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Student’s t Source and Mixing Models for
Multichannel Audio Source Separation
Simon Leglaive, Roland Badeau, Senior Member, IEEE, Gaël Richard Fellow, IEEE

Abstract—This paper presents a Bayesian framework for
under-determined audio source separation in multichannel re-
verberant mixtures. We model the source signals as Student’s t
latent random variables in a time-frequency domain. The specific
structure of musical signals in this domain is exploited by means
of a non-negative matrix factorization model. Conversely, we
design the mixing model in the time domain. In addition to
leading to an exact representation of the convolutive mixing
process, this approach allows us to develop simple probabilistic
priors for the mixing filters. Indeed, as those filters correspond to
room responses they exhibit a simple characteristic structure in
the time domain that can be used to guide their estimation. We
also rely on the Student’s t distribution for modeling the impulse
response of the mixing filters. From this model, we develop a
variational inference algorithm in order to perform source sepa-
ration. The experimental evaluation demonstrates the potential of
this approach for separating multichannel reverberant mixtures.

Index Terms—Audio source separation, multichannel reverber-
ant mixtures, Student’s t distribution, statistical room acoustics,
non-negative matrix factorization, variational inference.

I. INTRODUCTION

AUDIO source separation consists in recovering a set of
audio source signals from the observation of a mixture

signal. In music, we usually encounter stereophonic mixtures
(recorded with two microphones) involving more than two
sources, leading to an under-determined source separation
problem. Moreover, musical acoustic recordings are usually
done in a reverberant environment, the mixing process is said
to be convolutive in that case. This work aims to address the
under-determined source separation problem for multichannel
musical reverberant mixtures.

In this section, before introducing our contributions that
will be further developed in the rest of the paper, we first
review some of the related source and mixing models that have
been proposed in the literature for solving the audio source
separation problem.

A. Source Modeling

Audio source separation methods commonly work with
a time-frequency (TF) representation of the source signals.
Audio signals are indeed much sparser in the TF domain than
in the original time-domain, which facilitates the development
of a source model [1].
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Sparse component analysis methods [2] for instance make
use of sparsity inducing penalties [3], [4] or super-Gaussian
distributions [5], [6] for modeling the source signals, assuming
independent and identically distributed TF source coefficients.

In order to take more complex TF structures into account,
another approach referred to as the variance modeling frame-
work in [7] was introduced. It consists in modeling the TF
source coefficients by means of a non-stationary probability
distribution. In the Gaussian case and under a local stationarity
assumption of the source signals [8], this approach amounts to
modeling the short-term power spectral density (PSD) of the
source signals, represented by the variance of the TF source
coefficients.

For instance, a piece of music is generally composed of
musical events that repeat over time such as tonal musical
notes or percussive sounds. This redundant structure can
be represented within the variance modeling framework, by
means of a compositional model [9] such as non-negative
matrix factorization (NMF). A Gaussian generative model
based on a non-negative decomposition of the short-term PSD
of audio signals was first introduced in the single-channel
source separation method [10]. This model was then further
developed in [11] where the equivalence between maximum
likelihood estimation of the parameters and NMF with the
Itakura-Saito divergence was proven. In the recent literature
many different probability distributions have been studied for
audio signal modeling based on NMF [12]–[16].

Even though those NMF-based probabilistic models were
introduced for single-channel audio source separation, they
were rapidly used for multichannel audio source separation
as well, such as in [17]–[21].

We can also mention that deep neural networks were
recently introduced within the variance modeling framework
for multichannel audio source separation [22], [23]. This work
illustrates the promising approach of building methods using
supervised source modeling and unsupervised convolutive
mixture modeling.

B. Convolutive Mixture Modeling
Under-determined source separation becomes even more

challenging when the mixture is reverberant. When a punctual
source is emitting sound in an enclosed space, the signal
recorded by the microphone is equal to the convolution of
the source signal with a room impulse response (RIR). This
RIR characterizes the acoustic path between the two points in
the room. In the context of audio source separation, the RIRs
associated with every pair source-microphone are referred to
as the mixing filters.
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More formally, let sj(t) ∈ R, t = 0, ..., Ls−1, j = 1, ..., J ,
be the j-th source signal and aij(t) ∈ R, t = 0, ..., La − 1,
i = 1, ..., I , the impulse response of the mixing filter between
source j and microphone i. We define the j-th source image
as seen by the i-th microphone for t = 0, ..., T − 1 with T =
Ls + La − 1 as follows:

yij(t) = [aij ? sj ](t) =
∑La−1

τ=0
aij(τ)sj(t− τ), (1)

where the source signal is zero outside of the support
{0, ..., Ls−1}. The signal recorded by microphone i is defined
as the sum of the source images:

xi(t) =
∑J

j=1
yij(t). (2)

A large number of source separation methods also work
with a TF representation of the mixture signal. It is very
common to rely on the short-time Fourier transform (STFT)
because it allows us to approximate the time-domain convolu-
tion as a simple multiplication in each frequency band of the
STFT:

yij,fn = aij,fsj,fn, (3)

where aij,f ∈ C is the frequency response of the mixing filter
and sj,fn, yij,fn ∈ C are the STFT coefficients of sj(t) and
yij(t) respectively, at the TF point (f, n) where f denotes the
frequency index and n the time-frame index. Such an approach
has for example been followed in [17] along with a Gaussian
NMF-based source model. However, the approximation in (3)
is only valid when the mixing filters are shorter than the STFT
analysis window [24], [25]. The length of the mixing filters
is usually considered to be equal to the reverberation time,
denoted by T60 and defined as the time it takes for the sound
energy to decrease by 60 dB after extinction of the source.
The reverberation time in domestic or office rooms usually
varies between 0.1 and 0.8 s, while for concert halls it can be
as high as 2 s [26]. On the contrary the length of the STFT
window is typically short (between 30 and 120 ms) in order
to assume the local stationarity of the source signals over the
temporal support of the STFT window.

Therefore, the approximation in (3) is limited to very weakly
reverberant mixtures. This is precisely the reason why other
mixture models have been investigated in the literature. A
Gaussian multichannel source image model based on a spatial
covariance matrix was developed in [27] to represent non-
punctual sources. It was shown to overcome to some extent the
limitations of the approximation (3). This spatial covariance
matrix model was used along with an NMF-based source
model in the multichannel source separation methods [18],
[19], [28].

In [29] it was demonstrated that the time-domain convolu-
tion can be exactly expressed as a two-dimensional filtering
in a TF domain based on any perfect reconstruction filter
bank. This representation is called cross-band filtering (CBF)
in [30] when the filter bank corresponds to the STFT. In [31],
the time-domain convolution is approximated as a sub-band
filtering in the STFT domain. This approach is equivalent to
neglecting the relationships between the frequency bands in
the CBF representation. It is referred to as the convolutive

transfer function (CTF) model in the recent source separation
methods [32] and [33].

Finally, the methods in [4] and [34] directly worked with
the time-domain mixture signals in order to exactly represent
the convolutive mixing process, but in a limited semi-blind
scenario where the mixing filters were known. We also fol-
lowed this time-domain approach in previous works. In [35],
the sources were represented in the Modified Discrete Cosine
Transform (MDCT) domain. Each TF coefficient was modeled
as a centered Gaussian random variable whose variance was
structured by means of an NMF model. The time-domain
mixing filters were treated as deterministic parameters that
had to be estimated, however they were initialized in an
oracle fashion. In [36] we extended this approach by using
a Student’s t distribution for modeling the source MDCT
coefficients1. We considered a semi-blind setting assuming that
the mixing filters were known and fixed. Finally, in [37] we
generalized our approach in [35] to a source representation
based on the STFT. Again the experiments were performed
knowing the true mixing filters.

C. Contributions

Apart from leading to an exact representation of the con-
volutive mixing process, working with time-domain mixing
filters allows us to design simple probabilistic priors. Indeed,
as the mixing filters correspond to RIRs, they exhibit a simple
specific structure in the time domain that can be used to guide
their estimation. In an under-determined context, being able
to exploit some additional information is a very important
aspect. For example, it has been shown that taking this specific
temporal structure into account is useful for the estimation of
multiple RIRs in a non-blind (knowing the source signals)
and potentially under-determined (more RIR samples than
observed mixture samples) setting [38] [39, Ch. 5].

As previously mentioned, the source separation methods in
the literature that represented the convolutive mixing process
in the time domain depended on the true mixing filters. This
scenario was restrictive because in a real-world application it is
difficult to have this knowledge. The main contribution of the
present paper is to propose a new Bayesian framework where
the mixing filters are treated as latent random variables in the
time domain. We introduce a probabilistic modeling of the
mixing filters using the Student’s t distribution. It generalizes
a widely used Gaussian model in statistical room acoustics.
We also formulate the source model so that different TF
resolutions can be used to characterize different sources in
the mixture. Finally the experiments are carried out in a more
realistic scenario as we do not assume that the mixing filters
are known.

The rest of this paper is organized as follows: Section II
introduces the source and mixing models. The variational
inference algorithm is derived in Section III. We detail the
experimental results in Section IV and finally conclude in
Section V.

1Note that the Student’s t source model in the present paper is slightly
different from the one in this previous work.
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II. MODELS

A. Source Time-Frequency Representation

The source signals are represented by a set of TF synthesis
coefficients {sj,fn ∈ R}(f,n)∈Bj with Bj = {0, ..., Fj − 1} ×
{0, ..., Nj − 1} as follows:

sj(t) =
∑

(f,n)∈Bj
sj,fnφj,fn(t). (4)

We work with the MDCT, such that for all (f, n) ∈ Bj :

φj,fn(t) =

√
4

Mj
wj(t− nHj)

cos

(
2π

Mj

(
t− nHj +

1

2
+
Mj

4

)(
f +

1

2

))
,

(5)

where wj(t) is a sine window of length Mj , Hj = Mj/2 is
the hop size and Fj = Mj/2 is the number of frequency bins.
Note that in this representation the window length is source-
dependent. This specificity allows us to adapt the TF resolution
according to the sources in the mixture. For example we can
choose a short window for drums, resulting in a good time
resolution, and a longer window for tonal instruments such as
the guitar, resulting in a good frequency resolution.

Any TF dictionary could be chosen in the source rep-
resentation (4) (MDCT, STFT, unions of MDCT, ...). Here
we choose to work with the MDCT because it is critically
sampled. Compared with the STFT which is redundant, it
allows us to reduce the number of source TF coefficients to
be estimated and therefore to reduce the computational load.
Moreover we experimentally showed in [37] that using the
STFT does not improve the source separation performance,
according to a perceptually motivated objective measure. We
can also mention that in [40] it has been shown that the
MDCT is more suitable than the STFT for assuming the
independence of the TF points, which is a common assumption
in probabilistic approaches for audio source separation.

According to this TF representation, a source image as
defined in (1) can be rewritten with gij,fn(t) = [aij ?φj,fn](t)
as follows:

yij(t) =
∑

(f,n)∈Bj
sj,fn gij,fn(t). (6)

B. The Student’s t Distribution

Under-determined reverberant audio source separation is an
ill-posed problem in the sense that the solution is not unique;
an infinite number of solutions for the source signals and
the mixing filters can explain the same observed mixture.
It is therefore necessary to introduce some information in
order to guide the source separation process. In a Bayesian
perspective, it consists in defining probabilistic priors over
the source coefficients s = {sj,fn}j,f,n and the mixing filters
a = {aij(t)}i,j,t. The priors should be informative in order to
express some specific belief about these unknown quantities.
Compared with deterministic models which would strictly
restrict the possible values for the unobserved set of variables
s and a, using probabilistic priors allows us to take uncertainty
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Fig. 1. Probability density function of the Tα(0, 1) distribution (in logarith-
mic scale) for different values of the shape parameter α.

about the model into account. As both priors on the TF source
coefficients and the time-domain mixing filters will rely on the
Student’s t distribution, we first introduce it in this subsection
before presenting the priors in the following ones.

Let Tα(µ, λ) denote the Student’s t distribution over a real-
valued random variable (r.v.) where µ ∈ R is the location
parameter, α ∈ ]0,+∞[ is the shape parameter (also called
degrees of freedom) and λ ∈ ]0,+∞[ is the scale parameter.
Its probability density function (pdf) is defined in Appendix A,
equation (48). The Student’s t distribution can be expressed as
a scale mixture of Gaussians (SMoG) [41] by introducing a
positive real-valued inverse-gamma r.v. v:

x ∼ Tα(µ, λ)⇔

{
v ∼ IG

(α
2
,
α

2

)
;

x|v ∼ N (µ, vλ2).
(7)

The pdfs of the Gaussian and inverse-gamma distributions are
defined in Appendix A, equations (50) and (51) respectively.

The Student’s t distribution is a super-Gaussian distribution
[42] which exhibits thicker tails than the Gaussian as can
be seen in Figure 1. As α tends to infinity the Student’s t
distribution approaches the Gaussian one, while smaller values
of α yield heavier tails. The particular case α = 1 corresponds
to the Cauchy distribution. Informally speaking, the SMoG
representation of the Student’s t distribution in (7) can be
interpreted in the following way: realizations of x are globally
expected to be distributed according to a Gaussian distribution.
However the overall variance λ2 is scaled by realizations of
the inverse-gamma variable v, which most of the time remain
small (the mode of the distribution being α/(α+2)), but may
sometimes get significantly large, accounting for outliers or
high uncertainty in the model with respect to the Gaussian
assumption.

C. Prior for the Sources

In the generative model [11], the TF source coefficients
are assumed to independently follow a centered Gaussian
distribution: sj,fn ∼ N (0, λ2j,fn). The variances are further
structured by means of an NMF model:

λ2j,fn = [WjHj ]fn, (8)

with Wj ∈ RFj×Kj+ and Hj ∈ RKj×Nj+ . Kj is the rank of the
factorization and is chosen such that Kj(Fj + Nj) � FjNj .
Wj is a matrix containing spectral templates and Hj contains
the activations of these templates over the time frames.

This model was originally proposed for a source repre-
sentation based on the complex-valued STFT. The source
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coefficients sj,fn were consequently represented as circularly
symmetric complex Gaussian random variables [43]. However
it can be used similarly for a source representation based on the
real-valued MDCT as already proposed in [44] for informed
source separation. Note that if we observe a set of realizations
of this Gaussian source model denoted by {s̃j,fn}f,n, it can
be shown that the maximum likelihood estimation of the
NMF parameters is obtained by minimizing the Itakura-Saito
divergence [11] between |s̃j,fn|2 and [WjHj ]fn.

This generative Gaussian source model has then led to
several extensions based on other probability distributions. In
particular, heavy-tailed distributions such that the Cauchy [13],
the symmetric alpha-stable [14] and the Student’s t [15] have
been investigated. The flexibility induced by these heavy-tailed
distributions allows the expected source power to strongly
deviate from the NMF source model. Indeed, in the Gaussian
case the source coefficients sj,fn are expected to lie just
within a few standard deviations λj,fn from the mean. On
the contrary, a heavy-tailed source model allows for larger
deviations due to the thicker tails of the distribution. This
flexibility can be useful when the NMF source model is a
misfit due to inaccurate parameter estimation or because of the
nature of the source which is not well represented by an NMF
model. The superiority of these heavy-tailed distributions for
modeling audio signals along with NMF has already been
reported in this literature, in particular for single channel
audio separation of rank-1 sources using a Student’s t NMF
observation model [15].

We propose here to model the individual source signals
with this Student’s t NMF model. We assume that the TF
source coefficients sj,fn independently follow a Student’s t
distribution:

sj,fn ∼ Tαv (0, λj,fn). (9)

As explained in the previous subsection, this model is equiv-
alent to the following hierarchical one:{

sj,fn|vj,fn ∼ N (0, vj,fnλ
2
j,fn);

vj,fn ∼ IG
(αv

2
,
αv
2

)
.

(10)

We further assume that the squared scale parameters are
structured by means of an NMF model as in (8). The choice
of αv regarding the source separation results will be discussed
in the experimental part of this paper.

D. Prior for the Mixing Filters

1) Statistical Room Acoustics: The mixing filters intro-
duced in (1) for representing a source image are actually RIRs
that are supposed to be related to a same acoustic space (a
room with its specific acoustical properties). Therefore we
drop the source and microphone indices in this subsection and
an RIR in the acoustical environment where the mixture is
recorded will be denoted by a(t). It will allow us to clarify
the model presentation.

We represent in the top plot of Figure 2 the first 400 ms of
an RIR ã(t) from the MIRD database [45]. This RIR was
recorded in a room with a reverberation time of 610 ms.
The source-to-microphone distance was approximately 2 m.
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Fig. 2. Amplitude (top), power (middle) and normalized power (bottom) of
the first 400 ms of an RIR from the MIRD database [45]. The RIR was
recorded in a room with a reverberation time of 610 ms and with a source-
to-microphone distance of 2 m.

An RIR is usually divided into two main parts: (1) the early
contributions that include the direct path between the source
and the microphone and the early echoes coming from the
first significant reflections on the boundaries and objects in
the room; (2) the late reverberation. The time instant that
separates the early contributions from the late reverberation is
usually called mixing time. It is common to assume that late
reverberation corresponds to a stage of the propagation where
the sound field is diffuse, i.e. the energy density is uniformly
distributed across the room and over all directions [46].

The middle plot of Figure 2 shows the power in decibels
(dB) of this RIR. We see that globally, the power decays
exponentially over time (or equivalently linearly in dB units).
In statistical room acoustics, an RIR is usually modeled as a
centered random process such that a(t) is a random variable.
For a proper choice of probability distribution, the exponential
decay property then relates to the variance E[a2(t)] [47],
[48]. It is important to mention that different realizations
from a statistical RIR model can be interpreted as different
observations with varying source and microphone positions
in a same room. Mathematical expectation has thus to be
understood as spatial averaging.

2) Gaussian Model with Exponential Decay: Moorer no-
ticed in [49] that concert halls impulse responses sound
very similarly to white noise with an exponentially decaying
envelope. In [50], Polack introduced a widely used model in
statistical room acoustics that formalized this observation. In
this model an RIR is represented as a non-stationary centered
Gaussian random process such that:

a(t) ∼ N (0, r2(t)) (11)

with
r(t) = σr exp(−t/τ), τ =

T60fs
3 ln(10)

. (12)

σr is a global scale parameter related to the total energy of
the RIR and τ is the exponential decay factor defined by the
reverberation time T60 in seconds and the sampling rate fs
in Hertz. The choice of the Gaussian distribution relates to
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Fig. 3. Empirical pdf (black solid line) and pdf of the Gaussian (blue dotted
line) and Student’s t (red dashed line) distributions computed using 624
normalized RIRs from the MIRD database [45]. The RIRs were recorded
in a room with a reverberation time of 610 ms.

the linearity of the Fourier transform and Schroeder’s model
of room frequency response [48], [51]. In this model, the
room frequency response is represented as a random process
whose real and imaginary parts are independent centered and
stationary Gaussian processes with the same variance.

3) Preliminary Experiment: In [52] Polack concluded that
RIRs can be represented by means of statistical processes
only after the mixing time, when the echo density is large
enough. The Gaussian model (11) is therefore theoretically
valid only for the diffuse part of the RIR which corresponds
to late reverberation.

We represent in the bottom plot of Figure 2 the normalized
power ã2(t)/ exp(−2t/τ) in order to compensate for the
exponential decay. The decay factor τ is fixed according
to (12) using the knowledge of the reverberation time. We
observe that the normalized power is indeed almost constant
over time. However there are some strong deviations at the
beginning of the RIR due to the direct path and early echoes.

We now propose to experimentally verify the validity of
the Gaussian model (11)-(12). For that purpose we use RIRs
from the MIRD database [45], that were recorded in a room
with a reverberation time of 610 ms using 3 arrays of 8
microphones for 26 different source positions. It results in
a total number of 624 RIRs, that we first normalize by
exp(−t/τ) in order to compensate for the exponential decay
(we know the reverberation time). The empirical pdf of this
set of normalized RIR coefficients is represented in Figure 3
(black solid line). According to the standard Gaussian model
(11)-(12) we have a(t)/ exp(−t/τ) ∼ N (0, σ2

r), so those
normalized RIR coefficients are supposed to be independent
and identically distributed (i.i.d) realizations of N (0, σ2

r).
Therefore, from this set of i.i.d data points, we estimate
the mean and the variance of a Gaussian distribution in the
maximum likelihood sense. We represent with a blue dotted
line in Figure 3 the pdf of this Gaussian distribution, using
the estimated values of the parameters (the estimated σr is
0.006 and the mean is almost zero). We clearly observe that
the empirical distribution has thicker tails than the Gaussian.
This is due to the direct path and the early echoes of the RIRs.
Statistically speaking, they act as outliers with respect to the
Gaussian model (11)-(12) as already noticed from the bottom
plot of Figure 2.

4) Student’s t Model with Exponential Decay: This is
precisely the reason why we propose to use the Student’s t
distribution. Indeed its robustness with respect to outliers

allows us to take those strong deviations into account. To
experimentally demonstrate this point, we also estimate the
parameters of a Student’s t distribution, using the exact same
data as before. The maximum likelihood estimation leads to
σr = 0.005 and a shape parameter that is equal to 7.2, the
location parameter is again very close to zero. The pdf of
the Student’s t distribution, using the estimated parameters,
is represented in Figure 3 with a red dashed line. We clearly
observe that the Student’s t is a better choice for modeling
RIRs.

5) Proposed Prior for the Mixing Filters: According to the
previous discussion and preliminary experiment, we assume
that the mixing filter coefficients aij(t) independently follow
a Student’s t distribution:

aij(t) ∼ Tαu(0, r(t)), (13)

where r(t) models the exponential decay as defined in (12).
This model admits Polack’s Gaussian one in (11) as a special
case when αu → ∞. It can be rewritten in a hierarchical
manner as follows:{

aij(t)|uij(t) ∼ N
(
0, uij(t)r

2(t)
)

;

uij(t) ∼ IG
(αu

2
,
αu
2

)
.

(14)

The choice of αu regarding the source separation results will
be discussed in the experimental part of this paper.

E. Likelihood

To complete the model definition we need to relate the
latent variables to the observations. For that purpose we simply
consider an error term in the mixture equation (2) represented
by a white Gaussian additive noise such that:

xi(t)|s,a;σ2
i ∼ N

(∑J

j=1
yij(t), σ

2
i

)
, (15)

where yij(t) is defined according to s and a in (6). The whole
model is represented as a Bayesian network [53, Chapter 8]
in Figure 4.

III. VARIATIONAL INFERENCE

Let us define the following sets of latent variables:
s = {sj,fn}j,f,n ; v = {vj,fn}j,f,n ; a = {aij(t)}i,j,t ; u =
{uij(t)}i,j,t and z = {s,v,a,u}. Let x = {xi(t)}i,t be the set
of observed variables and θ = {λ = {λ2j,fn}j,f,n,σ = {σ2

i }i}
the set of deterministic model parameters (other parameters
which will be supposed to be known are not indicated).

Performing inference aims to compute the posterior distri-
bution of the latent variables p(z|x;θ?), where θ? denotes
an estimate of the model parameters (e.g. in the maximum
likelihood sense). However exact posterior inference with the
proposed model is analytically intractable. We thus resort to
approximate inference using a variational approach [53].

Let F denote a set of pdfs over the latent variables z. For
any parameter set θ, variational inference aims to find the pdf
q? in the variational family F that minimizes the Kullback-
Leibler (KL) divergence from the true posterior:

q?(z) = arg min
q(z)∈F

DKL(q(z)||p(z|x;θ)), (16)
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Fig. 4. Bayesian network [53, Chapter 8] corresponding to the proposed
model. Latent random variables are represented with empty circles, obser-
vations with shaded circles, and the deterministic model parameters with
dots. Rectangles denote the plate notation. The sub-graph contained in each
rectangle is repeated according to the indicated indices. Any link that crosses
a plate boundary is also replicated.

where DKL(q(z)||p(z|x;θ)) = 〈ln (q(z)/p(z|x;θ))〉q and
< · >q denotes the mathematical expectation taken with re-
spect to q. From the definition of the KL divergence we can
show that:

DKL(q(z)||p(z|x;θ)) = ln p(x;θ)− L(q;θ), (17)

where ln p(x;θ) is the marginal log-likelihood and L(q;θ) is
the variational free energy (VFE), also called evidence lower
bound, defined as:

L(q;θ) = 〈ln (p(x, z;θ)/q(z))〉q . (18)

ln p(x, z;θ) is referred to as the complete data log-likelihood.
From (17) we see that minimizing the KL divergence with
respect to q(z) is equivalent to maximizing the VFE. More-
over, as the KL divergence is always non-negative, we
see that the VFE is a lower bound of the marginal log-
likelihood. In this work we will use the variational expectation-
maximization (VEM) algorithm [53] which consists in iterat-
ing two steps until convergence: the E-step where we compute
q? = arg maxq∈F L(q;θ?) and the M-step where we compute
θ? = arg maxθ L(q?;θ).

A. Mean-Field Approximation

In practice we have to assume some constraints on the
variational family F for solving the E-step. Here we use the
mean-field approximation assuming that the variational family
corresponds to the set of pdfs that can be factorized as:

q(z) =

J∏
j=1

 ∏
(f,n)∈Bj

qsjfn(sj,fn)qvjfn(vj,fn)


[
I∏
i=1

La−1∏
t=0

qaijt(aij(t))q
u
ijt(uij(t))

]
. (19)

For simplicity of notation we will drop the superscripts and
indices when referring to one of the factors in (19).

Under this approximation, the j-th TF source estimate is
given by ŝj,fn = 〈sj,fn〉q(sj,fn). The time-domain source
estimate ŝj(t) is then reconstructed by inverse MDCT:

ŝj(t) =
∑

(f,n)∈Bj
ŝj,fnφj,fn(t). (20)

Similarly, the estimate of a mixing filter is given by âij(t) =
〈aij(t)〉q(aij(t)). Let us also define the variable ĝij,fn(t) =
[âij ? φj,fn](t). Finally, the estimate of the j-th source image
as seen by microphone i is given by:

ŷij(t) =[âij ? ŝj ](t)

=
∑

(f,n)∈Bj
ŝj,fnĝij,fn(t). (21)

B. Conjugate-Exponential Model

The model defined in Section II and represented as a
Bayesian network in Figure 4 is said to be conjugate-
exponential [54]. Indeed, the distribution of each latent vari-
able, conditionally on its parents, belongs to the exponential
family and the distributions of its parents are conjugate with
respect to it. As a consequence of this exponential-conjugacy
property, it can be shown that under the mean-field approxi-
mation, the optimal variational distribution q?(z), z ∈ z, will
have the same form as the prior distribution of z conditionally
on its parents [54]. For our model we consequently have:

q?(vj,fn) = IG(vj,fn; νv, βj,fn); (22)

q?(sj,fn) = N(sj,fn; ŝj,fn, γj,fn); (23)

q?(uij(t)) = IG(uij(t); νu, dij(t)); (24)

q?(aij(t)) = N (aij(t); âij(t), ρij(t)) . (25)

The E-step of the VEM algorithm finally aims to maximize
the VFE with respect to the variational parameters, i.e. the
parameters of the distributions (22) to (25). In order not to
vainly overload this section with equations, we choose to detail
the expression of the VFE in Appendix B.

C. E-Step

Multiple choices are possible for solving this optimization
problem. The most popular approach is referred to as coordi-
nate ascent variational inference (CAVI) [53], [55]. It consists
in maximizing the VFE by cycling over each individual scalar
variational parameter. We can indeed show that the optimal
distribution q?(z), z ∈ z, should satisfy [53]:

ln q?(z) = 〈ln p(x, z;θ)〉q(z\z) + constant, (26)

where z\z denotes the set of all latent variables but z. This
technique aims to identify the distribution of the individual
factors q?(z) along with the expression of its parameters by
developing the right hand side of (26). Every term that does
not depend on z can be injected in the constant. In this way
it can be shown that the expectation in (26) only involves the
random variables belonging to the Markov blanket MB(z) of
z, i.e. its parents, children and co-parents [54]. This inference
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method therefore leads to a set of coupled solutions, as the
variational parameters for q?(z) will depend on the variational
parameters of the distributions of the variables in MB(z).
Due to a lot of potential coupling, this cyclical approach can
lead to a very slow inference procedure. One possible way
of speeding up the algorithm is to directly update groups of
variational parameters by using gradient-based approaches.

Because of the Gaussian nature of the variational distri-
butions (23) and (25), we have to solve two quadratic and
convex optimization problems to individually update the sets
of variational parameters {ŝj,fn}j,f,n and {âij(t)}i,j,t (see the
form of the VFE defined in Appendix B). For that purpose we
will use the preconditioned conjugate gradient (PCG) method
[56], which was already considered for variational inference
in [57]. For all other variational parameters, that are νv , νu,
{βj,fn, γj,fn}j,f,n and {dij(t), ρij(t)}i,j,t, we will use the
standard coordinate-wise updating procedure, relying on (26),
which except for νv and νu is equivalent to canceling the
partial derivatives of the VFE2.

The updates of the variational parameters for solving the
E-step are detailed below.

1) E-V Step: We can develop (26) for the latent variable
vj,fn as follows:

ln q?(vj,fn)
c
=− ln(vj,fn)

(
αv + 1

2
+ 1

)
− 1

vj,fn

(
αv
2

+
〈s2j,fn〉q(sj,fn)

2λ2j,fn

)
, (27)

where c
= denotes equality up to an additive constant. From

this equation we indeed recognize that the optimal distribution
q?(vj,fn) is Inverse-Gamma as already indicated in (22).
Moreover we can identify its parameters:

νv =
αv + 1

2
; (28)

βj,fn =
αv
2

+
ŝ2j,fn + γj,fn

2λ2j,fn
. (29)

2) E-U Step: Similarly, using (26) we have:

ln q?(uij(t))
c
=− ln(uij(t))

(
αu + 1

2
+ 1

)
− 1

uij(t)

(
αu
2

+
〈a2ij(t)〉q(aij(t))

2r2(t)

)
,

(30)

where the parameters of this distribution as introduced in (24)
are given by:

νu =
αu + 1

2
; (31)

dij(t) =
αu
2

+
â2ij(t) + ρij(t)

2r2(t)
. (32)

2Due to the gamma and digamma functions involved in the VFE, we cannot
cancel the partial derivative of the VFE for updating νv and νu.

3) E-S Step: Straightforward differentiation of the VFE
with respect to the variance γj,fn leads to the following
update:

γj,fn=

[
νv

βj,fnλ2j,fn
+

I∑
i=1

1

σ2
i

(
La−1∑
τ=0

ρij(τ) + ‖ĝij,fn‖22

)]−1
,

(33)
where ĝij,fn = [ĝij,fn(0), ..., ĝij,fn(T − 1)]> and ·> denotes
transposition.

Let us now focus on the update of the mean parameters
{ŝj,fn}j,f,n. Let ŝ ∈ RJFN denote the column vector of
entries ŝj,fn and ∆ŝ the gradient of the VFE with respect
to ŝ. Let xi = [xi(0), ..., xi(T − 1)]> and Ĝi ∈ RT×JFN be
the matrix formed by concatenating the column vectors ĝij,fn.
We can show that the gradient is given as follows:

∆ŝ = Λŝŝ−
I∑
i=1

1

σ2
i

Ĝ>i xi, (34)

where for any arbitrary mapping3 between the triplet (j, f, n)
and b ∈ {1, ..., B} with B =

∑J
j=1 FjNj , the matrix Λŝ ∈

RJFN×JFN is defined as:

Λŝ = diag

({
νv

βj,fnλ2j,fn
+

I∑
i=1

1

σ2
i

La−1∑
τ=0

ρij(τ)

}
b

)

+

I∑
i=1

1

σ2
i

Ĝ>i Ĝi. (35)

diag({c(b)}b) denotes the diagonal matrix constructed from
the sequence of coefficients c(b). It is clear from (34) and
(35) that canceling the gradient with respect to ŝ is equiv-
alent to solving a symmetric positive semidefinite linear
system of equations. For that purpose we employ the PCG
method [56]. The preconditioning matrix is equal to the
diagonal part of Λŝ. We can show that [Λŝ]b,b = γ−1j,fn.
It is interesting to note that each entry of the gradient
will therefore be scaled by the variance γj,fn. This scaling
compensates for the fact that changing the mean of a Gaus-
sian distribution with a small variance has a much stronger
impact than when the variance is large. Moreover we can
mention that γ−1j,fn is equal to the Fisher information de-

fined by I(ŝj,fn) =
〈
−∂2 (ln q?(sj,fn)) /(∂ŝ2j,fn)

〉
q?(sj,fn)

.

The Fisher information is indeed used for characterizing the
geometry of an optimization problem related to probability
distributions [57] and it is involved in the computation of the
natural gradient.

4) E-A Step: This step is very similar to the E-S step.
Straightforward differentiation of the VFE with respect to the
variance ρij(t) leads to the following update:

ρij(t) =

 νu
dij(t)r2(t)

+
1

σ2
i

‖ŝj‖22 +
∑

(f,n)∈Bj

γj,fn

−1 ,
(36)

where ŝj = [ŝj(0), ..., ŝj(Ls − 1)]>.

3This mapping must however be consistent with the construction of the
vectors ŝ, ∆ŝ ∈ RJFN and the matrix Ĝi ∈ RT×JFN .
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Let us define âij = [âij(0), ..., âij(La− 1)]> and ∆âij the
gradient of the VFE with respect to âij . We also introduce the
following definitions:
• TLa{c(k)}: A symmetric Toeplitz [56] matrix constructed

from the sequence {c(k)}La−1k=0 ;

• r̂ssj (k) =
∑Ls−1−k
t=0 ŝj(t)ŝj(t+ k);

• r̂φφj,fn(k) =
∑Ls−1−k
t=0 φj,fn(t)φj,fn(t+ k);

• εij(t) = xi(t)−
∑
j′ 6=j ŷij′(t);

• r̂sεij (k) =
∑Ls−1
t=0 ŝj(t)εij(t+ k).

We can show that the gradient is given as follows:

∆âij = Λâij âij −
1

σ2
i

r̂sεij , (37)

where r̂sεij =
[
r̂sεij (0), r̂sεij (1), · · · , r̂sεij (La−1)

]>
and the matrix

Λâij ∈ RLa×La is defined as:

Λâij = diag

({
νu

dij(t)r2(t)

}
t

)

+
1

σ2
i

TLa

r̂ssj (k) +
∑

(f,n)∈Bj

γj,fnr̂
φφ
j,fn(k)

 . (38)

Again we see that canceling the gradient with respect to âij
is equivalent to solving a symmetric positive semidefinite
linear system of equations. We therefore employ the PCG
method with the diagonal part of Λâij as a preconditioner. It
is straightforward to verify that [Λâij ]t,t = ρij(t)

−1 because
r̂φφj,fn(0) = 1, the MDCT atoms forming an orthonormal basis,
and r̂ssj (0) = ‖ŝj‖22. We can finally mention that as the
update of âij depends on {âij′}j′ 6=j , it is necessary to proceed
sequentially.

D. M-Step

1) Noise Variance: In practice we will decrease the noise
variance σ2

i progressively along the iterations. This parameter
allows us to balance the contributions of the priors and the
likelihood in the VFE. A relatively high variance can be
interpreted as favoring the priors, which can be useful in
the first iterations. On the contrary, decreasing the variance
progressively will increase the contribution of the observed
data in the estimation of the parameters. Such an approach
has already been shown to be useful in source separation (see
for example [17]). Alternatively, we can show that canceling
the derivative of the VFE with respect to this parameter leads
to the following update:

σ2
i =

1

T
ēi, (39)

where ēi is defined in Appendix B, equation (54).
2) NMF Parameters: We recall that λ2j,fn = [WjHj ]fn.

We can show that maximizing L(q?,θ) with respect to
Wj ,Hj under a non-negativity constraint is equivalent to min-
imizing the following cost function under the same constraint:

C(Wj ,Hj) =
∑

(f,n)∈Bj
dIS (p̂j,fn, [WjHj ]fn) , (40)

where dIS(x, y) = x/y− ln (x/y)−1 is the Itakura-Saito (IS)
divergence and

p̂j,fn =
ŝ2j,fn + γj,fn

βj,fn/νv
. (41)

This minimization problem can be solved by using the stan-
dard multiplicative update (MU) rules given in [11]:

Hj ← Hj �
W>

j

[
(WjHj)

�−2 � P̂j

]
W>

j (WjHj)
�−1 ; (42)

Wj ←Wj �

[
(WjHj)

�−2 � P̂j

]
H>j

(WjHj)
�−1

H>j
, (43)

where � denotes entry-wise multiplication and exponentiation,
and P̂j ∈ RFj×Nj+ with [P̂j ]fn = p̂j,fn for all (f, n) ∈ Bj .
It has been shown in [58] that this procedure leads to a
monotonic decrease of the IS divergence.

It is also interesting to note that by using (28) and (29) we
can rewrite p̂j,fn as follows:

p̂j,fn =

(
αv(ŝ

2
j,fn + γj,fn)−1 + λ−2j,fn

αv + 1

)−1
. (44)

This equation corresponds to a weighted harmonic mean be-
tween the posterior mean of the j-th source power spectrogram
〈s2j,fn〉q = ŝ2j,fn+γj,fn and the current NMF parametrization
λ2j,fn. Injecting (44) in (40) we obtain an optimization problem
very similar to the one presented in the recent Student’s t NMF
framework [15]. The only differences come from the fact that
we used the Student’s t distribution defined over a real-valued
r.v. (because we work in the MDCT domain), and we have an
additional expectation 〈s2j,fn〉q because the true source power
spectrogram is not directly observed. It is finally interesting
to note that in the limit case where αv tends to infinity (the
Student’s t tends to the Gaussian distribution), p̂j,fn tends to
ŝ2j,fn+γj,fn and we obtain the same optimization problem as
in the popular IS-NMF framework [11].

IV. EXPERIMENTAL EVALUATION

A. Baseline Methods

We present below the methods of the literature that will be
used for comparison in the experimental evaluation.

1) Deterministic Time-Domain Mixing Filters: The first
baseline method corresponds to our previous work [35] that
has already been described in the last paragraph of Section I-B.
In the following, the results using this method will be denoted
by “Unconstrained time-domain filters”.

2) Spatial Covariance Matrix Model: The two other base-
line methods [28] and [18] exploit the following Gaussian
multichannel source image model:

yj,fn ∼ N (0, λ2j,fnRj,f ), (45)

where yj,fn = [y1j,fn, ..., yIj,fn]> ∈ CI is the j-th multi-
channel source image, expressed in the STFT domain at TF bin
(f, n), λ2j,fn ∈ R+ is the short-term PSD of the source, which
is further parametrized with an NMF model as in (8), and
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Rj,f ∈ CI×I is the frequency-dependent spatial covariance
matrix (SCM) accounting for the spatial properties of the
source. The full rank (i.e. rank 2 for stereophonic mixtures)
SCM model was originally proposed in [28] for representing
non-punctual sources. When the SCM is constrained to be
rank 1, this model is equivalent to the punctual convolutive
mixture model that was used for example in [17], [59].

The method proposed in [18] estimates the NMF parameters
and the SCM by means of multiplicative update rules, derived
by using the auxiliary function technique. In the following, this
method will be denoted by “Sawada et al. - SCM rank 2”.

In [28], the SCM is further constrained to have the following
structure:

Rj,f = Aj,fA
H
j,f , (46)

where Aj,f ∈ CI×Rj is a matrix of rank 0 < Rj ≤ I and
(·)H denotes conjugate transpose. The punctual model corre-
sponds to Rj = 1 while the non-punctual one corresponds
to the full rank case Rj = 2 for stereophonic mixtures. In
this method, the parameters are estimated by means of an
expectation-maximization (EM) algorithm. We use here the
implementation provided by the authors and available at [60].
In the following the results using this framework when the
SCM is of rank 1 and 2 will be denoted by “Ozerov et al. -
SCM rank 1” and “Ozerov et al. - SCM rank 2” respectively.

The source separation algorithms for the proposed and the
baseline methods are run for 200 iterations. At each iteration
of the proposed VEM algorithm, the PCG method in the E-S
and E-A steps is run for 10 iterations while the MU rules for
updating the NMF activation matrices are run for 20 iterations.

B. Experimental Setup

1) Database: The experiments are performed using musical
audio source signals provided by the MTG MASS database
[61]. We created 8 stereo mixtures sampled at 16 kHz us-
ing RIRs from the MIRD database [45]. These RIRs were
measured in a room with adjustable reverberation level in
order to obtain three different reverberation times: 160, 360
and 610 ms. Each mixture contains between 3 and 5 spatially
disjoint sources and its duration ranges from 12 to 28 seconds.
The musical instruments involved in this database are drums,
piano, bass, guitar and voice.

2) Semi-blind Scenario: The main contribution of this pa-
per is to propose a new Bayesian source separation framework
where the mixing filters are treated as latent random variables
in the time domain. This is why we are mostly interested
in the evaluation of the mixing model. Therefore, we will
assume some prior knowledge on the source signals. In order
to keep a realistic scenario, we only learn for each source
the NMF spectral templates (the matrix Wj using a rank of
Kj = 10) from the true source signals. These “ideal pre-
trained dictionaries” are then fixed during the VEM algorithm,
only the activation matrices Hj are updated at the M-Step. We
also assume that the reverberation time is known in order to fix
the exponential decay profile r(t) in (12). All other parameters
are blindly estimated. This semi-blind scenario is used for the
proposed method and the baselines.

In [18], the NMF parameters are shared across the sources
and a latent variable is introduced in the source model in
order to indicate to which source each NMF basis belongs.
As we are here working in a semi-blind setting, this clustering
information is known in advance.

3) Performance Measures: We evaluate the quality of the
separation in terms of reconstructed stereo source images. We
use standard energy ratios defined in [62] and expressed in
decibels (dB): the signal-to-distortion (SDR), artifact (SAR)
and interference (SIR) ratios and the source image-to-spatial
distortion ratio (ISR). These measures are computed using
the BSS Eval toolbox [63]. We also consider the Overall
Perceptual Score (OPS) which is a perceptually motivated
objective measure [64], [65]. It is expressed in percentage and
computed using the PEASS toolbox [66].

C. Parameters Initialization

We present below how the parameters of the proposed and
baseline methods are initialized.

1) Variational Parameters of the Proposed Method: Let
us first focus on the proposed method. νv and νu are fixed
according to (28) and (31) respectively. The other variational
parameters are then initialized as follows: βj,fn = αv/2
and γj,fn = ṽj,fnλ

2
j,fn where ṽj,fn is a realization from

IG(νv, βj,fn). ŝj,fn is then initialized as a realization from
N (0, γj,fn). dij(t) = αu/2 and ρij(t) = ũij(t)r

2(t) where
ũij(t) is a realization from IG(νu, dij(t)). âij(t) is then
initialized as a realization from N (0, ρij(t)). It is important
to mention that we did not “optimize” this initialization pro-
cedure. It is just a simple way of initializing the approximate
posterior distributions (22)-(25) similarly to the corresponding
prior distributions in Section II.

2) Spatial Parameters of the Baselines: The initial spatial
parameters of the baseline methods are set using the initial-
ization of âij(t) (see previous paragraph) in order to provide
the same “initial information”. For our previous method [35]
we exactly set the deterministic time-domain mixing filters to
âij(t). For the two baseline methods using an SCM model
(rank 1 or 2), we first compute âij,f , the discrete Fourier
transform of âij(t) with a number of points that is equal to
the length of the STFT window. We then initialize the SCM of
the j-th source as a rank-1 matrix built from the outer-product
of âj,f = [â1j,f , ..., âIj,f ]> ∈ CI with itself.

3) NMF Parameters: As already mentioned we work in
a semi-blind scenario where the dictionary matrices Wj are
computed from the true source TF coefficients denoted by
{s̃j,fn}f,n. Let us first focus on the proposed Student’s t
source model where s̃j,fn ∈ R. Similarly to [15] we can use
a majorize-minimize approach to show that maximizing the
likelihood with respect to the NMF parameters under a non-
negativity constraint is equivalent to minimizing (40) under
the same constraint with

p̂j,fn =

(
αv s̃
−2
j,fn + [WjHj ]

−1
fn

αv + 1

)−1
, (47)

which is defined using the current value of the NMF param-
eters. For the baseline methods where the source model is
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Fig. 5. Average SDR according to the shape parameters αv and αu (left
plot) and according to the window length for the drums and other sources
(right plot). The reverberation time of the mixtures is equal to 360 ms.

Gaussian (defined in the STFT or MDCT domains), we have
p̂j,fn = |s̃j,fn|2. This minimization problem can be solved
with the MU rules4 given in [11] and recalled in (42)-(43).
Finally, once the dictionary matrix Wj is estimated, we
discard the obtained activation matrix Hj and re-initialize it
with an all-one matrix.

D. Model Hyperparameters and Algorithm Parameters

The specific choices for model hyperparameters and al-
gorithm parameters are described in this subsection. The
experiments in this subsection have been performed using the
mixtures associated with a reverberation time of 360 ms only,
in order not to overfit on all mixing conditions.

1) Noise Variance: As explained in Section III-D1, instead
of using (39) we decrease the noise variance σ2

i over the
iterations from 10−2 to 10−6 by using the same schedule as
in [17].

2) Scale Parameter of the Exponential Decay: Due to the
well known scaling indeterminacy between the mixing filters
and the source signals, the scale parameter σr in (12) can be
arbitrarily fixed. We here choose σr = 0.1 so that the overall
energy of the mixing filters is not too high.

3) Student’s t Shape Parameters: We now study the influ-
ence on the source separation results of the shape parameters
for the source and mixing Student’s t models. For that purpose
we consider a grid of values: (αv, αu) ∈ {0.1, 1, 10, 100,∞}2
(infinity actually corresponds to 4.5 × 1015). We recall that
when the shape parameter tends to infinity, the Student’s t
distribution is equivalent to the Gaussian one. We compute the
SDR averaged over all the separated sources in the database
for all the values in this grid. The results are represented in
the left plot of Figure 5. It can be seen that the optimal values
are (αv, αu) = (100, 1). The fact that αv is quite high tells us
that the Gaussian assumption for the source model seems to
be a reasonable choice. On the contrary we observe that it is
very important to choose a small value for αu, confirming that
the Student’s t is much more appropriate than the Gaussian for
modeling RIRs.

4) Time-frequency Resolution: The MDCT window length
was fixed to 64 ms for all sources in the experiment de-
tailed in the previous paragraph. However the fact that we

4In order to provide a fair comparison of all the methods we kept the same
random seed for initializing the NMF parameters before running the MU rules.

consider time-domain observations for inferring TF latent
sources allows us to adapt the TF transform to each source
in the mixture (see Section II-A). In particular we can adapt
the MDCT window length according to the nature of the
source. We investigate here a simple scenario: we consider
a window length for the drums different from that of any
other instrument. Once again we resort to a grid search
which is presented in the right plot of Figure 5. The shape
parameters for the Student’s t source and mixing models were
set according to the optimal values obtained in the previous
paragraph. As could be expected, a short window is suitable
for the drums (32 ms) while a long one is more appropriate
for the other instruments (128 ms). This specificity of the
model could be further investigated using for example unions
of TF dictionaries with different resolutions for each source
such as in [67]. However this is left for future work as this
paper mostly focuses on proposing a new mixing model for
reverberant mixtures.

E. Comparison with the Baselines
We compare in this subsection the source separation perfor-

mance obtained with the proposed method and the baselines
introduced in Section IV-A for three different reverberation
times: 160, 360 and 610 ms. The Student’s t shape parameters
for the proposed model are fixed according to the preliminary
results detailed in Section IV-D3. In order to provide a fair
comparison we will detail the results with the proposed method
when the TF window length is the same as that of the baseline
methods (64 ms for all sources) and when it is set according
to the previous results: 32 ms for drums and 128 ms for other
instruments. Those two approaches are denoted by “Proposed
- w/o adapted TF window” and “Proposed - w/ adapted TF
window” respectively in the presentation of the results.

The results are detailed in Table I. As can be seen, according
to all the performance measures, our method performs better
than the one proposed in [28], whether it uses an SCM of rank
1 or 2. This baseline method is algorithmically speaking close
to ours, as both methods are based on a (V)EM algorithm.
From this perspective, those results show that modeling rever-
berant mixtures in the time-domain, with suitable priors for
the mixing filters, can help improving the source separation
results.

However, we see that the method proposed in [18] performs
better than ours in terms of SIR, and also in terms of SDR
and ISR for the mixtures with a reverberation time of 160 and
610 ms. According to the SIR, this baseline method results in a
lower amount of interferences between the estimated sources.
However, as indicated by the SAR, this approach introduces
more artifacts than the proposed one. Moreover, according to
the OPS which is an objective measure of the global source
separation quality designed to be correlated with the human
perception, our method always performs better. The reader is
invited to listen to the audio examples available online [68].

It is also interesting to note that the method [18] performs
better than [28], even though the models are in essence
equivalent (in the case of an SCM of rank 2). This may be due
to the use of multiplicative updates derived from the auxiliary
function method instead of the EM algorithm.
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TABLE I
AVERAGE SOURCE SEPARATION RESULTS.

Reverberation time: 160 ms

SDR ISR SIR SAR OPS

Ozerov et al. [28] - SCM rank 1 2.5 6.4 3.6 9.8 18.8
Ozerov et al. [28] - SCM rank 2 2.4 6.2 3.5 9.7 18.8
Sawada et al. [18] - SCM rank 2 4.3 9.1 8.4 9.6 22.2
Unconstrained time-domain filters [35] 1.2 6.2 3.2 8.7 20.8
Proposed - w/o adapted TF window 2.8 6.9 4.3 10.6 20.8
Proposed - w/ adapted TF window 3.5 8.0 6.1 12.0 27.6

Reverberation time: 360 ms

SDR ISR SIR SAR OPS

Ozerov et al. [28] - SCM rank 1 1.9 5.7 2.4 9.4 16.6
Ozerov et al. [28] - SCM rank 2 1.8 5.6 2.5 9.5 16.6
Sawada et al. [18] - SCM rank 2 3.2 8.6 8.2 8.1 21.2
Unconstrained time-domain filters [35] 0.6 6.3 2.6 6.9 20.6
Proposed - w/o adapted TF window 2.6 7.4 3.5 10.7 22.4
Proposed - w/ adapted TF window 3.4 8.7 5.0 12.5 28.2

Reverberation time: 610 ms

SDR ISR SIR SAR OPS

Ozerov et al. [28] - SCM rank 1 1.8 5.4 2.4 9.4 14.6
Ozerov et al. [28] - SCM rank 2 1.7 5.3 2.2 9.5 14.7
Sawada et al. [18] - SCM rank 2 4.1 8.6 8.0 9.0 20.6
Unconstrained time-domain filters [35] 0.3 5.8 1.8 5.3 19.0
Proposed - w/o adapted TF window 3.2 8.2 4.9 10.3 23.8
Proposed - w/ adapted TF window 3.1 8.1 4.1 11.6 24.8

Our previous approach [35] with unconstrained time-domain
mixing filters obtains the worst results according to the SDR,
while the OPS tends to show that on average it performs better
than [28] but worse than [18]. By listening to the separated
sources, we believe that the results are indeed not satisfactory
especially for high reverberation times, which agrees with the
tendency of the SDR to decrease when the reverberation time
increases. Even though the time-domain convolutive mixing
process is exactly represented in this method, the mixing filters
are only estimated from the data, without constraints. We
believe that this lack of constraint precisely explains the poor
results for long mixing filters. We noticed in particular that
due to some inherent ambiguities in the modeling of the source
images in (1), some parts of the source signals were sometimes
contained in the estimated mixing filters. On the contrary, we
do not have this issue with the proposed method, thanks to the
prior on the mixing filters. This is also illustrated with online
audio examples [68].

We also notice that even though the model hyperparam-
eters of the proposed method (Student’s t shape parameters
and MDCT window length) have been optimized using the
mixtures with a reverberation of 360 ms, they generalize well
to other mixing conditions.

To conclude this experimental evaluation, we detail in
Table II the computation time of one iteration of all the source
separation algorithms compared in this work. Those results are
obtained with a 3.70 GHz processor, for a stereo mixture of
12 s sampled at 16 kHz, involving 3 sources and recorded with
a reverberation time of 360 ms. The methods based on a time-
domain representation of the convolutive mixing process, as
the one proposed in this paper, are the most computationally
demanding.

For the sake of reproducibility, a Matlab implementation of

TABLE II
COMPUTATION TIME (IN SECONDS) OF ONE ITERATION OF THE SOURCE

SEPARATION ALGORITHMS.

Ozerov et al. [28] - SCM rank 1 2.5
Ozerov et al. [28] - SCM rank 2 4.3
Sawada et al. [18] - SCM rank 2 0.8
Unconstrained time-domain filters [35] 20.9
Proposed - w/o adapted TF window 16.4
Proposed - w/ adapted TF window 17.7

the proposed algorithm is available online [68].

V. CONCLUSION

This paper introduced a new Bayesian framework for mul-
tichannel audio source separation based on a time-domain
representation of the convolutive mixing process. The exper-
iments have revealed that the Gaussian distribution seems to
be a reasonable choice for modeling the source signals in the
MDCT domain. On the contrary, we have shown that using
a heavy-tailed distribution is very important for modeling the
impulse response of the mixing filters. Indeed, the robustness
of the Student’s t distribution allowed us to take into account
the direct path and the early echoes of an RIR, which act
as outliers with respect to the standard Gaussian model with
exponentially decaying envelope. To conclude this paper, we
present below some tracks for future research.

The model presented in Section II-D assumed that the
RIR coefficients were i.i.d. However we could refine it by
considering that the early and late parts of the RIR are not
identically distributed. We have to mention that we investi-
gated such an approach within the proposed framework. We
used a time-dependent shape parameter αu(t), allowing us
to assume a Gaussian distribution for late reverberation only,
while a Student’s t model with finite shape parameter was
used for the early contributions. As this approach did not
improve the source separation results we did not present it.
We believe that even though considering a time-dependent
shape parameter allows us to better fit the true statistics of
the mixing filters, it does not necessarily imply that it will
lead to better separation results. It is for example known in
blind deconvolution of images that the optimal image prior
is not the one that most closely fits the statistics of natural
images. It is rather the one that discriminates the blurry and
sharp images as much as possible [69].

It could also be interesting to study whether the proposed
mixing model is sufficiently flexible to be robust to mis-
matched mixing conditions such as inaccurate reverberation
time. We could also develop other temporal profiles for r(t) in
order to represent different mixing scenarios, corresponding to
the use of delays for example, which are popular audio effects
in music.

In this work we considered a semi-blind scenario using
oracle NMF dictionaries. Indeed our main objective was to
present a new framework with a probabilistic model of mixing
filters in the time domain. Nevertheless, we will focus on de-
veloping a “fully” blind method in future works. We carefully
designed the experimental setup in order to be able to extend
this framework in a supervised way. It could for example
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consist in pre-training NMF dictionaries using a database such
as MedleyDB [70]. One could also use more sophisticated
NMF-based source models such as the ones in [28] (e.g. a
source/filter model). In that case only the NMF update in the
M-step of the proposed algorithm should be modified. Another
important perspective lies in the use of neural networks for
modeling the scale parameters λj,fn in the source model (9).
Such an approach was followed for the Gaussian SCM model
in [22], [23].

Finally, although this method was designed for under-
determined audio source separation, it is not limited to this
setting and it can also be used in the (over-)determined
case. In particular, it would be interesting to compare the
proposed approach with the state-of-the-art determined source
separation method recently proposed in [21], which unifies
independent vector analysis and NMF in a new framework
called independent low-rank matrix analysis.

APPENDIX A
THE STUDENT’S t DISTRIBUTION

The probability density function (pdf) of the Student’s t
distribution over a real-valued r.v. is defined by:

Tα(x;µ, λ) =
1√
απλ2

Γ
(
α+1
2

)
Γ
(
α
2

) (
1 +

1

α

(x− µ)2

λ2

)−α+1
2

,

(48)
where Γ(·) denotes the Gamma function. It can be shown (see
e.g. [53]) that the Student’s t distribution results from com-
pounding a Gaussian distribution N (µ, vλ2) with an inverse-
gamma distribution IG (α/2, α/2) over v:

Tα(x;µ, λ) =

∫ +∞

0

N
(
x;µ, vλ2

)
IG
(
v;
α

2
,
α

2

)
dv. (49)

The pdf of the Gaussian distribution N (µ, σ2) over a real-
valued r.v. is defined by:

N(x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, (50)

and the pdf of the inverse-gamma distribution IG(α, β) over
a positive real-valued r.v. is given by:

IG(x;α, β) =
βα

Γ(α)
x−(α+1) exp

(
−β
x

)
. (51)

The inverse-gamma distribution IG (α/2, α/2) over the r.v. v
in (49) becomes degenerate at v = 1 as α tends to infinity
(i.e. the pdf tends to a Dirac delta function centered at one).
Therefore, in this limit the Student’s t distribution reduces to
the Gaussian one.

The two following properties of the inverse-gamma distri-
bution are used in the derivation of the proposed source sepa-
ration algorithm: E[x−1] = α/β and E[ln(x)] = ln(β)−ψ(α)
where ψ(·) is the digamma function.

APPENDIX B
VARIATIONAL FREE ENERGY

The variational free energy can be decomposed from its
definition in (18) as follows:

L(q?,θ) =

〈
ln

(
p(x, s,v,a,u;θ)

q?(s)q?(v)q?(a)q?(u)

)〉
q?(s)q?(v)q?(a)q?(u)

= 〈ln p(x|s,a;σ)〉q?(s)q?(a)
+ 〈ln p(s|v;λ)− ln q?(s)〉q?(s)q?(v)
+ 〈ln p(v)− ln q?(v)〉q?(v)
+ 〈ln p(a|u)− ln q?(a)〉q?(a)q?(u)
+ 〈ln p(u)− ln q?(u)〉q?(u) . (52)

Note that < − ln q(·) > is the differential entropy of the
distribution q. Let us detail each term in the right hand
side of (52) from the model presented in Section II and the
variational distributions given by equations (22) to (25). The
objective is to express the variational free energy according
to the variational parameters of these distributions. For the
sake of simplicity of notation, we will omit the variational
distribution in subscript of the mathematical expectation
operator.

1) Likelihood Term:

〈ln p(x|s,a;σ)〉 = −IT
2

ln(2π)− T
2

I∑
i=1

ln(σ2
i )− 1

2

I∑
i=1

1

σ2
i

ēi,

(53)
where ēi is given by:

ēi =

∥∥∥∥xi − J∑
j=1

ŷij

∥∥∥∥2
2

+

J∑
j=1

[
‖ŝj‖22

La−1∑
τ=0

ρij(τ)

]

+

J∑
j=1

∑
(f,n)∈Bj

γj,fn

[
‖ĝij,fn‖22 +

La−1∑
τ=0

ρij(τ)

]
, (54)

with ĝij,fn = [ĝij,fn(0), ..., ĝij,fn(T − 1)]>, ŝj =
[ŝj(0), ..., ŝj(Ls − 1)]> and ŷij = [ŷij(0), ..., ŷij(T − 1)]>.
Note that ŝj(t) and ŷij(t) are related to the variational
parameters {ŝj,fn}j,f,n and {âij(t)}i,j,t by (20) and (21)
respectively.

2) S-term:

〈ln p(s|v;λ)− ln q?(s)〉 =− 1

2

J∑
j=1

∑
(f,n)∈Bj

[
ln

(
βj,fn
γj,fn

)

− ψ(νv) + ln(λ2j,fn) +
νv
βj,fn

ŝ2j,fn + γj,fn

λ2j,fn
− 1

]
.

(55)
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3) V-term:

〈ln p(v)− ln q?(v)〉 =−
J∑
j=1

∑
(f,n)∈Bj

[
αvνv

2

1

βj,fn

+
αv
2

ln(βj,fn) + ln Γ
(αv

2

)
+
αv
2

ln

(
2

αv

)
+ ψ(νv)

(
νv −

αv
2

)
− νv − ln Γ(νv)

]
.

(56)

4) A-term:

〈ln p(a|u)− ln q?(a)〉 =− 1

2

I∑
i=1

J∑
j=1

La−1∑
t=0

[
ln

(
dij(t)

ρij(t)

)

− ψ (νu) + ln(r2(t)) +
νu

dij(t)

â2ij(t) + ρij(t)

r2(t)
− 1

]
.

(57)

5) U-term:

〈ln p(u)− ln q?(u)〉 =−
I∑
i=1

J∑
j=1

La−1∑
t=0

[
αuνu

2

1

dij(t)

+
αu
2

ln(dij(t)) + ln Γ
(αu

2

)
+
αu
2

ln

(
2

αu

)
+ ψ(νu)

(
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2

)
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. (58)
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