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Abstract

The class of quantiles lies at the heart of extreme-value theory and is one of the basic
tools in risk management. The alternative family of expectiles is based on squared
rather than absolute error loss minimization. It has recently been receiving a lot of
attention in actuarial science, econometrics and statistical �nance. Both quantiles and
expectiles can be embedded in a more general class of M-quantiles by means ofL p

optimization. These generalizedL p� quantiles steer an advantageous middle course
between ordinary quantiles and expectiles without sacri�cing their virtues too much
for 1   p   2. In this paper, we investigate their estimation from the perspective of
extreme values in the class of heavy-tailed distributions. We construct estimators of
the intermediate L p� quantiles and establish their asymptotic normality in a depen-
dence framework motivated by �nancial and actuarial applications, before extrapolat-
ing these estimates to the very far tails. We also investigate the potential of extreme
L p� quantiles as a tool for estimating the usual quantiles and expectiles themselves.
We show the usefulness of extremeL p� quantiles and elaborate the choice ofp through
applications to some simulated and �nancial real data.

Key words: Asymptotic normality; Dependent observations; Expectiles; Extrapolation;
Extreme values; Heavy tails;Lp optimization; Mixing; Quantiles; Tail risk.

1 Introduction

A very important problem in actuarial science, econometrics and statistical �nance involves

quantifying the \riskiness" implied by the distribution of a non-negative loss variable or a

real-valued pro�t-loss variableX . Greater variability of the random variableX and particu-

larly a heavier tail of its distribution necessitate a higher capital reserve for portfolios or price

of the insurance risk. The class of quantiles is one of the basic tools in risk management and

lies at the heart of extreme-value theory. A leading quantile-based risk measure in banking

and other �nancial institutions is Value at Risk (VaR capital requirement) with a con�dence

level � P p0; 1q. It is de�ned as the � th quantile qp� q of the non-negative loss distribution

with � being close to one, and as� qp� q for the real-valued pro�t-loss distribution with �

being close to zero. The quantileqp� q of X is uniquely de�ned through the generalized



inverseF � 1
X p� q � inf t x : FX pxq ¥ � u of the underlying distribution function FX . It can also

be obtained by minimizing asymmetrically weighted mean absolute deviations (Koenker and

Bassett, 1978):

qp� q � arg min
qPR

E p� � pX � q; 1q � � � pX ; 1qq;

where � � px; 1q � | � � 1It x¤ 0u| � |x| stands for the quantile check function, with1It�u being

the indicator function. This property has recently been receiving a lot of attention in the

actuarial literature since it corresponds to the existence of a natural backtesting methodology.

Gneiting (2011) introduced the general notion of elicitability for a functional that is de�ned

by means of the minimization of a suitable asymmetric loss function. The relevance of

elicitability in connection with backtesting has been discussed, for instance, by Embrechts

and Hofert (2014) and Bellini and Di Bernardino (2015). It is generally accepted that

elicitability is a desirable property for model selection, estimation, generalized regression,

computational e�ciency, forecasting and testing algorithms.

Despite their elicitability and strong intuitive appeal, quantiles are not always satisfac-

tory. From the point of view of axiomatic theory, an inuential paper in the literature by

Artzner et al. (1999) provides a foundation for coherent risk measures. Quantiles satisfy

their requirements of translation invariance, monotonicity and positive homogeneity, but not

the property of subadditivity. Hence quantiles fail to be coherent, while they are elicitable.

In contrast to quantiles, the most popular coherent risk measure, referred to as Expected

Shortfall, is not elicitable. The relationship of coherency with elicitability has been addressed

in e.g. Ziegel (2016). From a statistical viewpoint, the asymptotic variance of quantile esti-

mators involves the value of the density function ofX at qp� q which is notoriously di�cult

to estimate. From an extreme-value perspective, and perhaps most seriously, quantiles are

often criticized for being too liberal or optimistic since they only depend on the frequency of

tail losses and not on their values. To reduce this loss of information and other vexing defects

of quantiles, Newey and Powell (1987) substituted the absolute deviations in the asymmetric

loss function of Koenker and Bassett with squared deviations to de�ne the concept of� th

expectile

� p� q � arg min
qPR

E p� � pX � q; 2q � � � pX ; 2qq;

where � � px; 2q � | � � 1It x¤ 0u| x2. The special case� � 1{2 leads to the expectation ofX .

More generally, by taking the derivative with respect toq in the L2 criterion and setting it

to zero, we get the equation

� �
E

�
|X � � p� q|1It X ¤ � p� qu

�

E|X � � p� q|
;

that is, the � th expectile speci�es the position� p� qsuch that the ratio of the average distance

from the data to and below� p� q to the average distance of the data to� p� q is 100� %. Thus,
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the expectile shares an interpretation similar to the quantile, replacing the distance by the

number of observations. Jones (1994) established that expectiles are precisely the quantiles,

not of the original distribution, but of a related transformation. Abdous and Remillard

(1995) proved that quantiles and expectiles of the same distribution coincide under the

hypothesis of weighted-symmetry. Yao and Tong (1996) showed that there exists a unique

bijective function h : p0; 1q Ñ p0; 1q, depending on the underlying distribution, such that

qp� q coincides with � php� qqfor all � P p0; 1q. More recently, Zou (2014) has derived a class

of generic distributions for which� p� qand qp� qcoincide for all � P p0; 1q. Also, as suggested

by many authors including Efron (1991), Yao and Tong (1996), Schnabel and Eilers (2013)

and Schulze Waltrupet al. (2014), quantile estimates and their strong intuitive appeal can

be recovered directly from asymmetric least squares estimates of a set of expectiles.

The advantages of expectiles include their computing expedience and their e�cient use of

the data as the weighted least squares rely on the distance to observations, while the quantile

method only uses the information on whether an observation is below or above the predictor.

Also, inference on expectiles is much easier than inference on quantiles (seee.g. Abdous and

Remillard, 1995). Most importantly, expectiles depend on both the tail realizations of the

loss variable and their probability. This motivated Kuan et al. (2009) to introduce the

expectile-based VaR as� � p� q for real-valued pro�t-loss distributions. The key advantage of

this new instrument of risk protection is that it de�nes the only coherent risk measure that

is also elicitable (Ziegel, 2016). Further theoretical and numerical results obtained by Bellini

and Di Bernardino (2015) indicate that expectiles are perfectly reasonable alternatives to

both classical quantile-based VaR and Expected Shortfall.

A disadvantage of the expectile method is that, by construction, it is not as robust

against outliers as the quantiles. This may cause trouble when estimating the tail risk that

translates into considering the prudentiality level� � � n Ñ 0 or � n Ñ 1 as the sample sizen

goes to in�nity. The behavior of tail expectiles� p� nqand the connection with their quantile

analoguesqp� nq have been elucidated only very recently by Belliniet al. (2014), Maoet al.

(2015), Bellini and Di Bernardino (2015) and Mao and Yang (2015), whenX belongs to

the domain of attraction of a Generalized Extreme Value distribution. The estimation of

� p� nq in the challenging maximum domain of attraction of Pareto-type distributions, where

standard empirical expectiles are often unstable due to data sparsity, has been considered in

Daouia et al. (2017). In most studies on actuarial and �nancial data, it has been found that

Pareto-type distributions, with tail index  ¡ 0, describe quite well the tail structure of losses

[see,e.g., Embrechtset al. (1997, p.9) and Resnick (2007, p.1)]. An intrinsic di�culty with

expectiles is that their existence requiresE|X |   8 , which amounts to supposing   1.

Even more seriously, the condition   1{2 is required to ensure that asymmetric least

squares estimators of� p� nq are asymptotically Gaussian. Already in the intermediate case,
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where np1 � � nq Ñ 8 as � n Ñ 1, good estimates may require in practice   1{4. Similar

concerns occur with the Expected Shortfall, the so-called Conditional Tail Expectation or

certain extreme Wang distortion risk measures [see El Methniet al. (2014) and El Methni

and Stuper (2017a, 2017b)]. This restricts appreciably the range of potential applications

as may be seen in the �nancial setting from the R packagèCASdatasets'where realized

values of the tail index were found to be larger than 1{4 in several instances.

Instead of the asymmetric square loss, a natural modi�cation of the expectile check

function is to use the power loss function

� � px; pq � | � � 1It x¤ 0u| � |x|p; p ¥ 1;

leading to

q� ppq � arg min
qPR

Ep� � pX � q; pq � � � pX ; pqq:

These quantities have already been coined asLp� quantiles by Chen (1996). They de�ne

a special case of the generic concept of M-quantiles introduced earlier by Breckling and

Chambers (1988). Their existence requiresE|X |p� 1   8 . This is a weaker condition,

compared with the condition of existence of expectiles, whenp   2. The choice ofp   2

is also required when the inuence of potential outliers is taken into account. The class of

Lp� quantiles, with p P p1; 2q, steers an advantageous middle course between the robustness

of quantiles pp � 1q and the sensitivity of expectilespp � 2q to the magnitude of extreme

losses. For �xed levels� staying away from the distribution tails, inference onq� ppq is

straightforward using M-estimation theory. The main purpose of this paper is to extend the

estimation of q� ppqand its large sample theory far enough into the upper tail� � � n Ñ 1 as

n Ñ 8 . There are many important events including big �nancial losses, high medical costs,

large claims in (re)insurance, high bids in auctions, just to name a few, where modeling and

estimating the extreme rather than centralLp� quantiles of the underlying distribution is

a highly welcome development. We refer to the book of de Haan and Ferreira (2006) for a

modern formulation of this typical extreme value problem in the casep � 1 and to Daouia

et al. (2017) in the casep � 2.

More speci�cally, it is our goal to establish two estimators ofq� n ppqfor a generalp and to

unravel their asymptotic behavior for� n at an extremely high level that can be even larger

than p1� 1{nq, in a framework of weak dependence motivated by the aforementioned �nancial

and actuarial applications. To do so, we �rst estimate the intermediate tailLp� quantiles

of order � n Ñ 1 such that np1 � � nq Ñ 8 , and then extrapolate these estimates to the

proper extremeLp� quantile level � n which approaches 1 at an arbitrarily fast rate in the

sense thatnp1 � � nq Ñ c, for some constantc. The main results, established for a strictly

stationary and suitably mixing sequence of observations, state the asymptotic normality of

our estimators for distributions with tail index    r 2pp � 1qs� 1. As such, unlike expectiles,
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extreme Lp� quantile estimates cover a larger class of heavy-tailed distributions forp   2.

It should also be clear that, in contrast to standard quantiles, generalizedLp� quantiles

take into account the whole tail information about the underlying distribution for p ¡ 1.

These additional bene�ts raise the following important question: how to elaborate the choice

of p in the interval r1; 2s? This choice is mainly a practical issue that we �rst pursue here

through some simulation experiments. Although the value ofp minimizing the Mean Squared

Error of empirical Lp� quantiles depends on the tail index , Monte Carlo evidence indicates

that the choice ofp P p1:2; 1:6q guarantees a good compromise for Pareto-type distributions

with    1{2. In contrast, when the empirical estimates are extrapolated to properly

extreme levels� n , the underlying tail Lp� quantiles seem to be estimated more accurately for

p P r1; 1:3s or p P r1:7; 2s. We elaborate further this question from a forecasting perspective,

trying to perform extreme Lp� quantile estimation accurately on historical data.

Yet, the Lp� quantile approach is not without disadvantages. It does not have an intuitive

interpretation as direct as ordinaryL1� quantiles. More precisely, the generalized quantile

q� ppq exists, is unique and satis�es

� �
E

�
|X � q� ppq|p� 11It X ¤ q� ppqu

�

E r|X � q� ppq|p� 1s
: (1)

It can thus be interpreted only in terms of the average distance fromX in the (nonconvex

when 1   p   2) spaceLp� 1. This should not be considered to be a serious disadvantage

however, since one can recover the usual quantilesqp� nq � q� n p1q of extreme order� n Ñ 1

and their strong intuitive appeal from tail Lp� quantiles q� n ppq, � n Ñ 1, that coincide with

q� n p1q. Indeed, given a relative frequency of interest� n , the level� n such that q� n ppq � q� n p1q

can be written in closed form as

� n �
E

�
|X � q� n p1q|p� 11It X ¤ q� n p1qu

�

E r|X � q� n p1q|p� 1s
(2)

in view of (1). One can then estimate� n via extrapolation techniques before calculating

the correspondingLp� quantile estimators. In this way, we perform tailLp� quantile esti-

mation as a main tool when the ultimate interest is in estimating the intuitiveL1� quantiles

themselves.

From the point of view of the axiomatic theory of risk measures, theLp� quantile method

can be criticized for not being coherent for all values ofp. According to Bellini et al. (2014)

and Ziegel (2016), the onlyLp� quantiles that are actually coherent risk measures are the

expectiles, orL2� quantiles. This disadvantage does not prevent the investigator, however, to

employ tail Lp� quantiles q� n ppq as a tool for estimating extreme expectiles� p� nq � q� n p2q

by applying again (1) in conjunction with similar considerations to the above in extreme

quantile estimation. Built on the presented extremeLp� quantile estimators, we construct
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three di�erent tail expectile estimators and derive their asymptotic normality. Two among

these new estimators appear to be appreciably more e�cient relatively to the rival expectile

estimators of Daouiaet al. (2017) in the important case of pro�t-loss distributions with long

tails.

The paper is organized as follows. Section 2 describes in some detail how population

Lp� quantiles q� ppq are linked to standard quantilesq� p1q as � Ñ 1. Section 3 deals with

estimation of intermediate and extremeLp� quantiles q� n ppq for p ¡ 1. Estimators of the

extreme level� n in (2) are discussed in Section 4, with implications for recovering composite

estimators of high quantilesq� n p1q. Extrapolated high expectilepp � 2q estimation is dis-

cussed in Section 5. The theory in these sections is derived in the general case of stationary

and dependent data satisfying a mixing condition. A detailed simulation study and a con-

crete application to the S&P500 Index are given, respectively, in Section 6 and Section 7 to

illustrate the usefulness of extremalLp� quantiles. Proofs and further simulation results are

deferred to a supplementary material.

2 Extremal population Lp� quantiles

This section describes in detail what happens for large populationLp� quantiles and how they

are linked to large standard quantiles. We denote in the sequel the cumulative distribution

function of X by F , that we suppose to be continuous, and its survival function byF � 1� F .

We �rst assume that X has a heavy right-tail or, equivalently, that F satis�es the following

regular variation condition:

C1p qThe function F is regularly varying in a neighborhood of�8 with index � 1{   0,

that is,

lim
tÑ�8

F ptxq

F ptq
� x � 1{  for all x ¡ 0:

This is equivalent to the standard �rst-order condition

lim
tÑ�8

Uptxq
Uptq

� x  for all x ¡ 0;

by Theorem 1.2.1 in de Haan and Ferreira (2006), whereUptq � p 1{F qÐ ptq is the left-

continuous inverse of 1{F . In contrast to many situations in extreme value analysis, we do

not assume here thatX is positive or even bounded below. In particularX may have a

heavy left-tail as well, a case that we shall discuss in what follows.

Under this condition, the asymptotic properties (for� Ñ 1) of the usual quantileq� p1q

have been extensively studied in the literature as may be seen frome.g. de Haan and

Ferreira (2006). Here, we focus on the less discussed generalized quantilesq� ppq with p ¡ 1.
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Denoting by X � � maxp� X; 0qthe negative part ofX , we �rst have the following asymptotic

connection betweenF pq� ppqqand F pq� p1qq � 1 � � .

Proposition 1. Assume that the survival functionF satis�es condition C1p q. For any

p ¡ 1, wheneverEpX p� 1
� q   8 and    1{pp � 1q, we have

lim
� Ò1

F pq� ppqq
1 � �

�


Bpp;  � 1 � p � 1q

whereBpx; yq �
» 1

0
tx� 1p1 � tqy� 1dt stands for the Beta function.

Note that when the survival function F satis�es condition C1p q and    1{pp � 1q, we

have EpX p� 1
� q   8 with X � � maxpX; 0q. This entails together with condition EpX p� 1

� q  

8 that E|X |p� 1   8 , and hence theLp� quantiles of X are indeed well-de�ned. Even

more strongly, we get the following direct asymptotic connection betweenq� ppq and q� p1q

themselves.

Corollary 1. Under the conditions of Proposition 1, we have

lim
� Ò1

q� ppq
q� p1q

�
�


Bpp;  � 1 � p � 1q

� � 

:

Accordingly, extreme Lp� quantiles are asymptotically proportional to extreme usual

quantiles, for all p ¡ 1. The evolution of the proportionality constant

Cp ; pq:�
�


Bpp;  � 1 � p � 1q

� � 

with respect to  P p0; 1{2s is visualized in Figure 1, for some values ofp P r1; 2s. It can

be seen that the usual quantileq� p1q is more spread (conservative) than theLp� quantile

q� ppq as the level� Ñ 1. This property is of particular interest in actuarial risk theory,

where loss distributions typically belong to the maximum domain of attraction of Pareto-

type distributions with tail index    1{2. Indeed, when the ordinary quantile breaks down

at an extremely high tail probability � (and hence the underlying VaR changes drastically

the order of magnitude of the capital requirement), its generalizedLp� quantile analogue

remains de�nitely more liberal. The latter would result in less excessive amounts of required

capital reserve, which might be good news to actuarial institutions.

In the particular case of integersp, we get the next corollary immediately from the

identities

Bpx; yq �
� pxq� pyq
� px � yq

and � px � 1q � x� pxq for all x; y ¡ 0;

where � pxq �
³ �8

0 tx� 1e� tdt denotes Euler's Gamma function.
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Figure 1: Behavior of  P p0; 1{2s ÞÑCp ; pq for some values ofp P r1; 2s.

Corollary 2. Assume that the survival functionF satis�es condition C1p q. Assume that

p � k � 1 wherek is a positive integer. WheneverEpX k
� q   8 and    1{k, we have

lim
� Ò1

F pq� pk � 1qq
1 � �

�

± k
j � 1p1 � j q

 kk!
:

Note that for p � 2, we �nd that

lim
� Ò1

F pq� p2qq
1 � �

�  � 1 � 1

which was already shown in Daouiaet al. (2017).

Next, we shall derive some asymptotic expansions ofLp� quantiles, which shall be very

useful when it comes to establish the asymptotic normality of extremeLp� quantile estima-

tors in the next section. As is customary in the case of ordinary quantiles, this requires the

extra condition:

C2p; �; A q The function F is second-order regularly varying in a neighborhood of

�8 with index � 1{   0, second-order parameter� ¤ 0 and an auxiliary function A

having constant sign and converging to 0 at in�nity, that is,

@x ¡ 0; lim
tÑ�8

1

Ap1{F ptqq

�
F ptxq

F ptq
� x � 1{ 

�
� x � 1{  x � {  � 1

�
;

where the right-hand side should be read as
x � 1{  logx

 2
when � � 0.

This classical second-order condition controls the rate of convergence inC1p q: in particular,

the function |A| is regularly varying with index � ¤ 0, and therefore, the larger|� | is, the
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faster the function |A| converges to 0 and the smaller the error in the approximation of the

right tail of X by a Pareto tail will be. Further elements of interpretation of the extreme

value conditionC2p; �; A qcan be found in Beirlantet al. (2004) and de Haan and Ferreira

(2006) along with a list of examples of commonly used continuous distributions satisfying

this assumption: for instance, the (Generalized) Pareto, Burr, Fr�echet, Student, Fisher

and Inverse-Gamma distributions all satisfy this condition. More generally, so does any

distribution whose distribution function F satis�es

1 � F pxq � x � 1{ 
�
a � bx� c � opx � cq

�
as x Ñ 8 ;

wherea ¡ 0, b P Rzt0u and c ¡ 0 are constants. This contains in particular the Hall-Weiss

class of models (see Hua and Joe, 2011), and it is straightforward to see that in any such

case, conditionC2p; �; A q is met with � � � c and Aptq � � a� c � 1bc2t � c .

Besides, as can be seen from Theorem 2.3.9 in de Haan and Ferreira (2006), condition

C2p; �; A qis equivalent to the perhaps more usual extremal assumption on the tail quantile

function U that

@x ¡ 0; lim
tÑ�8

1
Aptq

�
Uptxq
Uptq

� x 

�
� x  x � � 1

�
:

From now on, we denote byF � the survival function of � X . Also, a survival function

S will be said to be light-tailed (and by convention, we shall say it has tail index 0) if it

satis�es xaSpxq Ñ 0 asx Ñ �8 , for all a ¡ 0. The following second-order based re�nement

of Proposition 1 is the key element in order to obtain the desired asymptotic expansion of

Lp� quantiles.

Proposition 2. Assume thatp ¡ 1 and:

� F satis�es condition C2p r ; �; A q;

� F � is either light-tailed or satis�es condition C1p ` q;

�  r   1{pp � 1q, and  `   1{pp � 1q in caseF � is heavy-tailed.

Then
F pq� ppqq

1 � �
�

 r

Bpp;  � 1
r � p � 1q

p1 � Rp�; pqq

where

Rp�; pq � �
 r

Bpp;  � 1
r � p � 1q

�
p1 � � qp1 � op1qq � K pp;  r ; � qA

�
1

1 � �



p1 � op1qq




�p p � 1q

� �
 r

Bpp;  � 1
r � p � 1q

� min p r ;1q

Rr pq� p1q; p;  r q

�
�

 r

Bpp;  � 1
r � p � 1q

�  r { maxp ` ;1q

R`pq� p1q; p;  `q

�

9



as � Ò1, with

K pp;  r ; � q �

$
''''''&

''''''%

1
 2

r �

�
 r

Bpp;  � 1
r � p � 1q

� � �

� rp 1 � � qBpp;p1 � � q � 1
r � p � 1q � Bpp;  � 1

r � p � 1qs if �   0;

p � 1
 2

r

» �8

1
px � 1qp� 2x � 1{  r logpxqdx if � � 0;

Rr pq; p; r q �

$
&

%

EpX 1It 0  X   quq
q

p1 � op1qq if  r ¤ 1;

F pqqBpp � 1; 1 �  � 1
r qp1 � op1qq if  r ¡ 1;

and R`pq; p; `q �

$
'&

'%

�
EpX 1It� q  X   0uq

q
p1 � op1qq

if  ` ¤ 1
or F � is light-tailed;

F p� qqBp � 1
` � p � 1; 1 �  � 1

` qp1 � op1qq if  ` ¡ 1:

When X is integrable, and in particular when expectiles ofX can be computed, the

asymptotic expansion ofLp� quantiles reduces to the following.

Corollary 3. Under the conditions of Proposition 2, ifE|X |   8 , then

F pq� ppqq
1 � �

�
 r

Bpp;  � 1
r � p � 1q

p1 � rp�; pqq

as � Ò1, where

rp�; pq � �p p � 1q
�

 r

Bpp;  � 1
r � p � 1q

�  r 1
q� p1q

pEpX q � op1qq

�
 r

Bpp;  � 1
r � p � 1q

K pp;  r ; � qA
�

1
1 � �



p1 � op1qq:

Finally, we get the following re�ned asymptotic expansion ofq� ppq itself with respect to

the ordinary quantile q� p1q.

Proposition 3. Under the conditions of Proposition 2, if in additionF is strictly decreasing:

q� ppq
q� p1q

� Cp r ; pq

�

1 �  r Rp�; pq �

#
1
�

� �
 r

Bpp;  � 1
r � p � 1q

� � �

� 1

�

� op1q

+

A
�

1
1 � �


 �

as � Ò1:

3 Estimation of high Lp� quantiles

Suppose, as will be the case in the remainder of this paper, that we observe a random

samplepX 1; : : : ; X nq from a strictly stationary sequencepX 1; X 2; : : :q, in the sense that for

10



any positive integersk and l, the k� tuples pX 1; : : : ; X kqand pX l ; : : : ; X l � k� 1qhave the same

distribution. Suppose further that the common marginal distribution of that sequence is that

of X and denote byX 1;n ¤ � � � ¤ X n;n the ascending order statistics of the observed sample

pX 1; : : : ; X nq. The overall objective in this section is to estimate extremeLp� quantilesq� n ppq

of X , where� n Ñ 1 asn Ñ 8 . Here � n may approach one at any rate, covering the special

cases of intermediateLp� quantiles with np1 � � nq Ñ 8 and extremeLp� quantiles with

np1 � � nq Ñ c, wherec is some constant.

In order to do so, we need to specify the dependence framework we shall be working in.

Dependence frameworks and time series models have been used for a long time in statis-

tical and econometric considerations when estimating nonextreme (i.e. central) quantities,

including regression contexts, by employing well-established theoretical arguments; we refer

in particular to Boente and Fraiman (1995), Honda (2000), Zhaoet al. (2005), Kuan et al.

(2009) and references therein in the case of quantiles and Yao and Tong (1996), Cai (2003)

and references therein in the case of expectiles. Let us emphasise that this is arguably not,

however, the case in statistical treatments of extreme value theory, even when considering

the kind of �nancial or actuarial applications this paper focuses on. The earliest theoretical

development in this context is Hsing (1991), who worked on the asymptotic properties of

the Hill estimator (Hill, 1975) of the tail index  for strongly mixing (or � � mixing) se-

quences. Related studies are Resnick and St�aric�a (1995, 1997, 1998), although they worked

in a di�erent dependence framework. An important theoretical advance was made by Drees

(2000, 2002, 2003), who in a series of papers obtained tools making it possible to exam-

ine the asymptotic properties of a wide class of statistical indicators of extremes of strictly

stationary and dependent observations through a general approximation result for the tail

quantile process by a Gaussian process. These papers were written for absolutely regular (or

� � mixing) sequences and inuenced a sizeable part of very recent research on the extremes

of a time series: we refer, among others, to Davis and Mikosch (2009, 2012, 2013), Robert

(2008, 2009), Rootz�en (2009), Drees and Rootz�en (2010) and de Haanet al. (2016), which,

in their respective contexts, worked under mixing conditions or under assumptions that can

be embedded in a mixing framework.

Due to the exibility of the results of Drees (2003), and the necessity here to extrapolate

beyond the available data and therefore to use an estimator of the tail index, we also elect

to work in such a mixing framework, which we introduce hereafter. For any positive integer

m, let F1;m and Fm;8 denote the past and future� -�elds generated by the sequencepX nq:

F1;m � � pX 1; : : : ; X mq and Fm;8 � � pX m ; X m� 1; : : :q:

11



De�ne then the � � mixing coe�cients of the sequencepX nq by:

@n PNzt0u; � pnq � sup
mPNzt0u
APF 1;m

B PF m � n; 8

|PpB |Aq � PpBq|:

The sequencepX nq is said to be� � mixing if � pnq Ñ 0 asn Ñ 8 , and this is precisely the

notion of mixing we shall work with to obtain our theoretical results. Intuitively, this condi-

tion means that the sequencepX nqis asymptotically memoryless: an event that happened in

the past has a vanishingly small inuence on current and future events as the time elapsed

since this past event increases.

While this notion of mixing is not the � � mixing condition introduced in Drees (2003), the

rationale behind this choice is twofold:

(i) First, � � mixing is stronger than � � mixing, which shall be used in our extrapolation

step. See Bradley (2005).

(ii) Second, the� � mixing condition implies a � � mixing condition in the following sense:

let, for any � � �eld A , L2pAq denote the space of square-integrable random variables

which areA � measurable. IfpX 1; X 2; : : :q is � � mixing, then the � � mixing coe�cients

@n PNzt0u; � pnq � sup
mPNzt0u

Y PL 2pF 1;m q
Z PL 2pF m � n; 8 q

�
�
�
�
�

CovpY; Zq
a

VarpYq
a

VarpZq

�
�
�
�
�

must satisfy � pnq Ñ 0, see Bradley (2005). If moreover the positive quadrant depen-

dence of any pairpX 1; X kq (for k ¥ 2) is assumed, in the sense that

@x1; xk PR; PpX 1 ¡ x1; X k ¡ xkq ¥ PpX 1 ¡ x1qPpX k ¡ xkq;

then the � � mixing condition, which by de�nition is adapted to variance and correlation

considerations, shall make it easy to compute the exact rate of growth of the variance

of a wide class of sums of square-integrable,� pX i q� measurable random variables, of

which our empirical least asymmetrically weightedLp estimator at the intermediate

level introduced in Section 3.1 below is precisely an element. This will then be used

in conjunction with limit theory from Utev (1990), valid in our � � mixing framework,

to obtain the asymptotic normality of the aforementioned estimator. We refer the

reader to Lemmas 7 and 8 in Appendix B of our supplementary material document

for the full technical developments. Let us highlight that� � mixing alone is in general

not su�cient to compute the exact rate of convergence of a sum of strictly stationary

random variables, see Ibragimov (1975), Peligrad (1987) and Bradley (1988).
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It should, �nally, be noted that there is in general no relationship between� � mixing and

� � mixing, and that � � mixing is the least restrictive of the widely used mixing conditions

that imply both � � and � � mixing, see again Bradley (2005). The� � mixing framework

therefore seems to be convenient and reasonable for our purpose.

All in all, we shall work under the following dependence condition on the sequencepX nq:

Sp� q The sequencepX 1; X 2; : : :q is a strictly stationary and � � mixing sequence with

positive quadrant dependent bivariate margins.

Note that the positive quadrant dependence of bivariate margins is itself a fairly weak as-

sumption, see Nelsen (2006, p.200). It is satis�ed if and only if the copula functionCk of the

pair pX 1; X kq satis�es Ckpu; vq ¥ uv for any u; v P r0; 1s (the function Ck always exists by

Sklar's theorem; see Sklar, 1959). This, in turn, contains the case of extreme-value copulas,

which are particularly adapted to the description of the joint extremes of a random pair, see

e.g. Gudendorf and Segers (2010). Finally, let us mention that conditionSp� q allows for

the case of an independent and identically distributed sequencepX 1; X 2; : : :q, and we shall

speci�cally highlight the particular form of our results in this case.

3.1 Intermediate levels

We de�ne the empirical least asymmetrically weightedLp estimator of q� n ppq as

pq� n ppq � arg min
uPR

1
n

n¸

i � 1

� � n pX i � u; pq � arg min
uPR

1
n

n¸

i � 1

|� n � 1It X i ¤ uu||X i � u|p: (3)

Clearly
a

np1 � � nq
�

pq� n ppq
q� n ppq

� 1



� arg min
uPR

 npu; pq (4)

where

 npu; pq:�
1

prq� n ppqsp

n¸

i � 1

� � n

�
X i � q� n ppq � uq� n ppq{

a
np1 � � nq; p

	
� � � n pX i � q� n ppq; pq:

Since this empirical criterion is a convex function ofu, the asymptotic properties of the

minimizer follow directly from those of the criterion itself by the convexity lemma of Geyer

(1996); see also Theorem 5 in Knight (1999). For this, we require the second-order condition

C2p; �; A q or, alternatively, the following re�ned �rst-order condition:

H 1p q For x large enough, the survival functionF veri�es

F pxq � x � 1{ 

"
cpxqexp

� » x

x0

� puq
u

du

*

where ¡ 0, c is a di�erentiable function such that cpxq Ñ c8 ¡ 0 and xc1pxq Ñ 0 as

x Ñ �8 , x0 ¡ 0 and � is a measurable function converging to 0 at�8 .
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This is a slightly more stringent assumption than the usual �rst-order conditionC1p qand its

related Karamata representation [see Theorem B.1.6 in de Haan and Ferreira (2006, p.365)].

Theorem 1. Assume thatp ¡ 1 and:

� condition Sp� q holds, with
° 8

n� 1

a
� pnq   8 ;

� there is � ¡ 0 such thatEpX p2� � qpp� 1q
� q   8 ;

� F satis�es either condition H 1p q or C2p; �; A q, with    1{r2pp � 1qs;

� � n Ò1 is such thatnp1 � � nq Ñ 8 ;

� under condition C2p; �; A q, we have
a

np1 � � nqApp1 � � nq� 1q � Op1q.

Then there is � 2 ¥ 0 such that

a
np1 � � nq

�
pq� n ppq
q� n ppq

� 1



dÝÑ N
�
0;  2Vp ; pqp1 � � 2q

�
as n Ñ 8 ;

with

Vp ; pq �
Bpp � 1;  � 1 � 2p � 2q

Bpp � 1; pq
�

� p2p � 1q� p � 1 � 2p � 2q
� ppq� p � 1 � p � 1q

:

In the particular case of an independent sequencepX 1; X 2; : : :q, then � 2 � 0, i.e.

a
np1 � � nq

�
pq� n ppq
q� n ppq

� 1



dÝÑ N
�
0;  2Vp ; pq

�
as n Ñ 8 :

Note that the condition    1{r2pp � 1qsimplies    1{pp � 1q and henceEpX p� 1
� q   8 .

Moreover, the conditionEpX p2� � qpp� 1q
� q   8 implies EpX p� 1

� q   8 . HenceE|X |p� 1   8 , and

thus the Lp� quantiles exist and are �nite. Note also that conditions   1{r2pp � 1qsand

EpX p2� � qpp� 1q
� q   8 ensure the convergence of the (convex) empirical criterion npu; pq, which

entails the convergence of its minimizer. Finally, the estimatorpq� n ppq has the same rate of

convergence under the dependence conditionSp� q as it has for independent observations,

the price to pay for allowing our dependence setup being an enlarged asymptotic variance.

When the sequencepX 1; X 2; : : :q is independent and in the special casesp Ó1 and p �

2, we recover the asymptotic normality of intermediate sample quantiles and expectiles,

respectively, with asymptotic variances

Vp ; 1q �
� p1q� p � 1q
� p1q� p � 1q

� 1 and Vp ; 2q �
� p3q� p � 1 � 2q
� p2q� p � 1 � 1q

�
2

1 � 2
:

The behavior of the variance ÞÑVp ; pqis visualized in Figure 2 for some values ofp P r1; 2s,

with  P p0; 1{2s. It can be seen in this Figure that for values ofp close to but larger than 1,
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the asymptotic variance of the intermediate sampleLp� quantile is appreciably smaller than

the asymptotic variance of the traditional sample quantile. In particular, values ofp between

1:2 and 1:4 seem to yield estimators who may be more precise than the sample quantile in

all usual applications (for which P p0; 1{2s).

Figure 2: Asymptotic variance  P p0; 1{2s ÞÑVp ; pq for some values ofp P r1; 2s. Black
line: p � 1; Red line: p � 1:2; Yellow line: p � 1:4; Purple line: p � 1:6; Green line:
p � 1:8; Blue line: p � 2.

3.2 Extreme levels

We now discuss how to extrapolate intermediateLp� quantile estimates of order� n Ò1, such

that np1 � � nq Ñ 8 , to very extreme levels� 1
n Ò1 with np1 � � 1

nq Ñ c   8 as n Ñ 8 .

The basic idea is to �rst use the regular variation conditionC1p q that entails the following

classical Weissman extrapolation formula for ordinary quantiles:

q� 1
n
p1q

q� n p1q
�

Upp1 � � 1
nq� 1q

Upp1 � � nq� 1q
�

�
1 � � 1

n

1 � � n


 � 

as� n and � 1
n approach 1 [Weissman (1978)]. The key argument is then to use the asymptotic

equivalence

q� ppq � Cp ; pq �q� p1q as � Ò1; (5)

shown in Corollary 1, to get the purelyLp� quantile approximation

q� 1
n
ppq

q� n ppq
�

�
1 � � 1

n

1 � � n


 � 

:
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This motivates us to de�ne the estimator

pqW
� 1

n
ppq:�

�
1 � � 1

n

1 � � n


 � p n

pq� n ppq (6)

for some
a

np1 � � nq� consistent estimatorp n of  �  r , with pq� n ppqbeing the empirical least

asymmetrically weightedLp estimator of q� n ppq.

Theorem 2. Assume thatp ¡ 1 and:

� condition Sp� q holds, with
° 8

n� 1

a
� pnq   8 ;

� F is strictly decreasing and satis�esC2p r ; �; A q with  r   1{r2pp � 1qsand �   0;

� F � is either light-tailed or satis�es condition C1p ` q;

�  `   1{r2pp � 1qsin caseF � is heavy-tailed.

Assume further that

� � n and � 1
n Ò1, with np1 � � nq Ñ 8 and np1 � � 1

nq Ñ c   8 ;

�
a

np1 � � nqpp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q(in this

bias condition the notation of Proposition 2 is used);

�
a

np1 � � nq{logrp1 � � nq{p1 � � 1
nqs Ñ 8 :

Then a
np1 � � nq

logrp1 � � nq{p1 � � 1
nqs

�
pqW

� 1
n
ppq

q� 1
n
ppq

� 1

�
dÝÑ � as n Ñ 8 :

Another option for estimating q� 1
n
ppq is by using directly its asymptotic connection (5)

with q� 1
n
p1q to de�ne the plug-in estimator

rqW
� 1

n
ppq:� Cpp n ; pqpqW

� 1
n
p1q; (7)

obtained by substituting in a
a

np1 � � nq� consistent estimatorp n of  and the traditional

Weissman estimator

pqW
� 1

n
p1q �

�
1 � � 1

n

1 � � n


 � p n

pq� n p1q; (8)

of the extreme quantileq� 1
n
p1q, wherepq� n p1q � X n� tnp1� � n qu;n and t�udenotes the oor function.
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Theorem 3. Assume thatp ¡ 1 and:

� F is strictly decreasing and satis�esC2p r ; �; A q with  r   1{pp � 1q and �   0;

� F � is either light-tailed or satis�es condition C1p ` q;

�  `   1{pp � 1q in caseF � is heavy-tailed.

Assume further that

� � n and � 1
n Ò1, with np1 � � nq Ñ 8 and np1 � � 1

nq Ñ c   8 ;

�
a

np1 � � nq
�
X n� tnp1� � n qu;n {q� n p1q � 1

�
� OPp1q;

�
a

np1 � � nq pp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q(in this

condition the notation of Proposition 2 is used);

�
a

np1 � � nq{logrp1 � � nq{p1 � � 1
nqs Ñ 8 :

Then a
np1 � � nq

logrp1 � � nq{p1 � � 1
nqs

�
rqW

� 1
n
ppq

q� 1
n
ppq

� 1

�
dÝÑ � as n Ñ 8 :

Both these results, as well as the extrapolation results of the upcoming Sections 4 and 5,

require a tail index estimator p n such that
a

np1 � � nqpp n �  r q
dÝÑ � with � a limiting

random variable with nondegenerate distribution. Under our dependence conditionSp� q,

the sequencepX 1; X 2; : : :q is in particular � � mixing, and it then follows from Drees (2003)

that, under further conditions on the � � mixing coe�cients as well as regularity conditions

on the tail of the underlying distribution and on the joint tail of bivariate margins, there

exists a wide class of estimatorsp n satisfying this convergence condition. In particular, it is

mentioned in Drees (2003, pp.625{626) that the Hill estimator (Hill, 1975), the Pickands esti-

mator (Pickands, 1975), the moment estimator (Dekkerset al., 1989) and the maximum like-

lihood estimator in a generalized Pareto model are all part of this class; later, de Haanet al.

(2016) proved that a bias-reduced version of the Hill estimator is also
a

np1 � � nq� consistent

in this sense. Theorem 3 further requires that the empirical estimatorX n� tnp1� � n qu;n of q� n p1q

be
a

np1 � � nq� consistent; under the regularity conditions of Drees (2003), this is also true

and X n� tnp1� � n qu;n is in fact asymptotically Gaussian, see Theorem 2.1 therein. Finally, let us

mention that this convergence condition onX n� tnp1� � n qu;n is clearly satis�ed for independent

observations, see Theorem 2.4.1 in de Haan and Ferreira (2006, p.50).
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Our experience with simulated and real data indicates that, for non-negative loss distri-

butions, the plug-in Weissman estimatorrqW
� 1

n
ppq in (7) tends to be more e�cient relative to

the least asymmetrically weightedLp estimator pqW
� 1

n
ppqin (6), for all values ofp ¡ 1. However,

for real-valued pro�t-loss random variables, the least asymmetrically weightedLp estimator

pqW
� 1

n
ppq is sometimes the winner following the values ofp and  . In particular, pqW

� 1
n
pp � 2q

appears to be superior torqW
� 1

n
pp � 2q for all values of .

4 Recovering extreme quantiles from Lp� quantiles

The generalizedLp� quantiles do not have, forp ¡ 1, an intuitive interpretation as direct

as the originalL1� quantiles. If the statistician wishes to estimate tailLp� quantiles q� 1
n
ppq

that have the same probabilistic interpretation as a quantileq� n p1q, with a given relative

frequency� n , then the extreme level� 1
n can be speci�ed by the closed form expression (2),

that is,

� 1
npp; � n ; 1q �

E
�
|X � q� n p1q|p� 11It X ¤ q� n p1qu

�

E r|X � q� n p1q|p� 1s
;

or equivalently

1 � � 1
npp; � n ; 1q �

E
�
|X � q� n p1q|p� 11It X ¡ q� n p1qu

�

E r|X � q� n p1q|p� 1s
: (9)

In order to manage extreme events, �nancial institutions and insurance companies are typ-

ically interested in tail probabilities � n Ñ 1 with np1 � � nq Ñ c, a �nite constant, as the

sample sizen Ñ 8 . For example, in the context of medical insurance data with 75,789

claims, Beirlant et al. (2004, p.123) estimate the claim amount that will be exceeded on

average only once in 100,000 cases. In the context of systemic risk measurement, Acharya

et al. (2012) handle once-in-a-decade events with one year of data, while Brownlees and

Engle (2012) and Caiet al. (2015) consider once-per-decade systemic events with a data

time horizon of ten years. In the context of the backtesting problem, which is crucial in

the current Basel III regulatory framework, Chavez-Demoulinet al. (2014) and Gonget al.

(2015) estimate quantiles exceeded on average once every 100 cases with sample sizes of the

order of hundreds. Such examples are abundant especially in the extreme value literature.

The statistical problem is now to estimate the unknown extreme level� 1
npp; � n ; 1q from

the available historical data. To this end, we �rst note that under conditionC1p r q and if

 r   1{pp � 1q, then Proposition 1 entails

F pq� 1
n
ppqq

1 � � 1
n

�
 r

Bpp;  � 1
r � p � 1q

as n Ñ 8 :

It then follows from q� 1
n
ppq � q� n p1q and F pq� n p1qq � 1 � � n that

1 � � n

1 � � 1
n

�
 r

Bpp;  � 1
r � p � 1q

as n Ñ 8 :
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Therefore� 1
n � � 1

npp; � n ; 1q satis�es the following asymptotic equivalence:

1 � � 1
npp; � n ; 1q � p 1 � � nq

1
 r

B
�

p;
1
 r

� p � 1



as n Ñ 8 :

Interestingly, 1 � � 1
npp; � n ; 1q in (9) then asymptotically depends on the tail index r but

not on the actual valueq� n p1q of the quantile itself. A natural estimator of 1� � 1
npp; � n ; 1q

can now be de�ned by replacing, in its asymptotic approximation, the tail index r by a
a

np1 � � nq� consistent estimatorp n as above, to get

p� 1
npp; � n ; 1q � 1 � p 1 � � nq

1
p n

B
�

p;
1
p n

� p � 1



: (10)

Next, we derive the limiting distribution of p� 1
npp; � n ; 1q.

Theorem 4. Assume thatp ¡ 1 and:

� F satis�es condition C2p r ; �; A q;

� F � is either light-tailed or satis�es condition C1p ` q;

�  r   1{pp � 1q, and  `   1{pp � 1q in caseF � is heavy-tailed.

Assume further that

� � n and � n Ò1, with np1 � � nq Ñ 8 ;

�
a

np1 � � nq pp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q(in

this condition the notation of Proposition 2 is used).

Then:
a

np1 � � nq
�

1 � p� 1
npp; � n ; 1q

1 � � 1
npp; � n ; 1q

� 1



� OPp1q

as n Ñ 8 . If actually

a
np1 � � nqmax

 
1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `q

(
Ñ 0

then:

a
np1 � � nq

�
1 � p� 1

npp; � n ; 1q
1 � � 1

npp; � n ; 1q
� 1



dÝÑ �

"
1 �

1
 r

�
	

�
1
 r

� p � 1



� 	
�

1
 r

� 1

�*

�
 r

as n Ñ 8 , where	 pxq � � 1pxq{� pxq denotes the digamma function.
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In practice, given a tail probability � n and a powerp P p1; 2s, the extreme quantile

q� n p1q can be estimated from the generalizedLp� quantile estimators pqW
� 1

n
ppq and rqW

� 1
n
ppq in

two steps: �rst, estimate � 1
n � � 1

npp; � n ; 1q by p� 1
npp; � n ; 1q and, second, use the estimators

pqW
� 1

n
ppq and rqW

� 1
n
ppq as if � 1

n were known, by substituting the estimated valuep� 1
npp; � n ; 1q in

place of� 1
n , yielding the following two extreme quantile estimators:

pqW
p� 1

n pp;� n ;1qppq �
�

1 � p� 1
npp; � n ; 1q
1 � � n


 � p n

pq� n ppq

and rqW
p� 1

n pp;� n ;1qppq � Cpp n ; pqpqW
p� 1

n pp;� n ;1qp1q:

This is actually a two-stage estimation procedure in the sense that the intermediate level� n

used in the �rst stage to computep� 1
npp; � n ; 1qneeds not be the same as the intermediate levels

used in the second stage to compute the extrapolatedLp� quantile estimators pqW
� 1

n
ppq and

rqW
� 1

n
ppq. Detailed practical guidelines to implement e�ciently the �nal composite estimates

pqW
p� 1

n pp;� n ;1qppq and rqW
p� 1

n pp;� n ;1qppq are provided in Section 7 through a real data example. For

the sake of simplicity, we do not emphasise in the asymptotic results below the distinction

between the intermediate level used in the �rst stage and those used in the second stage. It

should be, however, noted that when the estimation procedure is carried out in one single

step instead,i.e. with the same intermediate level in bothp� 1
npp; � n ; 1q and the extrapolated

Lp� quantile estimators, then the composite versionrqW
p� 1

n pp;� n ;1qppqis nothing but the Weissman

quantile estimator pqW
� n

p1q. Indeed, in that case, we have by (8) and the de�nition ofCp�; �q

below Corollary 1 that

rqW
p� 1

n pp;� n ;1qppq � Cpp n ; pqpqW
p� 1

n pp;� n ;1qp1q

�
�

p n

Bpp;p � 1
n � p � 1q

� � p n
�

1 � p� 1
npp; � n ; 1q
1 � � n


 � p n

pq� n p1q

�

�

� p n

Bpp;p � 1
n � p � 1q

�
p1 � � nq 1

p n
B

�
p; 1

p n
� p � 1

	

1 � � n

�

�

� p n

pq� n p1q

�
�

1 � � n

1 � � n

� � p n

pq� n p1q � pqW
� n

p1q:

Our next two convergence results examine the asymptotic properties of the two composite

estimators pqW
p� 1

n pp;� n ;1qppq and rqW
p� 1

n pp;� n ;1qppq. We �rst consider the estimator pqW
p� 1

n pp;� n ;1qppq.

Theorem 5. Assume thatp ¡ 1 and:

� condition Sp� q holds, with
° 8

n� 1

a
� pnq   8 ;

� F is strictly decreasing and satis�esC2p r ; �; A q with  r   1{r2pp � 1qsand �   0;

� F � is either light-tailed or satis�es condition C1p ` q;
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�  `   1{r2pp � 1qsin caseF � is heavy-tailed.

Assume further that

� � n and � n Ò1, with np1 � � nq Ñ 8 and np1 � � nq Ñ c   8 ;

�
a

np1 � � nq pp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q(in this

condition the notation of Proposition 2 is used);

�
a

np1 � � nq{logrp1 � � nq{p1 � � nqs Ñ 8 .

Then a
np1 � � nq

logrp1 � � nq{p1 � � nqs

�
pqW

p� 1
n pp;� n ;1qppq

q� n p1q
� 1

�
dÝÑ � as n Ñ 8 :

As regards the alternative extrapolated estimatorrqW
p� 1

n pp;� n ;1qppq, we have the following

asymptotic result.

Theorem 6. Assume thatp ¡ 1 and:

� F is strictly decreasing and satis�esC2p r ; �; A q with  r   1{pp � 1q and �   0;

� F � is either light-tailed or satis�es condition C1p ` q;

�  `   1{pp � 1q in caseF � is heavy-tailed.

Assume further that

� � n and � n Ò1, with np1 � � nq Ñ 8 and np1 � � nq Ñ c   8 ;

�
a

np1 � � nq
�
X n� tnp1� � n qu;n {q� n p1q � 1

�
� OPp1q;

�
a

np1 � � nqpp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q(in this

condition the notation of Proposition 2 is used);

�
a

np1 � � nq{logrp1 � � nq{p1 � � nqs Ñ 8 .

Then a
np1 � � nq

logrp1 � � nq{p1 � � nqs

�
rqW

p� 1
n pp;� n ;1qppq

q� n p1q
� 1

�
dÝÑ � as n Ñ 8 :
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Just as in the previous section, we note that Theorems 4, 5 and 6 hold true in the

dependence frameworkSp� q, for a wide class of estimatorsp n , under further conditions

on the � � mixing coe�cients as well as regularity conditions on the tail of the underlying

distribution and on the joint tail of bivariate margins, see Drees (2003).

The analysis above is concerned with the heavy right-tailsp� n Ñ 1q of non-negative

loss distributions as well as real-valued pro�t-loss random variables. Similar considerations

evidently apply when the focus is on the heavy left-tailp� n Ñ 0q of a series of �nancial

returns. In this case, the problem translates into estimating the quantile� q1� � n p1qwith the

sign convention for values ofX as the negative of returns.

A comparison and validation on �nancial time series in Section 7 shows that the two-

stage estimation procedure may a�ord more accurate estimatespqW
p� 1

n pp;� n ;1qppqand rqW
p� 1

n pp;� n ;1qppq

of q� n p1q than the traditional Weissman estimatorpqW
� n

p1q de�ned in (8).

5 Recovering extreme expectiles from Lp� quantiles

In this section we focus onL2� quantiles, or equivalently expectiles, which de�ne the only

M-quantiles that are coherent risk measures, and we assume therefore thatEpX � q   8 and

 r   1 to guarantee their existence. We consider extrapolated estimation of tail expectiles

q� n p2q, where � n Ò1 and np1 � � nq Ñ c   8 as n Ñ 8 . The �rst presented asymmetric

least squares estimatorpqW
� n

p2q in (6) reads as

pqW
� n

p2q �
�

1 � � n

1 � � n


 � p n

pq� n p2q; (11)

where pq� n p2q is de�ned in (3) with p � 2. The second plug-in Weissman estimatorrqW
� n

p2q,

described in (7), translates into

rqW
� n

p2q :� Cpp n ; 2qpqW
� n

p1q (12)

� p p � 1
n � 1q� p n pqW

� n
p1q;

wherepqW
� n

p1qis the classical Weissman quantile estimator given in (8). The asymptotic prop-

erties of both extreme expectile estimatorspqW
� n

p2q and rqW
� n

p2q had been already established

in Daouia et al. (2017) for independent observations. It was also found there thatpqW
� n

p2q

is superior to rqW
� n

p2q in the case of real-valued pro�t-loss random variables, whilerqW
� n

p2q es-

sentially is the winner in the case of non-negative loss distributions. Here, we suggest novel

extrapolated estimators that might be more e�cient than pqW
� n

p2qand rqW
� n

p2qthemselves. The

�rst basic tool is the following asymptotic connection between the extreme expectileq� n p2q
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and its Lp� quantile analogueq� n ppq:

q� n p2q � Cp r ; 2q �q� n p1q as � n Ò1

� Cp r ; 2q �C � 1p r ; pq �q� n ppq as � n Ò1;

when p ¡ 1 is such that  r   1{pp � 1q [in particular, this is true for any p P p1; 2s since it

is assumed here that r   1]. This asymptotic equivalence follows immediately by applying

Corollary 1 twice. One may then de�ne the alternative estimator

qqp
� n

p2q :� Cpp n ; 2q �C � 1pp n ; pq �pqW
� n

ppq (13)

� p p � 1
n � 1q� p n

�
p n

Bpp;p � 1
n � p � 1q

� p n

pqW
� n

ppq;

obtained by substituting in a
a

np1 � � nq� consistent estimatorp n of  r and the extrapo-

lated version pqW
� n

ppq of the least asymmetrically weightedLp� quantile estimator, given in

(6). The idea is therefore to exploit the accuracy of the asymptotic connection between

population Lp� quantiles and traditional quantiles in conjunction with the superiority of

sampleLp� quantiles in terms of �nite-sample performance. Note that by replacingpqW
� n

ppq

in (13) with the plug-in estimator rqW
� n

ppq introduced in (7), we recover the estimatorrqW
� n

p2q

described in (12).

Theorem 7. Pick p P p1; 2s. Assume that:

� condition Sp� q holds, with
° 8

n� 1

a
� pnq   8 ;

� F is strictly decreasing and satis�esC2p r ; �; A q with  r   1{ maxr1; 2pp � 1qsand

�   0;

� F � is either light-tailed or satis�es condition C1p ` q;

�  `   1{ maxr1; 2pp � 1qsin caseF � is heavy-tailed.

Assume further that

� � n and � n Ò1, with np1 � � nq Ñ 8 and np1 � � nq Ñ c   8 ;

�
a

np1 � � nqpp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q(in this

condition the notation of Proposition 2 is used);

�
a

np1 � � nq{logrp1 � � nq{p1 � � nqs Ñ 8 .
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Then a
np1 � � nq

logrp1 � � nq{p1 � � nqs

�
qqp

� n
p2q

q� n p2q
� 1



dÝÑ � as n Ñ 8 :

As a matter of fact, qqp
� n

p2q approachespqW
� n

p2q when p tends to 2, whereas it approaches

rqW
� n

p2q when p tends to 1. In practice, as suggested by our experiments with simulated

data in Appendix C.1 of the supplementary material document, we favor the use ofqqp
� n

p2q

with p very close to 1 for non-negative loss distributions, and withp very close to 2 for

real-valued pro�t-loss random variables. It is in the latter case thatqqp
� n

p2q may appear to

be appreciably more e�cient relatively to both estimators pqW
� n

p2q and rqW
� n

p2q, especially for

pro�t-loss distributions with long tails.

Another way of recovering expectiles fromLp� quantiles is by proceeding as in the pre-

vious section in the case of ordinary quantiles. To estimate the extreme expectileq� n p2q,

the idea is to use a tailLp� quantile q� 1
n
ppqwhich coincides with (and therefore has the same

interpretation as) q� n p2q. Given � n and the powerp, the level � 1
n such that q� 1

n
ppq � q� n p2q

has the explicit expression

� 1
npp; � n ; 2q �

E
�
|X � q� n p2q|p� 11It X ¤ q� n p2qu

�

E r|X � q� n p2q|p� 1s
(14)

in view of (1). This closed form of� 1
n � � 1

npp; � n ; 2q depends heavily onq� n p2q, but for any

p ¡ 1 such that  r   1{pp � 1q, condition C1p r q and Proposition 1 entail that

F pq� 1
n
ppqq

1 � � 1
n

�
 r

Bpp;  � 1
r � p � 1q

as n Ñ 8 :

It follows from q� 1
n
ppq � q� n p2q that

F pq� n p2qq
1 � � 1

n
�

 r

Bpp;  � 1
r � p � 1q

as n Ñ 8 :

We also have by Theorem 11 in Belliniet al. (2014) that

F pq� n p2qq � p1 � � nqp � 1
r � 1q as n Ñ 8 :

Therefore� 1
n in (14) satis�es the asymptotic equivalence

1 � � 1
npp; � n ; 2q � p 1 � � nqp � 1

r � 1q
1
 r

B
�

p;
1
 r

� p � 1



as n Ñ 8 :

By substituting a
a

np1 � � nq� consistent estimatorp n in place of the tail index r , we obtain

the following estimator of � 1
npp; � n ; 2q:

p� 1
npp; � n ; 2q:� 1 � p 1 � � nq

�
p � 1

n � 1
� 1

p n
B

�
p;

1
p n

� p � 1



: (15)
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Finally, one may estimate the extreme expectileq� n p2q � q� 1
n pp;� n ;2qppq by the following

compositeLp� quantile estimators

pqW
p� 1

n pp;� n ;2qppq �
�

1 � p� 1
npp; � n ; 2q
1 � � n


 � p n

pq� n ppq (16)

and rqW
p� 1

n pp;� n ;2qppq � Cpp n ; pqpqW
p� 1

n pp;� n ;2qp1q; (17)

obtained by replacing� 1
n in pqW

� 1
n
ppq and rqW

� 1
n
ppq with p� 1

npp; � n ; 2q. It is remarkable that these

two estimators are intimately linked to those of Section 4, since

pqW
p� 1

n pp;� n ;2qppq � Cpp n ; pqpqW
p� 1

n pp;� n ;1qppq and rqW
p� 1

n pp;� n ;2qppq � Cpp n ; pqrqW
p� 1

n pp;� n ;1qppq:

We �rst unravel the limit distribution of the extrapolated estimator pqW
p� 1

n pp;� n ;2qppq.

Theorem 8. Pick p P p1; 2s. Assume that:

� condition Sp� q holds, with
° 8

n� 1

a
� pnq   8 ;

� F is strictly decreasing and satis�esC2p r ; �; A q with  r   1{ maxr1; 2pp � 1qsand

�   0;

� F � is either light-tailed or satis�es condition C1p ` q;

�  `   1{ maxr1; 2pp � 1qsin caseF � is heavy-tailed.

Assume further that

� � n and � n Ò1, with np1 � � nq Ñ 8 and np1 � � nq Ñ c   8 ;

�
a

np1 � � nq pp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q (in

this condition the notation of Proposition 2 is used);

�
a

np1 � � nq{logrp1 � � nq{p1 � � nqs Ñ 8 .

Then a
np1 � � nq

logrp1 � � nq{p1 � � nqs

�
pqW

p� 1
n pp;� n ;2qppq

q� n p2q
� 1

�
dÝÑ � as n Ñ 8 :

Next, we derive the asymptotic distribution of the composite estimatorrqW
p� 1

n pp;� n ;2qppq.
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Theorem 9. Pick p P p1; 2s. Assume that:

� F is strictly decreasing and satis�esC2p r ; �; A q with  r   1 and �   0;

� F � is either light-tailed or satis�es condition C1p ` q;

�  `   1 in caseF � is heavy-tailed.

Assume further that

� � n and � n Ò1, with np1 � � nq Ñ 8 and np1 � � nq Ñ c   8 ;

�
a

np1 � � nq
�
X n� tnp1� � n qu;n {q� n p1q � 1

�
� OPp1q;

�
a

np1 � � nq pp n �  r q
dÝÑ � , for a suitable estimatorp n of  r and � a nondegenerate

limiting random variable;

�
a

np1 � � nqmaxt 1 � � n ; App1 � � nq� 1q; Rr pq� n p1q; p;  r q; R`pq� n p1q; p;  `qu � Op1q (in

this condition the notation of Proposition 2 is used);

�
a

np1 � � nq{logrp1 � � nq{p1 � � nqs Ñ 8 .

Then a
np1 � � nq

logrp1 � � nq{p1 � � nqs

�
rqW

p� 1
n pp;� n ;2qppq

q� n p2q
� 1

�
dÝÑ � as n Ñ 8 :

Our experience with simulated data in Appendix C.2 of the supplementary material

document indicates that pqW
p� 1

n pp;� n ;2qppq in (16) behaves very similarly toqqp
� n

p2q in (13). In

particular, pqW
p� 1

n pp;� n ;2qppq exhibits better accuracy relative to both rival estimatorspqW
� n

p2q and

rqW
� n

p2q in the important case of pro�t-loss distributions with heavier tails. By contrast, the

second composite estimatorrqW
p� 1

n pp;� n ;2qppq in (17) does not bring Monte Carlo evidence of any

added value with respect to the benchmark estimatorspqW
� n

p2q and rqW
� n

p2q.

6 Some simulation evidence

To evaluate the �nite-sample performance of theLp� quantile estimators described above

we have undertaken some simulation experiments. The experiments all employ the Pareto

distribution F pxq � 1 � x � 1{  ; x ¡ 1, the Fr�echet distribution F pxq � e� x � 1{ 
; x ¡ 0,

and the Student t-distribution with degree of freedom 1{ . The accuracy of the estimators

is assessed through the Relative Mean-Squared Error (RMSE) and the bias computed over

3,000 replications. Most of the error is due to variance, the squared bias being typically much

smaller. We present mainly the RMSE estimates to save space. All the experiments here

have sample sizen � 200. Further simulation results about extreme expectile estimation
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are discussed in Appendices C.1 and C.2 of the supplementary material document. We also

investigate the normality of some presented extremeLp� quantile estimators in Supplement

C.3, where the QQ-plots indicate that our limit theorems provide adequate approximations

for �nite sample sizes.

6.1 Which Lp� quantiles can accurately be estimated?

To answer this �rst question we compare the least asymmetrically weightedLp estimators

pq� ppq of q� ppq, with two intermediate levels � � 0:9 and � � 0:95, for di�erent values of

p. The obtained Monte Carlo estimates are graphed in Figure 3 forp P t1; 1:05; : : : ; 2u

and  P t0:1; 0:15; : : : ; 0:45u. Not surprisingly, the quality of the estimation deteriorates

when  increases. In particular, for large values of (say  ¥ 0:2), the expectile estimation

appears to be the worst as the RMSE achieves its maximum atp � 2. In contrast, for

these particularly large values of (although this seems to be true for smaller as well), the

estimation accuracy is clearly higher for small values ofp, say p ¤ 1:45. Also, we see that

the value ofp minimizing the RMSE depends heavily on . Yet, the choice ofp P p1:2; 1:6q

seems to be a good global compromise.

This conclusion is, however, no longer valid when it comes to estimate extremeLp� quantiles

q� 1
n
ppqwith, for instance, � 1

n P r1� 1
n ; 1q. To see this, we compare the extrapolated least asym-

metrically weighted Lp estimators pqW
� 1

n
ppq in (6) and the plug-in Weissman estimatorsrqW

� 1
n
ppq

in (7). The experiments all employ� 1
n � 1 � 1{n and various values ofp in r1; 2s. We also

used here the intermediate level� n � 1� k{n and the Hill estimator p n � 1
k

° k
i � 1 log X n � i � 1;n

X n � k;n

of the tail index  (see Hill, 1975). The numberk can be viewed as the e�ective sample size

for tail extrapolation.

The evolution of the RMSE of the two classes of estimatorst pqW
� 1

n
ppqup and t rqW

� 1
n
ppqup in

terms of the valuek is displayed in Figures 4, 5 and 6 for the Fr�echet, Pareto and Student

distributions, respectively. To save space, we show only the Monte Carlo estimates obtained

for the tail index values � 0:1 (top panels) and � 0:45 (bottom panels). It may be seen

that both extreme Lp� quantile estimatorst pqW
� 1

n
ppqup, in the left panels, andt rqW

� 1
n
ppqup, in the

right panels, attain more accuracy forp P r1; 1:3s or p P r1:7; 2s. This can also be observed

from Figure 12 where the RMSE is graphed as function of the powerp in dashed red for

pqW
� 1

n
ppq and in dashed blue forrqW

� 1
n
ppq, with k being chosen optimally so as to minimize the

RMSE of each estimator.

It should also be emphasized that, in 8 cases among the 12 pictures in Figures 4{6, the

best accuracy is not achieved atp � 1 or p � 2, but at inbetween values: a zoom in on some

pictures where the best accuracy is achieved with values ofp R t1; 2u is given in Figure 7.

We shall discuss below the important question of how to pick outp in practice in order to

get the most accurate extremeLp� quantile estimates from a forecasting perspective.
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Figure 3: Relative MSE (in log scale) as a function ofp, for di�erent values of  . From left
to right, � � 0:9; 0:95. From top to bottom, Fr�echet, Pareto and Student distributions.
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Figure 4: Fr�echet distribution|RMSE (in log scale) of pqW
� 1

n
ppq in left panels andrqW

� 1
n
ppq in

right panels. From top to bottom: � 0:1; 0:45.

6.2 Which extreme Lp� quantile estimator: pqW
� 1

n
ppq or rqW

� 1
n
ppq?

Based on the experiments above, we would like to comment here on the performance of the

least asymmetrically weightedLp estimator pqW
� 1

n
ppqin comparison with the plug-in Weissman

estimator rqW
� 1

n
ppq, for each �xed value ofp P p1; 2s.

In the Fr�echet and Pareto cases that correspond to non-negative random variables, it

may be seen from Figures 4 and 5 thatrqW
� 1

n
ppq, in the right panels, behaves almost overall

better than pqW
� 1

n
ppq in the left panels. This can be visualized more clearly in Figures 8 and

9 for three chosen values ofp P t1:2; 1:5; 1:8u. This may also be seen from Figure 12 where

the RMSE is plotted againstp (in dashed lines) fork chosen to minimize the RMSE.

In the case of the Student distribution, it may be seen from Figures 6 and 10 thatrqW
� 1

n
ppq

remains still competitive, but pqW
� 1

n
ppqbecomes more reliable for large values ofp, say,p ¥ 1:9.
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Figure 5: Pareto distribution|RMSE (in log scale) of pqW
� 1

n
ppq in left panels andrqW

� 1
n
ppq in

right panels. From top to bottom: � 0:1; 0:45.

In particular, pqW
� 1

n
ppq is clearly the winner forp � 2 as already demonstrated in Daouiaet al.

(2017) via other scenarios. We repeated this kind of exercise with di�erent values of , and

arrived at the same tentative conclusions.

Interestingly, for p close to 1 and for the positive distributions, both estimators seem

to perform comparably. The important gap in performance which sometimes occurs as

p increases is most certainly due to the sensitivity of the least asymmetrically weighted

estimator to the top extreme values in the sample. The estimatorrqW
� 1

n
ppq does of course

bene�t from more robustness since it is computed using a single sample quantile.

6.3 Selection of the sample fraction k

The computation of the di�erent presented extreme-value estimators requires the deter-

mination of the optimal value of the sample fractionk involved in the intermediate level
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Figure 6: Student distribution|RMSE (in log scale) of pqW
� 1

n
ppq in left panels andrqW

� 1
n
ppq in

right panels. From top to bottom: � 0:1; 0:45.

� n � 1 � k{n. A commonly used heuristic approach is to plot each estimator versusk and

then pick out a suitable k corresponding to the �rst stable part of the plot [see,e.g., Sec-

tion 3 in de Haan and Ferreira (2006)]. A vexing defect with this heuristic approach from a

forecasting perspective is that it requires looking at the plot of the estimator at each forecast

case. Instead of such a semi-automatic procedure, a fully automatic data-driven device can

be performed to recover a suitablêk in each forecast case. The basic idea is to evaluate

�rst the estimator of interest [e.g., p n , pqW
� 1

n
ppq, rqW

� 1
n
ppq, p� 1

npp; � n ; 1q or qqp
� n

p2q] over the range

of values ofk, and then to select thek where the variation of the results is the smallest.

We achieve this by computing the standard deviations of the estimator over a \window"

of successive values ofk. The value of k where the standard deviation is minimal de�nes

the desired sample fraction̂k. This idea was already implemented recently by Daouiaet

al. (2010), Daouiaet al. (2013), Stuper (2013), Goegebeuret al. (2014) and Gardes and

31



0.00

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200
k

R
M

S
E

 (i
n 

lo
g 

sc
al

e)

variable

p=2

p=1.99

p=1.9

p=1.8

p=1.7

p=1.6

p=1.5

p=1.4

p=1.3

p=1.2

p=1.1

p=1.01

p=1.001

p=1.0001

p=1

FrŽchet : gamma=0.1 (tilde)

0.181

0.182

0.183

0.184

0.185

40 50 60
k

R
M

S
E

 (i
n 

lo
g 

sc
al

e)

variable

p=2

p=1.99

p=1.9

p=1.8

p=1.7

p=1.6

p=1.5

p=1.4

p=1.3

p=1.2

p=1.1

p=1.01

p=1.001

p=1.0001

p=1

FrŽchet : gamma=0.45 (tilde)

Figure 7: Zoom in on some pictures in Figures 4, 5 and 6, where the best accuracy corresponds
to values ofp R t1; 2u.
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Figure 8: Fr�echet distribution|RMSE (in log scale) of pqW
� 1

n
ppq (blue) and rqW

� 1
n
ppq (red) as

function of k P t2; : : : ; n � 1u. From left to right,  � 0:1; 0:45. From top to bottom,
p � 1:2; 1:5; 1:8.

Stuper (2014), among others. Here, we apply the improved algorithm developed by El

Methni and Stuper (2017a, pp.919-920). The calculations all employ the same window of

approximately 10 successive values ofk.

The main di�culty when employing this automatic selection method is that the estima-

tor of interest may be so unstable as a function ofk that reasonable values ofk [which would

correspond to the true quantity we want to estimate] may be hidden in the plot. Conse-

quently, the �nal estimates obtained from the selected̂k may exhibit considerable volatility

as a function of the powerp. Typical realizations are shown in Figure 11 when computing

the optimal estimatespqW
� 1

n
ppqand rqW

� 1
n
ppqof the extremeLp� quantile q� 1

n
ppq, with � 1

n � 1� 1{n

and p P p1; 2s. Based on simulated samples from Fr�echet, Pareto and Student distributions
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Figure 9: Pareto distribution|RMSE (in log scale) of pqW
� 1

n
ppq (blue) and rqW

� 1
n
ppq (red) as

function of k P t2; : : : ; n � 1u. From left to right,  � 0:1; 0:45. From top to bottom,
p � 1:2; 1:5; 1:8.

with  P t0:10; 0:45u, the resulting graphs ofp ÞÑpqW
� 1

n
ppq and p ÞÑrqW

� 1
n
ppq are plotted in red

and blue, respectively, along with the trueLp� quantile function p ÞÑq� 1
n
ppq in green. It

may be seen that the selection data-driven method a�ords reasonable estimates regarding

the very small sample sizen � 200, but very good results with stable plots may require a

large sample size of the order of several thousands.

To evaluate the performance of the automatic data-driven method, we have undertaken

some Monte Carlo experiments using the same sample sizen � 200. As a benchmark method

for selecting the optimalk, we have used the value ofk which minimizes the relative MSE

of each estimator. The �nal RMSE and bias estimates of the two estimatorspqW
� 1

n
ppq and

rqW
� 1

n
ppq, computed over 3,000 replications, are graphed in Figures 12 and 13 as functions of
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Figure 10: Student distribution|RMSE (in log scale) of pqW
� 1

n
ppq (blue) and rqW

� 1
n
ppq (red) as

function of k. From left to right,  � 0:1; 0:45. From top to bottom, p � 1:2; 1:5; 1:8.

the powerp. The solid curves in red and blue indicate the respective Monte Carlo estimates

for pqW
� 1

n
ppq and rqW

� 1
n
ppq obtained via the data-driven method, while the dashed versions give

the benchmark optimal results obtained via the RMSE minimization. These results give a

good overall impression of the precision of the two estimatorspqW
� 1

n
ppqand rqW

� 1
n
ppqas well as the

adopted data-driven method. In particular, it may be seen that the evolution of the Monte

Carlo estimates obtained via the data-driven method (solid lines) is generally coherent with

the evolution of those obtained via the RMSE minimization (dashed lines).
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Figure 11: The plots of the estimatorspqW
� 1

n
ppq and rqW

� 1
n
ppq against p, respectively, in red and

blue, with � 1
n � 1 � 1{n and k selected by the data-driven method. The trueLp� quantile

function p ÞÑq� 1
n
ppq in green.
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Figure 12: Relative MSE estimates ofpqW
� 1

n
ppq in red and rqW

� 1
n
ppq in blue, as functions ofp, with

� 1
n � 1 � 1{n. In solid lines the estimates obtained via the data-driven method, in dashed

lines the estimates obtained via the RMSE minimization.
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7 Validation and comparison on historical data

An important step beyond estimation of extremeLp� quantiles q� 1
n
ppq from historical data

is to be able to validate and compare the presented estimation procedures. We already

know that, in the case of non-negative loss distributions, it is more e�cient to use the plug-

in Weissman estimatorrqW
� 1

n
ppq than the least asymmetrically weightedLp estimator pqW

� 1
n
ppq,

as indicated by the Monte Carlo evidence above. In contrast, there is no clear winner in

terms of the MSE in the case of real-valued pro�t-loss random variables. Here, we focus

on the latter case when the ultimate interest is in an estimate of the loss return amount

(negative log-return) that will be fallen below (on average) only once inN cases, withN

being typically larger than or equal to the sample sizen [see,e.g., Acharya et al. (2012),

Chavez-Demoulinet al. (2014), Gonget al. (2015) and Caiet al. (2015) for similar recent

studies]. More speci�cally, we wish to userqW
� 1

n
ppq and pqW

� 1
n
ppq as estimators of thep1{nqth

L1� quantile q1{np1q � q� 1
n
ppq, for which veri�cation and comparison is possible thanks to its

elicitability property [see, e.g., Gneiting (2011) and Ziegel (2016)]. Following the ideas of

Gneiting (2011) and Ziegel (2016), we consider in this section the evaluation and comparison

of the two competing estimatorsrqW
� 1

n
ppq and pqW

� 1
n
ppq with the standard left tail Weissman

quantile estimator pqW
1{np1q from a forecasting perspective, trying to give the best possible

point estimate for tomorrow with our knowledge of today. The portfolio under consideration

is represented by the S&P500 Index from 4 January 1994 to 30 September 2016, which

corresponds to 5727 trading days. The corresponding logarithmic returns are reported in

Figure 14.

Figure 14: Log-returns of the S&P500 Index.
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Let the random variable X model the future observation of interest. If thep� 1
nqth

Lp� quantile q� 1
n
ppqcoincides with thep1{nqth L1� quantile q1{np1q, then it equals the optimal

point forecast forX given by the Bayes rule

q� 1
n
ppq � q1{np1q � arg min

qPR
E rLnpq; Xqs;

under the asymmetric piecewise linear scoring function

Ln : R2 ÝÑ r 0; 8q ; pq; xq ÞÑ� 1
n
px � q; 1q;

where Lnpq; xq represents the loss or penalty when the point forecastq is issued and the

realization x of X materializes. Following Gneiting (2011) and Ziegel (2016), the point

estimatespqW
� 1

n
ppq, rqW

� 1
n
ppq and pqW

1{np1q of q� 1
n
ppq can then be compared and assessed by means

of the scoring function Ln . Suppose that, in T forecast cases, we have point forecasts�
qpmq

1 ; : : : ; qpmq
T

	
and realizing observationspx1; : : : ; xT q, where the indexm numbers the

competing forecasters

qp1q
t :� pqW

1{np1q; qp2q
t :� pqW

� 1
n
ppq and qp3q

t :� rqW
� 1

n
ppq

that are computed at each forecast caset � 1; : : : ; T. These purely historical estimates can

then be ranked in terms of their average scores (the lower the better):

�Lpmq
n �

1
T

T¸

t � 1

Ln

�
qpmq

t ; xt

	
; m � 1; 2; 3: (18)

In our motivating application concerned with the logarithmic returns of the S&P500 Index,

the three estimates were computed on rolling windows of lengthn � 2510, which corresponds

to T � 3217 forecast cases. Based on the US market, there are on average 251 trading days

in a year, and hence each rolling window of sizen � 10� 251 trading days corresponds to

a period of 10 years. Therefore, the tail quantity of interestq� 1
n
ppq � q1{np1q represents the

daily loss return (negative log-return) for a once-per-decade market crisis. Such a choice of

once-in-a-decade extreme event is often used to evaluate systemic �nancial risk such as in,

for instance, Brownlees and Engle (2012) and Caiet al. (2015) and the references therein.

We also used the same considerations as before for the choice of the intermediate level� n

and the estimator ^ n of the tail index  , with the sign convention for values ofY � � X as

the negative of returns. With this sign convention, the quantile of interest,q1{np1q, can be

written as � Q1� 1{np1q, whereQ� ppqstands for the� th Lp� quantile of Y. The extreme level

� 1
n such that Q� 1

n
ppq � Q1� 1{np1qhas the closed form expression� 1

npp; � n ; 1qdescribed in (9),

with � n � 1 � 1{n, and can be estimated byp� 1
npp;1 � 1{n; 1q in (10). Alternatively, without

recourse to this sign convention as the negative of returns, it is not hard to check that the
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level � 1
n such that q� 1

n
ppq � q1{np1q can directly be estimated by

p� 1
npp;1{nq:�

1
n

1
p n

B
�

p;
1
̂ n

� p � 1



:

This might suggest the following strategy at each forecast caset � 1; : : : ; T:

(a) Calculate the �rst competing estimateqp1q
t � pqW

1{np1q;

(b) For a given value ofp P p1; 2s, calculate the� 1
n estimate ^� 1

nptq � p� 1
npp;1{nq;

(c) Calculate the other competing estimatesqp2q
t � pqW

� 1
n
ppqand qp3q

t � rqW
� 1

n
ppqby substituting

the estimated value ^� 1
nptq in place of � 1

n .

As a matter of fact, we use in step (c) the two-stage estimatorsqp2q
t � pqW

�̂ 1
n ptqppq and qp3q

t �

rqW
�̂ 1

n ptqppq: �rst, we estimate � 1
n by �̂ 1

nptq in step (b) and, second, we use the estimatorspqW
� 1

n
ppq

and rqW
� 1

n
ppq, as if � 1

n were known, by substituting ^� 1
nptq in place of � 1

n .

Of course, the computation of the di�erent point estimates in steps (a), (b) and (c)

requires the determination of the optimal values of the sample fractionk involved in the

intermediate levels� n of these estimates. Here, we apply the data-driven method described

in Section 6.3. For instance, the plot of the estimatorqp1q
t pkq � pqW

1{np1q, that is obtained at

the �rst forecast caset � 1, can be visualized in Figure 15 (a) as a rainbow curve. The e�ect

of the Hill estimator ̂ npkq on qp1q
t pkq is highlighted by a colour-scheme, ranking from dark

red (low ̂ n ) to dark violet (high ̂ n ). The resulting optimal estimate qp1q
t p̂k1q is indicated

by the horizontal yellow dashed line, which a�ords a less pessimistic forecast than the worst

observed loss return,X 1;n , indicated by the horizontal pink dashed line.

When proceeding to step (b) in the �rst forecast case, with the choice ofp � 2, we

obtain the plot of the estimator �̂ 1
nptq � �̂ 1

npp; kq graphed in Figure 15 (b) as a rainbow

curve, along with its optimal value indicated by the horizontal yellow dashed line. We can

see that the resulting optimal expectile level, ^� 1
nptq � 0:000137, is much more extreme than

the chosen quantile level (relative frequency 1{n � 0:000398) indicated by the horizontal

pink dashed line. Finally, by proceeding to step (c), we get the estimatorsqp2q
t pkq � pqW

� 1
n
ppq

and qp3q
t pkq � rqW

� 1
n
ppq displayed in Figure 15 (c), along with their optimal valuesqp2q

t p̂k2q and

qp3q
t p̂k3q.

It may be seen in this �rst forecast case that both expectile estimatorspqW
� 1

n
p2qand rqW

� 1
n
p2q

point towards similar forecasts as the rival quantile estimatorpqW
1{np1q. This can be visualized

more clearly in Figure 16, where the plots of the three estimators are superimposed. Inter-

estingly, pqW
1{np1q (in blue) remains very close torqW

� 1
n
p2q (in black) before being extrapolated

beyond the minimum log-return X 1;n (in pink). Then it becomes very close to the other

expectile estimatorpqW
� 1

n
p2q(in orange). In order to decide on the global accuracy of the three
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Figure 15: Step(a) |The plot of the estimator qp1q
t pkq � pqW

1{np1qversusk as a rainbow curve.

The selected optimal estimateqp1q
t p̂k1q indicated by the horizontal yellow dashed line. The

sample minimum log-returnX 1;n indicated by the horizontal pink dashed line. Step(b) |The
plot of the estimator�̂ 1

npp; kq, with p � 2, versusk as a rainbow curve. The selected optimal
estimate �̂ 1

npp; kq indicated by the horizontal yellow dashed line. The relative frequency1{n
indicated by the horizontal pink dashed line. Step(c) |The plots of the estimators qp2q

t pkq �
pqW

� 1
n
ppq and qp3q

t pkq � rqW
� 1

n
ppq versusk, respectively, as rainbow and black curves, withp � 2.

The selected optimal estimatesqp2q
t p̂k2q and qp3q

t p̂k3q indicated, respectively, by the horizontal
yellow and grey dashed lines. The minimum log-returnX 1;n indicated by the horizontal pink
dashed line. The e�ect of̂ npkq on qp2q

t pkq is highlighted by the colour-scheme.
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Figure 16: The plots of the three estimatorsqp1q
t pkq � pqW

1{np1q in blue, qp2q
t pkq � pqW

� 1
n
p2q in

orange, andqp3q
t pkq � rqW

� 1
n
p2q in black. The sample minimumX 1;n in pink.

competing methods, we shall need to rank the values of their realized losses�Lpmq
n by making

use of theT forecasts and realizing observations, as described in (18).

The plots of the realized loss versusk are graphed in Figure 17 (a) forpqW
1{np1qand pqW

� 1
n
ppq,

with various values ofp P t1:1; 1:2; : : : ; 1:9; 2u, and in Figure 17 (b) for thepqW
1{np1qbenchmark

and rqW
� 1

n
ppq with the same values ofp. We can already see thatp � 2 is a worse choice for

both pqW
� 1

n
ppq and rqW

� 1
n
ppq estimators.

The optimal values of the realized loss for the three methods (the lower the better),

displayed in Table 1, indicate that the popular Weissman quantile estimatorpqW
1{np1qdoes not

ensure the best accurate forecasts of the classical risk measureq1{np1q.

�L p1q
n � 5:758e� 05

p � 1:1 p � 1:2 p � 1:3 p � 1:4 p � 1:5
�L p2q

n 5.856e� 05 5.842e� 05 5.632e� 05 5.861e� 05 5.727e� 05

�L p3q
n 5.755e� 05 5.752e� 05 5.748e� 05 5.745e� 05 5.742e� 05

p � 1:6 p � 1:7 p � 1:8 p � 1:9 p � 2
�L p2q

n 5.712e� 05 5.847e� 05 5.918e� 05 6.024e� 05 6.118e� 05

�L p3q
n 5.739e� 05 5.735e� 05 5.919e� 05 6.030e� 05 6.025e� 05

Table 1: Optimal values �Lp1q
n , �Lp2q

n and �Lp3q
n of the realized loss for the three forecasters

pqW
1{np1q, pqW

� 1
n
ppq and rqW

� 1
n
ppq, respectively. Results based on daily loss returns.

The top forecaster ispqW
� 1

n
ppq for p � 1:3; 1:6; 1:5 in this order, followed by rqW

� 1
n
ppq for

p � 1:7; 1:6; 1:5; 1:4; 1:3; 1:2; 1:1, and then pqW
1{np1q. Their optimal values obtained in the �rst
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Figure 17: (a)|Plots of the realized loss k ÞÑ�Lpmq
n pkq for pqW

1{np1q in magenta andpqW
� 1

n
ppqwith

di�erent values of p. (b)|Results with rqW
� 1

n
ppq in place of pqW

� 1
n
ppq. Results based on daily loss

returns.

and last forecast cases are shown in Table 2. In the forecast caset � 1, based on the loss

returns observed during the �rst decade from 1994-01-05 to 2003-12-19, all forecasts of the

Value at Risk q1{np1q do not succeed in falling below the worst recorded loss returnX 1;n .

Yet, all of the generalizedLp� quantiles pqW
� 1

n
ppq and rqW

� 1
n
ppq appear to be smaller and hence

more conservative than the usualL1� quantile pqW
1{np1q. Here, the tail index estimate is found

to be p n p̂kq � 0:256. In the forecast caset � T, based on the last decade from 2006-10-11

to 2016-09-29, all forecasts of the Value at Risk were capable of extrapolating outside the

minimal loss return X 1;n . This is due to the turbulent episodes that have been experienced

by �nancial markets during 2007-2008, as visualized in Figure 14. In particular, the tail

index estimate becomesp n p̂kq � 0:359. Yet, the top forecasterspqW
� 1

n
ppq and rqW

� 1
n
ppq appear to

be larger and hence less pessimistic than theL1� quantile pqW
1{np1q. In both forecast cases,
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that eternal maxim of the pessimists, \expect the worst, and you won't be disappointed"

seems to be transformed into a more realistic calculus via tailLp� quantiles than classical

quantiles.

forecaster pqW
� 1

n
p1:3q pqW

� 1
n

p1:6q pqW
� 1

n
p1:5q rqW

� 1
n

p1:7q rqW
� 1

n
p1:6q rqW

� 1
n

p1:5q
t � 1 -0.067901 -0.067169 -0.067288 -0.066846 -0.066841 -0.066837
t � T -0.105717 -0.103084 -0.104613 -0.101254 -0.102211 -0.103131

forecaster rqW
� 1

n
p1:4q rqW

� 1
n

p1:3q rqW
� 1

n
p1:2q rqW

� 1
n

p1:1q pqW
1{np1q X 1;n

t � 1 -0.066832 -0.066828 -0.066824 -0.066820 -0.066816 -0.071127
t � T -0.104016 -0.104870 -0.105695 -0.106493 -0.107266 -0.094695

Table 2: Optimal values of the top forecasters, obtained in the �rst and last forecast cases,
along with the sample minimumX 1;n . Results based on daily loss returns.

Finally, we would like to comment on the evolution of the extremeLp� quantile level ^� 1
nptq

with t. The optimal estimatest ÞÑ�̂ 1
nptq, obtained for the di�erent values ofp, are graphed

in Figure 18. It can be seen that ^� 1
nptqdecreases, uniformly int, asp increases. Also, it may

be seen that the curve corresponding to the best choicep � 1:3 (dark blue) exhibits two

di�erent trends before and after the severe losses of 2007-2008. Both trends appear to be

much more extreme than the quantile level 1{n.

Let us now consider lower frequency data to reduce the potential serial dependence in

this application. The theory for the extremeLp� quantile estimators is derived for dependent

random variablesX 1; : : : ; X n under mixing conditions. Our theorems also work under inde-

pendence with reduced asymptotic variances. Here, similarly to Caiet al. (2015), we reduce

substantially the potential serial dependence by choosing weekly (Wednesday to Wednesday)

returns in the same sample period. This results in a sample of size 1176. We compute the

three estimatespqW
1{np1q, pqW

� 1
n
ppq and rqW

� 1
n
ppq of q1{np1q on rolling windows of lengthn � 520,

which corresponds toT � 656 forecast cases. Given that there are 52 weeks in a year,q1{np1q

can be viewed as the weekly loss return for a once-per-decade �nancial crisis. The plots of

the realized lossk ÞÑ�Lpmq
n pkq are graphed in Figure 19 (a) forpqW

1{np1q and pqW
� 1

n
ppq, and in

Figure 19 (b) with rqW
� 1

n
ppq in place of pqW

� 1
n
ppq.

The optimal values of the realized loss for the three methods, displayed in Table 3,

indicate that the best forecaster isrqW
� 1

n
ppq for p � 2; 1:9; 1:8 in this order, followed bypqW

� 1
n
ppq

for p � 1:2, rqW
� 1

n
ppqfor p � 1:7; 1:4; 1:5; 1:6, and thenpqW

1{np1q. All in all, the �nal results based

on weekly loss returns seem to indicate thatrqW
� 1

n
ppq is the winner, while the results based on

daily loss returns tend to favor the use ofpqW
� 1

n
ppq.
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Figure 18: The �nal estimates t ÞÑ�̂ 1
nptq, obtained for p P t1:1; 1:2; : : : ; 1:9; 2u.
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Figure 19: (a)|Plots of the realized loss k ÞÑ�Lpmq
n pkq for pqW

1{np1q in magenta andpqW
� 1

n
ppqwith

di�erent values of p. (b)|Results with rqW
� 1

n
ppq in place of pqW

� 1
n
ppq. Results based on weekly

loss returns.
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�L p1q
n � 0:0001791

p � 1:1 p � 1:2 p � 1:3 p � 1:4 p � 1:5
�L p2q

n 0.0001834 0.0001771 0.0001845 0.0001911 0.0001821
�L p3q

n 0.0001792 0.0001796 0.0001801 0.0001790 0.0001790

p � 1:6 p � 1:7 p � 1:8 p � 1:9 p � 2
�L p2q

n 0.0001829 0.0001830 0.0001814 0.0001811 0.0001815
�L p3q

n 0.0001790 0.0001788 0.0001768 0.0001763 0.0001762

Table 3: Optimal values �Lp1q
n , �Lp2q

n and �Lp3q
n of the realized loss for the three forecasters

pqW
1{np1q, pqW

� 1
n
ppq and rqW

� 1
n
ppq, respectively. Results based on weekly loss returns.

Supplementary material

The supplement to this article contains additional simulations, a second application to med-

ical insurance data, technical lemmas and the proofs of all theoretical results of the main

article.
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