section 5 and 6 experimental and simulated results are presented. 
Conclusions and future work is presented in section 7. 

2. Related Work 

Many existing MIH implementations utilize a performance threshold Pthres to generate 

the MIH LGD event. In such scenarios the relationship between the time that Pthres 
(actual or projected) is exceeded, Tdeg, and the time at which path handover is 

initiated, Th-init, can be expressed as follows: 

)( deglg TT dinith α=−  
αlgd

 
is an anticipation factor applied to Tdeg

 
to adjust the aggressiveness of LGD event 

triggering. Many implementations are based on pre-defined Pthres, mostly associated 

with RSS. If the current RSS crosses Pthres the LGD event is generated [2]. The NIST 

MIH implementation in NS2 [2] utilizes the power level of packets RXThresh 

(Pthres) and Pr_limit (αlgd) to control event triggering. A number of studies utilize a 
predictive indication of RSS in this manner [3][4]. In [5] the MN velocity and 

handover duration are used in conjunction with the predicted RSS level to improve 

LGD event triggering. While [6][7] use a predictive model which uses the neighbor 

information to generate timely link triggers so that handover procedures can finish 

before the link goes down. While these mechanisms utilise metrics which provide a 

static representation and dynamic view of performance they do not provide a 

mechanism by which the handover algorithm can tune performance thresholds for 

changing network conditions.   
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There are a significant number of recent studies in the area of network handover 

for vehicle based systems. These studies can be generally categorized in the area of 

Vehicle Ad-hoc NETworks (VANET) or infrastructure mode network access. Our 

investigation relates to the latter. In [9], SWiFT focuses on handover optimisation for 

vehicles travelling greater than 200kmph. SWiFT uses the speed of MN movement 

and RSS as the basis for link event triggering. It does not consider the condition of the 

link in the handover decision. [10] proposes a MIP handover mechanism for VANET 

which maintains the original Care of Address (CoA) configured at the original AP. 

[11] uses Proxy Mobile IPv6 (PMIP) and Host Identity Protocol (HIP) to reduce 

handover latency for urban vehicular systems. In [12] we propose multi-homing 

rather than MIP to pre-configure alternate paths prior to network handover. [13] 

proposes a collaborative approach in which APs use MN position prediction to limit 

the potential for retransmission. Such an approach has significant network 

infrastructure requirements. [14] proposes an architecture for network selection in 

vehicular systems based on network metrics, user requirements and application QoS. 

We propose that the predictable nature of public transport vehicles enables 

performance predictability which is not exploited by any of these approaches. Other 

studies have investigated how network performance can be optimised by predicting 

network holes [15][16]. These studies are ad hoc network based and assume an 

autonomic approach which allows the sensor nodes to self learn/configure. As an end 

point oriented solution our approach has no ability to change network configuration.   

There are a number of ongoing studies which evaluate how artificial intelligence 

techniques can be used in the optimisation of network handover. [17] [18] propose a 

mutually connected neural network in order to optimise load balancing and QoS for 

the entire network. Our work focuses on the optimisation of throughput for client 

devices. [19] proposes a Hopfield neural network which considers multiple input 

parameters in the selection of networks. However that study does not consider how 

the predictable nature of routes used by public vehicles can be used in the 

optimisation of weights.  

3. Artificial Neural Networks 

ANN are data processing models which are based on the operation of the brain. The 

first work on ANN was presented by Mc Cullock and Pitts in 1943 [20].  The work 

proposed a Threshold Logic Unit (TLU) which used weighted binary inputs. If the 

weighted sum of inputs exceeded a threshold value, the neuron fired. Many 

enhancements to the original model have been introduced. The first unsupervised 

learning approach, Hebbian Learning, was proposed by [21] in 1949. Classification of 

inputs was introduced by the perceptron model in [22]. The introduction of back 

propagation enabled the training of synaptic weights based on a desired output.  This 

paper proposes TRAWL, an ANN used to capture historic performance trends for 

predictable route vehicle systems. These trends are weighted against dynamic metrics.   

Fig 1 illustrates a supervised learning ANN. Values x0, x1, x2,.... xn are provided as 

input to the neuron. The neuron has 2 modes of operation; training or trained. In 

trained mode, the neuron applies synaptic weights wk0, wk1,.... wkn which enhance or 

degrade the input values. These weighted values are summed and an activation 
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function ϕ(.) is applied.  ϕ(.) determines whether the neuron should “fire”, producing 

an output yk which classifies the input pattern.  

Training mode can be implemented through supervised or unsupervised learning. 

In supervised learning the ANN will have an offline training phase in which neural 

outputs are compared against a training set. Alterations are made to the synaptic 

weights to limit the error in classification between the output yk and the training set 

dk. When the ANN correctly classifies the input pattern, the ANN operates in trained 

mode.  Unsupervised learning has no external training patterns.  In this mode the 

ANN self organizes data presented to the network and detects recurrent properties.  

 
Fig. 1 A Supervised Learning Neural Network 

 

4. TRAWL – A Traffic Route Adapted Weighted Learning 

Algorithm 

Our TRAWL algorithm consists of 2 components: 
Route Identification and Management (RIM) – is responsible for the 

identification and management of vehicle routes. Using the geographical position of 
the vehicle RIM distinguishes existing, altered or new routes.  

Unsupervised Vehicle Learning Algorithm (UVLA) – implements the path 
selection intelligence within TRAWL. UVLA is a feed forward neural network which 
operates with a single output neuron for homogeneous networks or 2 output neurons 
for heterogeneous networks.  Back propagation and weight adjustment are 
implemented each time the vehicle completes a cycle of a route.   
The fig 2 illustrates the pseudo code for the TRAWL algorithm. TRAWL 

dynamically configures and maintains traffic routes using GPS coordinates. Having 

read the GPS coordinates, TRAWL determines if the current position uniquely 

identifies a route.  If the position is not previously configured, a new route is created 

and training is initiated.  If the position uniquely identifies a previously defined route, 

the TRAWL algorithm determines if ANN training is required for that route.  

TRAWL operates in either training or trained mode. As an unsupervised algorithm 

TRAWL does not have an offline training phase. TRAWL uses initial end user 

synaptic weights to determine if handover is required.  Following each route cycle the 

throughput is calculated and synaptic weights are adjusted. TRAWL is trained when 

(a) the training process does not update synaptic weights (b) synaptic weight updates 

have no effect on throughput. TRAWL ensures that synaptic weights remain relevant 

to changing network conditions by applying an accuracyThreashold. 

Throughput is measured for every route cycle and if the accuracyThreashold is 
exceeded training is reinitiated.  
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Struct Route 

  param trainingmode = false //training or trained  
  param GPS_Cord startOfRoute 
  param GPS_Cord[] existingRoute // co-ords for existing route 
  param float[] weights  // synaptic weights  
  param float activationThreshold //if summation > then fire  
  param float[] historicThroughput  //previous cycle throughput 
  param float learningRate // rate of altering of synaptic weights  
  param float accuracyThreashold // if throughput < reinitiate training 
 

Routine::TRAWL() 

  GPS_Cord CurrentPosition = get GPS_Position() 
  foreach(Route)  // RIM route management 
    if(CurrentPosition contained in Route.StartOfRoute)//cycle complete 
      historicThroughput[] += throughputforcurrentcycle  
      UVLAcheckAccuracy(historicThroughput) 
      if(trainingmode==true) 
        UVLATraining() 
      else 
  UVLAcalculatehandover() 
    else if(CurrentPosition contained in Route.ExistingRoute)          
      UVLAcalculatehandover() 
    else // coords will form a new route 
      if(start of new route) 
        create Route newRoute 
        newRoute.StartofRoute = CurrentPosition 
      newRoute.ExistingRoute[] += CurrentPosition 
      if(trainingmode==false) 
        trainingmode = true 
        UVLAcalculatehandover() 
      else if(trainingmode==true) 
        UVLAcalculatehandover() 
 

Routine::UVLAcalculatehandover()  

  foreach(AP) 
    param float[] normalisedmetric 
    foreach(performancemetric) 

      normalisedmetric[] = NormaliseMetric(GetPerformanceMetric()) 
    param activationValue = (weights[0]*normalisedmetric[0])+...... 
    if(activationValue>threashold)  
      implementhandover(AP)  // neuron fires 
 

Routine:: UVLATraining ()  

  param slope = slopeofLinearRegression(HistoricThroughput) 
  param errorCorrection = slope*learningRate    
  foreach(weight) 
    weight+=errorCorrection // alter weights 
 

Routine:: UVLAcheckAccuracy()   

  Param slope = slopeofLinearRegression(HistoricThroughput) 
  if(abs(slope)>accuracyThreashold)  
    trainingmode = true   //reinitiate training 

Fig. 2 Pseudo code for the TRAWL algorithm 

The ULVA model consists of X0, X1,... Xn neuron inputs corresponding to the 

selected performance metrics. Each neuron is a linear threshold gate producing a 

binary output for path switchover.  ��  is defined as follows:   
�� ��� ��	�
� ��  (1)         �� � 
�������� � �

������� � � �   (2) 
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Fig 3 illustrates a UVLA configuration with 2 output neurons for a heterogeneous 

network with wireless and mobile components.  

Fig. 3 UVLA Neural Network with 2 Output Neurons 

        �� are synaptic weights for each performance metric. �� is the sum of weighted 
inputs.  �� is a user configured activation threshold. If the stimulation of the neuron 
�� meets the activation threshold ��, the neuron “fires” producing a binary positive 
output. A positive output indicates that path switchover should occur. The aim is to 

maximise throughput per route cycle, therefore we calculate the rate of change, �, of a 
linear regression line for historic throughput as follows: 

� � �������������
��������                                                    (3) 

Using � we can determine the rate by which alterations to synaptic weights affect 
throughput. A positive � indicates that synaptic weight alterations have a beneficial 
effect on throughput. A negative � indicates that synaptic weight alterations have a 
detrimental effect on throughput.  

In order to control the rate of learning we define a user configurable learning rate 

constant �. The selection of an appropriate learning rate is critical for the effective 
operation of the algorithm. If the learning rate is too low the network learns very 

slowly. If the learning rate is too high weights diverge, resulting in little learning.  We 

define the error correction,� �, as the product of � and �. 
 � � � ! �                                                     (4) 

5. An Experimental Analysis of a Commercial Heterogeneous 

Network Installation 

In recent years heterogeneous networking has gained acceptance as the next logical 

step in wireless and mobile networking. The ITU have formalized this trend through 

the fourth generation wireless mobile networks (4G) set of standards [23]. Many 

mobile operators are embracing heterogeneous networking. Initiatives such as the 

TeliaSonera Homerun and British Telecom’s OpenZone [24] have made 

heterogeneous networking a reality. In this section we analyze the performance 

characteristics of one such commercial deployment. Fig 4 illustrates the deployment 

of APs in Belfast city centre for a tourist bus route. Using NetStumbler [25] we 
record RSS for all APs as illustrated in fig 5. 
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Fig. 4 AP Deployment Belfast City Centre       Fig. 5 RSS for APs in Belfast City Centre 

Figure 5 illustrates the RSS received by a MN located on the bus as it follows the 

route outlined in Fig 4 during a 57 minute circular trip. The average RSS over the 

duration of the test was -85.24dBm. Figs 4 and 5 illustrate a higher concentration of 

APs in the city centre. In the city centre the average RSS experienced by the MN was 

-83.23dBm while in the suburbs the average RSS was -90.2dBm.  We use the results 

of this experimental study as input to the simulated model in Section 6.  

6. Simulated Evaluation of the TRAWL Algorithm  

In this section, we evaluate the performance of TRAWL for the network configuration 
described in Section 4 using NS2 with the MIH mobility package from NIST [2]. In 
order to integrate the geographical location of the route in NS2, we record the GPS co-
ordinates for all junctions. Using these coordinates we simulate a circular route of 
4.82km which is traversed in 57 minutes. The intention is to simulate the download of 
flat file multimedia content, such as advertising, for display on the next route cycle. 
We recreate the RSS signature illustrated in Figure 5 in our simulated model. We then 
evaluate our model in congested and non-congested configurations.   
Each AP has a transmit power of 0.281838W, transmit antenna gain of 1, receive 

antenna gain of 1 and an antenna height of 1.5M. This provides an outdoor signal 
range of approx 250M. The MIH parameters CSThresh (link detection) and RXThresh 
(link utilisation) were set to -90dBm and -85dBm respectively. Simulation 
enhancements as described in [26] were included in the model. The UMTS core 
network was configured with a 622Mbit link capacity and a delay of 15ms. The 
WLAN back haul network was configured with a 100MBit capacity and a 1ms delay. 
The transport layer mobility protocol SCTP was used to implement network mobility. 
FTP data was then transmitted from the MN towards a back end content server.   Fig 6 
illustrates the topology of the model.  

 
Fig. 6 Simulated Network Configuration 
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We evaluate the performance of TRAWL for the configuration illustrated in fig 6   

with/without congestion for homogeneous WLAN and heterogeneous WLAN/3G 

network configurations. In all cases we define the initial weights w1=.35, w2=.3, 

w3=.4, w4=.25 corresponding to the performance metrics loss rate, RTT, RSS and link 

bandwidth. These weights reflect our initial understanding of the relative importance 

of each performance metric. The value range .25 to .4 was chosen since values below 

this size did not result in the stimulation of neurons and hence no path selection 

occurred. Figs 7, 9, 11 and 13 illustrate the total throughput and synaptic weights for 

each of the learning cycles. Figs 8, 10, 12 and 14 illustrate the throughput, rate of 

learning and error correction for each of the learning cycles.  Tables 2-5 are based on 

figs 7-14 and provide a more detailed view of the configuration of TRAWL 

parameters for each learning cycle. In order to illustrate the operation of the TRAWL 

algorithm consider rows 1-3 in Table 2. The initial synaptic weights are set as 

described above. At routine intervals, at least once per second, the performance 

metrics loss rate, RTT, RSS and link bandwidth are recorded and normalised. These 

normalised values are multiplied by the initial synaptic weights. If the summation of 

these values exceeds the activation threshold switchover occurs. On the first cycle of 

the route this approach resulted in a throughput of 66.82Mbytes. A slope of a line 

from the origin to the point (1,66.82) is calculated resulting in a slope of 66.82. This 

slope is then multiplied by the learning rate, .002, resulting in a weight adjustment of 

0.13364. On the second cycle the synaptic weights w1=.484, w2=.3, w3=.4, w4=.25 

result in a throughput of 164.9Mbytes. We calculate the slope of a linear regression 

line through the points (0,0), (1,66.82), (2,82.45) as 82.45. Multiplying the learning 

rate .002 by 82.45 results in a synaptic weight adjustment following the second cycle 

of .1649.  Weights are adjusted in this manner following every cycle until the slope of 

the linear regression line is 0 or until adjustments in the synaptic weights have no 

effect on throughput.      

Local maxima can have a negative effect on ANN performance as learning is 

centred on a local maximum value. Table 1 illustrates the TRAWL parameters for 

learning cycles 5-10 for the non congested heterogeneous network. After 9 cycles the 

slope of the throughput linear regression is 0 indicating that no error correction is 

required. The synaptic weight configuration w1=.575, w12=.518, w3=.590, w1=.516 

has been optimised around a local maximal value. In order to avoid local maxima we 

introduce a positive or negative random weight adjustment in the range 0-0.2 every 5 

learning cycles.  In cycle 10 the random weight adjustments w1=.-.112, w12=-.181, 

w3=.-.069, w1=.-.145 are applied avoiding the local maxima and resulting in the final 

trained throughput of 74.4Mbytes.  

Table 1. Local Maxima in a non congested heterogeneous network configuration 

Cycle w1 

(Loss) 

w2 

(RTT) 

w3 

(RSS) 

w4 

(Bw) Thres Throughput Slope 

Error 

Correction 

Learning 

Rate 

5 0.582 0.525 0.597 0.523 1 49.15 5.141 0.010 0.002 

6 0.592 0.535 0.607 0.533 1 49.15 -3.939 -0.008 0.002 

7 0.585 0.528 0.600 0.526 1 49.15 -3.89 -0.008 0.002 

8 0.577 0.520 0.592 0.518 1 49.15 -0.928 -0.002 0.002 

9 0.575 0.518 0.590 0.516 1 49.15 0 0.000 0.002 

10 0.463 0.337 0.521 0.371 1 59.38 2.046 0.004 0.002 
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Fig. 7 Throughput and Synaptic Weights for a     Fig. 8 Throughput and Error Correction for a 

Non Congested Homogenous Configuration     Non Congested Homogenous Configuration 

     
Fig. 9 Throughput and Synaptic Weights for a     Fig. 10 Throughput and Error Correction for a 

  Non Congested Heterogeneous Configuration     Non Congested Heterogeneous Configuration 

   
Fig. 11 Throughput and Synaptic Weights for a   Fig. 12 Throughput and Error Correction for a 

      Congested Heterogeneous Configuration            Congested Heterogeneous Configuration 

   

Fig. 13 Throughput and Synaptic Weights for a   Fig. 14 Throughput and Error Correction for a 

      Congested Homogeneous Configuration            Congested Homogenous Configuration 
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Table 2. TRAWL Parameters for a Non Congested Homogenous Configuration 

Cycle 

w1 

(Loss) 

w2 

(RTT) 

w3 

(RSS) 

w4 

(Bw) Thres Throughput 

Rate of 

Change 

Error 

Correction 

Learning 

Rate 

1 0.350 0.300 0.400 0.250 1 66.82 66.82 0.13364 0.002 

2 0.484 0.434 0.534 0.384 1 164.9 82.45 0.1649 0.002 

3 0.649 0.599 0.699 0.549 1 188.03 66.217 0.132434 0.002 

4 0.781 0.731 0.831 0.681 1 158.49 43.819 0.087638 0.002 

5 0.939 0.853 1.045 0.948 1 166.06 19.207 0.038414 0.002 

6 0.977 0.891 1.083 0.986 1 164.16 -2.345 -0.00469 0.002 

7 0.972 0.886 1.078 0.981 1 164.15 -4.209 -0.008418 0.002 

8 0.964 0.878 1.070 0.973 1 164.16 0.943 0.001886 0.002 

9 0.966 0.880 1.072 0.975 1 164.16 -0.38 -0.00076 0.002 

10 1.071 0.889 1.144 0.996 1 164.18 0.005 0.000010 0.002 

11 1.071 0.889 1.144 0.996 1 164.18 0.008 0.000016 0.002 

12 1.071 0.891 1.144 0.996 1 164.18 0.006 0.000012 0.002 

13 1.071 0.893 1.144 0.996 1 164.18 0.004 0.000008 0.002 

14 1.071 0.895 1.144 0.996 1 164.18 0 0.000000 0.002 

Table 3. TRAWL Parameters for a Non Congested Heterogeneous Configuration 

Cycle w1 

(Loss) 

w2 

(RTT) 

w3 

(RSS) 

w4 

(Bw) Thres Throughput 

Rate of 

Change 

Error 

Correction 

Learning 

Rate 

1 0.350 0.300 0.400 0.250 1 75.44 75.44 0.150880 0.002 

5 0.796 0.722 0.839 0.643 1 70.95 -0.847 -0.001694 0.002 

10 0.641 0.591 0.817 0.560 1 70.89 -0.012 -0.000024 0.002 

15 0.498 0.517 0.799 0.388 1 72.33 0.288 0.000576 0.002 

20 0.568 0.530 0.991 0.528 1 74.4 0.742 0.001484 0.002 

25 0.568 0.530 0.991 0.528 1 74.4 0 0.000000 0.002 

Table 4. TRAWL Parameters for a Congested Heterogeneous Configuration 

Cycle w1 

(Loss) 

w2 

(RTT) 

w3 

(RSS) 

w4 

(Bw) Thres Throughput Slope 

Error 

Correction 

Learning 

Rate 

1 0.25 0.2 0.3 0.15 1 20.2 20.2 0.040 0.002 

5 0.582 0.525 0.597 0.523 1 49.15 5.141 0.010 0.002 

10 0.463 0.337 0.521 0.371 1 59.38 2.046 0.004 0.002 

15 0.340 0.200 0.279 0.261 1 59.47 0.063 0.000 0.002 

19 0.340 0.200 0.279 0.261 1 59.47 0.063 0.000 0.002 

Table 5. TRAWL Parameters for a Congested Homogenous Configuration 

Cycle w1 

(Loss) 

w2 

(RTT) 

w3 

(RSS) 

w4 

(Bw) Thres Throughput Slope 

Error 

Correction 

Learning 

Rate 

1 0.25 0.2 0.3 0.15 1 20.2 20.2 0.040 0.002 

5 0.542 0.457 0.485 0.286 1 21.52 -1.904 -0.004 0.002 

10 0.365 0.288 0.284 0.137 1 28.11 1.309 0.003 0.002 

15 0.411 0.321 0.322 0.177 1 35.118 -4.1064 -0.008 0.002 

20 0.406 0.311 0.310 0.174 1 46.4 -3.829 -0.008 0.002 

21 0.394 0.297 0.299 0.162 1 67.89 19.265 0.039 0.002 
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In Section 2 we described the mechanism used in [2] to implement the MIH LGD 

event. Table 6 compares the performance of [2] against a fully trained TRAWL. 
 

Table 6. Performance Comparison of NS2 MIH LGD and a Fully Trained TRAWL LGD 
 NS2 MIH LGD 

Throughput (MB) 

TRAWL LGD 

Throughput (MB) 

Performance 

improvement 

Non Congested/Homogenous 41.65 164.18 394% 

Non Congested/Heterogeneous 71.96 74.4 4% 

Congested/Homogenous 42.4 59.47 40% 

Congested/Heterogeneous 44.98 67.89 51% 
 

Table 6 illustrates that when TRAWL is fully trained it has significantly better 

performance than [2] for MIH LGD event triggering, particularly for a non congested 

homogenous WLAN configuration. In order to explain the significant performance 

differential we consider fig 5 in more detail. For a commercial heterogeneous network 

implementation where APs are positioned for hot spot coverage, RSS ranging for -

80dBm to -90dBm is common.  The average RSS for this installation was -
85.24dBm, ranging from -55dBm to -100dBm. -85dBm is considered a point of 

significant performance degradation in WLAN and RXThresh was set accordingly 

for the standard MIH approach. By exploiting historic performance trends TRAWL 

determines that the optimal configuration of weights was w1=1.071(loss rate), 

w2=0.895(RTT), w3=1.144(RSS), w1=.996(bandwidth). Such a configuration gives 

the following relative performance metric precedence; loss rate 26%, RTT 22%, RSS 

28% and bandwidth 24%. While RSS is considered the most important performance 

metric, the other metrics have only slightly less precedence. Such a weight 

configuration determines that significant throughput improvement can be achieved at 

RSS less than -85dBm. For an unsupervised ANN such as TRAWL, learning is 

performed online. It is critical therefore that the training of synaptic weights is 

performed with minimal delay. The optimisation of synaptic weights is a trade off 

between learning time and throughput. Fig 7, fig 8 and table 2 illustrate that within 2 

cycles, the output of TRAWL is within 1% of its trained value. Table 7 compares the 

performance of a partially trained TRAWL, 2 learning cycles, against [2]. It illustrates 

that after only 2 learning cycles TRAWL has at least equivalent performance to [2].  
 

Table 7. Comparison of NS2 MIH LGD and Partially Trained TRAWL LGD (2 Cycles) 
 NS2 MIH LGD 

Throughput (MB) 

TRAWL LGD 

Throughput (MB) 

Performance 

improvement 

Non Congested/Homogenous 41.65 164.9 396% 

Non Congested/Heterogeneous 71.96 69.19 -4% 

Congested/Homogenous 42.4 42.09 <1% 

Congested/Heterogeneous 44.98 60.28 134% 
 

7. Conclusions and Future Work 

In this paper we proposed TRAWL, a feed forward neural network, which uses the 

predictable nature of public transport routes in order to optimise MIH link triggering. 

TRAWL uses an unsupervised back propagation learning mechanism which captures 

predictable network behaviour while also considering dynamic performance 

characteristics. We evaluate TRAWL using performance metrics from a commercial 

heterogeneous network. Results presented illustrate up to a 400% performance 
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improvement over traditional MIH link triggering approaches for this network 

installation.  For an unsupervised ANN such as TRAWL the optimisation of synaptic 

weights is a trade off between learning time and throughput. While a number of cycles 

are required to fully train TRAWL, we illustrate that early in the training cycle 

throughput is close to its final trained value. Future work will extend the TRAWL 

algorithm to consider metrics applicable to media streaming applications.   
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