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Abstract. We propose to combine timed automata and linear hybrid
automata model checkers for formal testing and monitoring of embedded
systems with a hybrid behavior, i.e., where the correctness of the system
depends on discrete as well as continuous dynamics. System level testing
is considered, where requirements capture abstract behavior and often
include non-determinism due to parallelism, internal counters and sub-
tle state of physical materials. The goal is achieved by integrating the
tools Uppaal [2] and PHAVer [3], where the discrete and hard real-time
aspects are driven and checked by Uppaal TRON and strict inclusion
of dynamical trajectories is verified by PHAVer. We present the frame-
work, the underlying theory, and our techniques for integrating the tools.
We demonstrate the applicability on an industrial case study.

1 Introduction

Timed automata (TA) is a convenient and expressive modelling language for
expressing state- and time-dependent discrete behavior such as time constraints
on event occurrences. In particular the Uppaal-language has proven useful and
expressive in a large number of case studies. The editing, simulation and anal-
ysis of Uppaal-TA models is supported by the Uppaal model-checking tool.
Similarly, (online) model-based testing is implemented in the Uppaal TRON

tool [7].
However, TA cannot directly capture and describe continous behavior, which

is normally abstracted away. When this cannot be done, a workaround may be to
model discrete approximations; these may however be cumbersome, inaccurate
and significantly degrade the performance of the analysis.

In contrast, (linear) hybrid automata ((L)HA) allows continuous evolutions
(trajectories) to be described directly through (linear) differential equations as-
sociated with the locations of the automata. PHAVer [3] is a model-checker
which provides exploration and analysis capabilities for a rich class of hybrid
automata through incrementally refined over-approximation of the trajectories.
However, for purely timed and sophisticated discrete behavior its performance
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cannot compete with timed automata tools like Uppaal. Furthermore, its lan-
guage contains none of the advanced feature of Uppaal (different types of com-
munication channels, committed locations, C-like instructions on transitions,
etc.), which are highly useful for effective modelling of control software.

Testing of hybrid systems is not new, e.g. Reactis Validator is based on a
hardware-in-the-loop simulation, where the requirements are expressed as as-
sertions on a Simulink model [9]. Osch provides a formal framework [11] and a
prototype tool based on TorX [10] architecture and hybrid χ simulator [12]. Both
frameworks are based on a simulation, thus only a deterministic behavior with
some relative deviation is allowed. Our framework is unique in a sense that it
allows imprecision in timed and dynamical behavior (clock drifts, measurement
imprecision, limited state observability, parallelism, abstract requirements) by
means of non-determinism in a specification model, i.e. the user can explicitly
specify ambiguity of any aspect: bounds on timing of events, dynamical vari-
able values, their derivatives, internal/unobservable transitions. This approach
is consistent in treating the imprecision in both time and continuous signals, so
the ideas from Uppaal TRON testing framework can be carried to PHAVer

with just a few modifications. Consequently, the conformance check is as easy
as inequality check of observed outputs with symbolic state bounds, the test is
sound (if the test fails then IUT definitely does not conform to specification),
but not necessarily exhaustive (some faults may escape detection due to discrete
sampling and measurement imprecision).

Our goal is therefore to combine the Uppaal TRON and PHAVer tools
to construct a tool environment that supports effective and efficient testing and
monitoring of control systems that contains both significant timed actions and
continuous trajectories.

Model-based monitoring is a passive observation of a (black-box) system exe-
cuting in its operating environment, and checking whether the observed behavior
is permitted by (conforms-to) the specified behavior in the model. Model-based

testing also uses the model to generate test input sequences to stimulate the
system, and replaces (part of) the system’s environment. Using online testing

the system is stimulated and evaluated interactively and in real-time. Our goal
is to extend the framework of online testing of real-time systems presented in
[7] to hybrid systems. Uppaal TRON simultaneously stimulates and evaluates
the system behavior, and can be configured to perform either or both tasks, e.g.,
work solely as a monitor, while PHAVer provides sound over-approximation of
continuous dynamics.

Fig. 1 shows a simple system setup where a plant is controlled by an em-
bedded system. The controller is a digital device running an embedded program
which inputs (samples) the sensor values and outputs actuations to the plant.

Controller
EmbeddedPlant Under

Control Actuator

Sensor

Fig. 1: Hybrid system setup.
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The proposed framework will typically be used to monitor and test the be-
havior of the controller, but can in principle equally well be used to evaluate
whether the assumed behavior captured and represented by models of the plant
are correct, as only a black-box is assumed.

Fig. 2 shows an arrangement of tools from [6] we use in our test setup: the
emulator is a test generator that to the IUT plays the role of an environment
(plant under control), the monitor is a test oracle that monitors the observable
input/output interaction and decides whether the behavior of IUT is conforming.

Implementation

under test
Emulator

Monitor

Fig. 2: Test setup.

The main solution idea is to run the two tools in parallel, i.e.,Uppaal TRON

for test generation (environment emulation) and monitoring discrete and timed
behavior and PHAVer monitoring the continuous behavior. Thus each tool
evaluates a part of the overall model.

For this to work, the two tools must be synchronized with respect to real-time
and observed events. Moreover, as the behavior in most complex models depends
on both aspects, the sub-models also need to exchange information to trigger
behavior changes. For instance, when the timed automaton executes an action
or switches location the HA model may need to evaluate different trajectories.
Similarly, the values (or crossing of thresholds) may be of importance to the
possible actions of the TA.

Our contributions are as follows: monitoring dynamical behavior against non-
deterministic models, a modeling pattern to keep Uppaal TA models in syn-
chrony with LHA so that timed models would focus on discrete and timed aspects
and hybrid automata mostly on dynamics, a test adapter framework that allows
the tools to exchange synchronization events thus enabling the models to “com-
municate” during online testing, demonstration how our technique and tool can
be applied to an industrial case study [8].

Requirement Models. The interaction of discrete events and continuous, time-
driven dynamics can be efficiently modeled by a so-called hybrid automaton [1].
A hybrid automaton H = (Loc, V ar, Lab, Inv, F low, Trans, Init) consists of a
graph in which each vertex l ∈ Loc, also called location or mode, is associated
via Flow(l) with a set of differential equations (or inclusions) that defines the
time-driven evolution of the continuous variables. A state s ∈ Loc×R

Var consists
of a location and values for all the continuous variables V ar. The edges of the
graph, also called discrete transitions Trans, allow the system to jump between
locations, thus changing the dynamics, and instantaneously modify the values of
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continuous variables according to a jump relation µ. The jumps may only take
place when the values of the variables are within the domain of µ. The system
may only remain in a location l as long as the variable values are in a range called
invariant Inv(l) associated with the location. All behavior originates from one
initial state Init.

An execution or trajectory of the automaton is a sequence of discrete jumps
and pieces of continuous trajectories according to its dynamics, and originates
from the initial state. Linear Hybrid Automata are hybrid automata in which
invariants, guards and initial states are given by linear constraints over the vari-
ables, jump relations are given by linear constraints over the variables before and
after the jump, and the flow constraints are linear constraints over the deriva-
tives only (must not depend on the state variables). Fundamental properties
such as reachability are undecidable for (linear) hybrid automata in general.
Tools like PHAVer use polyhedra for symbolic state computations, and the
operators used in reachability are of exponential complexity in the number of
continuous variables.

A Timed Automaton is a hybrid automaton with the following restrictions:

– The continuous variables are clocks, i.e., their time-derivative is equal to one.
– Invariants and guards are conjunctions of constraints on a single clock, i.e.,

of the form
∧

i
xi ⊲⊳ ci, where the xi are clock variables, ⊲⊳∈ {≤, <,=, >,≥}

and the ci are integer constants.
– The jump relations are resets, i.e., each transition may set a subset of the

variables to an integer value.

Timed automata have the advantage over general hybrid automata that fun-
damental properties such as reachability are decidable, and efficient (polynomial
complexity) operators are known for symbolic state computation.

Conformance. The formal characterization of correctness is a natural extension
of rtioco conformance relation from [7]. We refer to [12] for formal details about
hybrid conformance and impact of discrete sampling.

Definition 1 specifies the relation between IUT p and a system specification
s represented by states 〈e, p〉 and 〈e, s〉 which are composed of IUT model state
s and environment model state e.

Definition 1 Relativized timed input/output conformance relation [7]. p, s ∈ S
and e ∈ E are input-output compatible:

p rtiocoe s
def

= ∀σ ∈ TTr
(

e
)

.Out
(

〈e, p〉 after σ
)

⊆ Out
(

〈e, s〉 after σ
)

(1)

where TTr
(

e
)

is a set of timed traces generated by e, operator after denotes

reachable states after a trace is executed, Out
(

T
)

denotes a set of possible outputs

from a set of states T ⊆ E × S.

Intuitively the definition says that in order to establish the conformance be-
tween IUT state p and specification state s we have to do the following: generate
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a trace σ from the environment specification e, execute the trace σ on both IUT

composed with environment (〈p, e〉) and a complete system specification (〈s, e〉),
and then check whether the output produced by IUT is included in the outputs
of specification. Explicit treatment of the environment model e allows to test
the IUT in relation to specific environment.

For hybrid monitoring we adapt the hioco relation proposed by [11]:

Definition 2 Hybrid input/output conformance relation [12]. Let p, s ∈ S be

input-output compatible implementation and specification respectively, environ-

ment e ∈ E, then:

p hiocoe s
def

= ∀σ ∈ traces(〈s, e〉) . Out
(

〈p, e〉 after σ
)

⊆ Out
(

〈s, e〉 after σ
)

∧(2)

traj(〈p, e〉 after σ) ⊆ traj(〈s, e〉 after σ) (3)

The definitions means that in order to establish the conformance relation, one
must consider all specification traces (discrete inputs and outputs intermingled
with continuous time trajectories) and check that resulting responses from im-
plementation (discrete outputs and trajectories) are included in the specification.
The first part of definition (2) can be checked by Uppaal TRON as it is con-
cerned with discrete I/O and is compatible with rtioco where trajectories are
replaced with time delays, and PHAVer is used to monitor the second part
(3). We check (monitor) only the output trajectories, while the original hioco

from [11] has additional operators for composing continuous input and output
trajectories.

Online Test Algorithm. Algorithm 1 is an abstract version of the timed online
testing algorithm which generates sound and exhaustive tests [7]. The algorithm
is based on maintaining a current estimate of system state S and consists of three
parts: generating an input action based on S, performing a time delay, checking
that the output is consistent with the current state estimate, and potentially
restarting the test.

2 Monitoring Trajectories

The monitoring of continuous dynamics is implemented by supplementing the
action and delay cases of Algorithm 1 with PHAVer symbolic computations in a
parallel process, where the continuous output signals are discretized by periodic
sampling and checked that the values are included in a model behavior.

We formally define the operators included in PHAVer for monitoring and
testing and discuss their implementation for linear hybrid automata. Let s, s′

be hybrid states, i.e., each a pair of a discrete location and a valuation of the
continuous variables. We consider the set of labels (actions) Lab of the automaton
to consist of two disjoint sets of observable actions ΣO and unobservable actions

ΣU .
We write s

a
−→ s′ if there is a discrete transition with label a that leads from s

to s′. We write s
δ
−→ s′ for δ ∈ R

≥0 if there is a continuous trajectory leading from
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Algorithm 1: Test generation and execution, OnlineTest(S, E , IUT, T ).

S := {〈s0, e0〉}; // let the set contain an initial state1

while S 6= ∅ ∧ ♯iterations ≤ T do2

switch Random
(

{action, delay, restart}
)

do3

case action // offer an input4

if EnvOutput(S) 6= ∅ then5

randomly choose i ∈ EnvOutput(S);6

send i to IUT, S := S after i;7

case delay // wait for an output8

randomly choose d ∈ Delays(S);9

sleep for d time units or wake up on output o at d′ ≤ d;10

if o occurs then11

S := S after d′;12

if o /∈ ImpOutput(S) then return fail ;13

else S := S after o14

else S := S after d; // no output within d delay15

case restart // reset and restart16

S := {〈s0, e0〉};17

reset IUT18

if S = ∅ then return fail else return pass19

state s to s′ without taking any discrete transitions in between. The notation
extends to sets of states S, S′ in a straightforward manner.

Let Postc(S) = {s′ | ∃s ∈ S, δ ∈ R
≥0 : s

δ
−→ s′}. Let Postd(S, a) = {s′ | ∃s ∈

S : s
a
−→ s′}. For a given alphabet Σ ⊆ Lab, let ReachΣ(S) be the smallest fixed

point of the sequence P0 = Postc(S), Pk+1 = Pk ∪
⋃

a∈Σ
Postc(Postd(Pk, a)).

Some of the operators required for testing make explicit use of the time at
which events occur. We extend the above operators to explicitly include time
by modifying the hybrid automaton: We include a clock variable κ, which has
derivative zero and does not change its value during transitions. For the sake
of simplicity, we shall abuse notation a little and write (s, κ) for a state of the
extended automaton where κ denotes the added clock variable. We annotate
the operators on the extended automaton by adding the superscript κ, e.g.,
Reachκ

Σ
(S, κ0) denotes the reachable sets of states by taking only discrete tran-

sitions with a label in Σ, and starting from an extended state (s, κ) where s ∈ S

and κ = κ0. We have implemented the following operators:

– delayTop(S,Σ) = maxκReachκ

Lab\Σ(S, 0) computes an upper bound on the
time the automaton can execute without taking a transition with a label in
Σ.

– delayBottom(S,Σ) = minκReachκ

Lab\Σ(S, 0) computes a lower bound on the
time the automaton can execute without taking a transition with a label in
Σ.
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– transition(a, x = c) = Postd(S, a) ∩ {s | s(x) = c} computes the states the
automaton can be in after taking a transition with label a and having the
variable x have the constant value c.

– observation(x = c) = S ∩ {s | s(x) = c} computes the states the automaton
can be in if the variable x has the constant value c.

We will now briefly discuss the complexity of the above operations as they are
implemented in PHAVer. Recall that PHAVer represents sets of continuous
states as sets of convex polyhedra. The complexity of the above Post operators
is exponential in the number of continuous variables.

The above operators delayTop and delayBottom make use of the automa-
ton extended with an additional clock. This increases the number of continuous
variables in the system by one. Since the complexity of the post-operators grows
exponentially with the number of variables, this might significantly affect per-
formance. Once the Reach set of the extended system is computed, the upper
and lower bounds on κ are found efficiently using linear programming.

If the hybrid automaton has bounded invariants and affine dynamics of the
form ẋ = Ax + b, with A being a matrix and b a vector of rational coefficients,
PHAVer overapproximates the behavior by transforming it into a LHA. The
transformation splits each location into a number of equivalent locations whose
invariants cover the original invariant, and where each invariant is smaller than
a given size. For each of the ingoing and outgoing transitions of the original
location, equivalent copies are added to the generated locations. In each of the
generated locations li, the derivatives are overapproximated with the set ẋ ∈
{x′ | ∃x ∈ Inv(li) : x

′ = Ax+ b}, which brings the automaton to LHA form. By
splitting all locations into parts that are small enough, an overapproximation of
arbitrary accuracy can be achieved, albeit for the price of generating a potentially
very large number of locations and transitions.

3 Modelling Pattern

Our solution consists of running two tools in parallel: Uppaal TRON for test
generation and monitoring discrete and timed behavior and PHAVer monitor-
ing continuous behavior.

We set up both tools to keep track of the state estimate by using symbolic
operations on the corresponding requirement models and declare failure if the
state estimate of the IUT becomes empty, signaling that the observed behavior
is outside the specification.

We propose to split the dynamic and timed/discrete aspects into two models:

– A timed automata model responsible for discrete and timely behavior.
– A hybrid automata model handling the dynamic features and using as few

discrete aspects as possible.

The reason for the separation is that the model-checking tools are optimised to
analyze such aspects on their own. Moreover, performance wise, it is cheaper to
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keep the two components separately in parallel than operate on a flat product
of them which can be exponentially large.

Depending on the concrete system setup there are various possibilities on
how to keep the models in synchrony as shown in Figure 3:

HATA

global time
observable I/O

(a) Time and I/O.

HATA
[timing]

transition

global time
observable I/O

(b) Time, I/O and discrete feedback.

HAdynamics

[timing]

global time
observable I/O

[values]
Uppaal TA

(c) Time, I/O and dynamic values.

global time

HA

observable I/O
[bounds] samples

Uppaal TA

(d) Time, I/O and direct bounds.

Fig. 3: Various ways to synchronize TA and HA model state estimates.

Time and I/O. Timed and dynamic aspects may be independent of each other
(e.g. two parallel processes without interaction in between), and hence no
special handling is needed. Fig. 3a shows that timed automata (TA) model
state estimate is calculated independently from hybrid automata (HA) model
but using the same input/output sequence synchronised on global time ref-
erence.

Event synchronization. When an important state change occurs in the HA
model it is communicated via a dedicated internal event to TA model. Fig. 3b
shows the same TA and HA model setup synchronised on the same timed
sequence of input/output events, but in addition it is possible to transfer
the information when certain discrete transitions (mode changes) in the HA
can and should occur, thus effectively TA and HA models are synchronised
on discrete transitions.

Data synchronization. In case of Uppaal TA models we may handle the
dynamic variable values from HA model state estimate as discrete integer
data. Fig. 3c shows that parts of HA dynamics is passed to TA model state
estimation as discrete data values. However, a special care must be taken to
ensure that the data is handled consistently between models.

Over-approximation. Finally, one can use methods from [5] to produce ab-
stractions of hybrid automata in a form of stop-watch timed automata (Up-

paal TRON can handle those too), thus we can use the resulting abstract
model to handle timed and discrete aspects and use the hybrid model to
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monitor the continuous behavior more precisely. In a similar fashion we pro-
pose to model each continuous variable v from HA by two integer bounds
vlow and vupper in the Uppaal TA model and update the bound variables.
Fig. 3d shows that both models are synchronised on continuous signals: the
HA model state estimate is updated with concrete sample values (measure-
ments from the IUT), while Uppaal TA is updated by bounds which ap-
proximate the sample values. In order to use this feature, the Uppaal TA
model needs to be adjusted to handle two boundary values for each con-
tinuous signal non-deterministically instead of a single concrete value. As a
result, Uppaal TA handles not just the timed automata aspects but also
dynamical behavior in an abstract way: the continuous signal is represented
by a rectangular region which is adjusted and synchronised with the rest of
the model at runtime.

The over-approximation approach requires only a few changes in the adapter
protocol but is general enough to support the other above techniques, thus we
focus only on over-approximation. Note that the abstract bounds need not to be
updated continuously with each sample if the new sample signal is still within
bounds.

4 Architecture

The tools are connected using the Uppaal TRON test adapter framework.
The adapter is a software layer that takes care of translating and delivering in-
put/output actions between tester and an implementation under test (IUT), thus
the major parts of it is IUT-specific. In addition, every input/output action is
translated into a script and fed into the PHAVer model-checker for monitoring
dynamical signals. Fig. 4 shows the setup of tools:

Under Test
Implementation

TRON
Uppaal

PHAVer
Monitor

Verdict
coverage

model
LHA

model
TA

Verdict
diagnostics

"output"

input

output

"input"

Hybrid
Adapter

Fig. 4: Framework for online testing of hybrid systems.

– Uppaal TRON reads a TA model, interacts by abstract representation of
discrete input/output action sequences and delivers a verdict at the end of
test. Some diagnostics are provided in case the test fails.
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– A Hybrid Adapter translates the abstract discrete input and performs the
actual input, continuously observes concrete output and translates it into
abstract output. Both input and output are reported further to PHAVer

in the form of PHAVer script which contain digitised timed input/output
sequence.

– PHAVer reads a linear hybrid automata (LHA) model, computes the reach-
able set of states according to the script and produces a plot of reachable
symbolic states until the state set becomes empty and the test consequently
fails.

In Fig. 4 all entities in rounded rectangles contain a separate thread and commu-
nicates asynchronously so that input/output delivery would not block the test
progress.

Fig. 5 shows an example of the events happening during delivery of input
and processing of output. The Uppaal TRON and Hybrid Adapter time-stamp
events independently of each other and PHAVer is just processing a stream
of commands containing already time-stamped input/output events. Each in-
put/output event is time-stamped by a time interval [from; till], where from is
the earliest possible moment in time an action has happened, and till is the
latest3.

TA Tester

TRON

Adapter

Hybrid

HA Monitor

PHAVer

IUT

device

“input”

input

“input@[from,till]”

(done)

output

“output”

“output@[from,till]”

msc Example sequence of input/output events.

Fig. 5: Message sequence chart of input/output handling.

3 Inputs are time-stamped before and after sending an event and it is also possible to
use communication latency when estimating the time-stamp of output.
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5 Application

We use electronic cooling controller EKC204A provided by Danfoss for case
study [8] as a hybrid implementation which contain discrete, timely and dynam-
ical aspects.

Temperature Controller. Fig. 6a shows how Danfoss EKC204A temperature con-
troller can be deployed at industrial refrigeration systems. The device can be

S3

S4

S5

(a) Sensor and actuator setup.

r0
1

A03

A=on
A=off A03

A=on
A=off

time
A14

A13

C=onC=offA=off
C=on

SP

te
m

pe
ra

tu
re

(b) Temperature regulation principles.

Fig. 6: Danfoss EKC204A temperature controller deployment.

applied in many sensor and actuator configurations, in particular the controller
supports the following connections shown in Figure 6a: sensor S3 for outside room
air temperature, a relay for controlling defrost heater (electric or gas burner),
sensor S5 for temperature on evaporator transferring the heat from air to evap-
oration of cooling liquid, a relay for fan motor to ensure air rotation around
evaporator and/or entire room, sensor S4 for inside room air temperature, actu-
ator relay for compressor used to push cooling liquid in the loop from evaporator
to condenser and back. The sensors provide fixed precision number reading and
actuators are binary relays having states of “on” and “off”.

The controller can be configured to specific strategy using a register database.
Fig. 6b shows the main principles behind temperature controller:

– The temperature can vary from −50◦C to +50◦C. The device reads the
temperature sensor data and calculates the displayed temperature.

– The objective is to control the temperature between SP and SP + r01.
– The compressor (relay C) is used to cool down the air temperature by turn-

ing it on (C = on) whenever temperature is higher than SP + r01 and
turning it off (C = off ) whenever temperature is below SP . Compressor has
a requirement to stay on or off for at least some time in order minimise wear
and tear of hardware.
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– The controller should ring a temperature alarm (A = on)whenever the tem-
perature is higher than register A13 or lower than register A14 for more
than A03 amount of time and turn it off (A = off ) when the temperature is
within acceptable bounds [A13;A14].

For our purposes we use only inside room air temperature sensor (S4). The
controller assumes that the temperature sensors are not perfect (readings usually
fluctuate), hence PID-like temperature algorithm is applied to filter and stabilize
the room temperature estimate. The temperature is estimated and displayed
using equation Tn = 4·Tn−1+Ts

5 , where Ts is a temperature reported by sensor
and Ti is temperature estimate at moment i. The temperature is recalculated
about once per each second and may vary slightly (the software is soft real-time).
The filter is applied only if the temperature change is within 1◦C and is adjusted
immediately otherwise. All other aspects (compressor, alarm and defrost control)
depend on the calculated temperature rather than raw sensor values, thus even
TA model needs to be aware of this temperature calculation.

Model Setup. The requirements are modelled by a combination of Uppaal timed
automata and PHAVer hybrid automata.

[8] and later work resulted in an almost complete model of EKC204A aspects.
In this paper we describe only the relevant part—temperature estimation—which
is described by hybrid automata. 4 The Uppaal model consists of the following
processes modelling various aspects:

– The test is part of environment which controls how the temperature should
be (e.g. decreased until it is below −7◦C and then increased again).

– The tempGen generates a sequence of concrete temperatures that are sent as
raw temperature values injected into sensors.

– tempMonitor read the temperature sensor values and provides the calculated
temperature values to the rest of the TA instances.

– The lowTempAlarm monitors the calculated temperature and triggers an
alarm if the temperature is below the threshold for longer than allowed time
bound.

The hybrid model consists of just two hybrid automata: TempMonitor mon-
itors the calculated temperature values and TempRoom monitors whether the
sensed temperature is changing reasonably (e.g. not too rapidly). The latter is
optional, but it demonstrates that we can monitor the behavior of the tester as
well as IUT.

Fig. 7 provides an overview on how the two models are synchronised together
with IUT:

– temp t(ENV Temp) is a signal generated from tempGen to tempMonitor

which results in concrete action inject temp(T ) sent to the IUT and a
set temp(room temp) synchronization in hybrid model between TempRoom

and TempMonitor.

4 The implementation of the adapter for PHAVer, a generated script instance and
requirement models can be downloaded at http://www.cs.aau.dk/∼marius/phaver.
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Under Test
Implementation

TempMonitorTempRoom

PHAVer LHA

compressor

lowTempAlarm

tempMonitor

tempGen

test
...

Uppaal TA
IUT requirements:environment

assumptions:
sample(values)

inject_temp(T)"temp_t(ENVTemp)"

"calctemp_r(ENVCalcTemp)"

"set_temp(room_temp)" "(temp)"

"relay_r(C,...,LA,HA)"

Fig. 7: Uppaal and PHAVer model setup for temperature controller.

– sample(values) is an output from IUT which is translated into relay changes
(relay r(C,F,D,A,HA,LA)) to the Uppaal model and a calculated tem-
perature snapshots calctemp r(ENV CalcTemp) to the Uppaal model and
(temp) update in the PHAVer model.

The Abstract Timed Model. In Uppaal model the tempMonitor is responsible
for estimating and displaying the temperature value on the screen as well as
notifying all other processes. The calculated temperature is estimated by CalcTL

and CalcTU variables denoting lower and upper bounds.
Fig. 8 shows the temperature estimation abstraction when a new temperature

value is injected into the sensors and the resulting Uppaal timed automaton
which computes the abstract temperature bounds.
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CalcTU=IUTTemp,
t=0
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t=0

t=0

t<=170 IUTTemp>=CalcTL &&
IUTTemp<=CalcTU

IUTTemp>CalcTU

t<=8

Fig. 8: Temperature estimation and its abstract model as tempMonitor process.

LowTempAlarm is modelled as a parallel process (Fig. 9) interpreting the
calculated temperature bounds [CalcTL;CalcTU ] using non-deterministic edges
with guard comparisons to LowTempLimit .

Hybrid Model Fig. 10 shows a hybrid automaton for temperature calculation
which has four locations: idle – temperature is constant, decide – there is tem-
perature change and controller instantaneously decides whether it is going up
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Fig. 9: Requirement model for low temperature alarm.

or down, adjustUp – the temperature is rising, adjustDown – the temperature
is dropping. The current temperature estimate is kept in variable temp and the
new sensor value is changed with set temp event in variable target.
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Fig. 10: Model of a controller temperature sensing and estimation.

Results. Fig. 11 shows the temperature region computed from the model by an
over-approximation for each instance of time during testing:

– Calculated temperature estimation starts from a single (known) point at
16.8◦C.

– Uppaal TRON then generates a new air temperature at 16.6◦C and feeds
it to IUT.

– PHAVer estimates that the calculated temp should fall withing first region.
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Fig. 11: Symbolic state evolution in PHAVer from test trace monitoring: time
in seconds on horizontal axis, temperature in ◦C on vertical axis.

– HybridAdapter samples a new calculated temperature reading and reports it
to PHAVerAdapter, but does not report it yet to Uppaal TRON.

– PHAVer finds the observed temperature point (an interval in time) in the
estimated region, updates it and recomputes future temperature region (sec-
ond region).

– The process continues in this way until the calculated temperature reaches
the injected temperature value (within 15s) where both Uppaal TRON and
PHAVer are notified.

– The calculated temperature estimate collapses to one point in the PHAVer

plot, until a new temperature injection is dictated by Uppaal TRON.

6 Conclusions

We have shown how timed automata and hybrid automata model-checkers can
be combined to achieve online testing and monitoring of embedded software con-
troller at different degrees of precision: timed/discrete and sampled continuous
signals.

In the current setting, PHAVer can only function as a monitor, because it
lags behind Uppaal TRON (due to the high computation cost of computing
state set updates). However, ongoing work on improvements on the PHAVer

engine, and we are optimistic that it will be capable of also functioning as trajec-
tory stimulator. Alternatively a simulator tool can be used to generate dynamical
stimuli.

In the future we will implement the operators used in monitoring using reach-
ability algorithms that are based on time-discretization and bounded time hori-
zon, see [4].
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Klaus Havelund, Manuel Núñez, Grigore Rosu, and Burkhart Wolff, editors, For-
mal Approaches to Software Testing and Runtime Verification, volume 4262 of
Lecture Notes in Computer Science, pages 70–84. Springer Berlin / Heidelberg,
2006. 10.1007/11940197 5.

12. Michiel van Osch. Automated Model-based Testing of Hybrid Systems. PhD thesis,
Technische Universiteit Eindhoven, 2009.


