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Abstract

The class of quantiles lies at the heart of extreme-value theory and is one of the basic
tools in risk management. The alternative family of expectiles is based on squared
rather than absolute error loss minimization. It has recently been receiving a lot of
attention in actuarial science, econometrics and statistical nance. Both quantiles and
expectiles can be embedded in a more general class of M-quantiles by meansLdf
optimization. These generalizedLP quantiles steer an advantageous middle course
between ordinary guantiles and expectiles without sacri cing their virtues too much
for1 p 2. In this paper, we investigate their estimation from the perspective of
extreme values in the class of heavy-tailed distributions. We construct estimators of
the intermediate LP quantiles and establish their asymptotic normality in a depen-
dence framework motivated by nancial and actuarial applications, before extrapolat-
ing these estimates to the very far tails. We also investigate the potential of extreme
LP quantiles as a tool for estimating the usual quantiles and expectiles themselves.
We show the usefulness of extreme&P quantiles and elaborate the choice op through
applications to some simulated and nancial real data.

Key words: Asymptotic normality; Dependent observations; Expectiles; Extrapolation;
Extreme values; Heavy tailsLP optimization; Mixing; Quantiles; Tail risk.

1 Introduction

A very important problem in actuarial science, econometrics and statistical nance involves
quantifying the \riskiness" implied by the distribution of a non-negative loss variable or a
real-valued pro t-loss variable X . Greater variability of the random variable X and particu-
larly a heavier tail of its distribution necessitate a higher capital reserve for portfolios or price
of the insurance risk. The class of quantiles is one of the basic tools in risk management and
lies at the heart of extreme-value theory. A leading quantile-based risk measure in banking
and other nancial institutions is Value at Risk (VaR capital requirement) with a con dence
level P ®;1qg It is de ned as the th quantile gp qof the non-negative loss distribution
with  being close to one, and as gp q for the real-valued pro t-loss distribution with

being close to zero. The quantilegp q of X is uniquely de ned through the generalized



inverseF, 'p q inftx : Fxxq ¥ u of the underlying distribution function Fyx . It can also
be obtained by minimizing asymmetrically weighted mean absolute deviations (Koenker and
Bassett, 1978):

ae q argpgwinEp X qlg pX;lqg
q

where px;1q | lixnoul |X] stands for the quantile check function, with1;, being
the indicator function. This property has recently been receiving a lot of attention in the
actuarial literature since it corresponds to the existence of a natural backtesting methodology.
Gneiting (2011) introduced the general notion of elicitability for a functional that is de ned
by means of the minimization of a suitable asymmetric loss function. The relevance of
elicitability in connection with backtesting has been discussed, for instance, by Embrechts
and Hofert (2014) and Bellini and Di Bernardino (2015). It is generally accepted that
elicitability is a desirable property for model selection, estimation, generalized regression,
computational e ciency, forecasting and testing algorithms.

Despite their elicitability and strong intuitive appeal, quantiles are not always satisfac-
tory. From the point of view of axiomatic theory, an in uential paper in the literature by
Artzner et al. (1999) provides a foundation for coherent risk measures. Quantiles satisfy
their requirements of translation invariance, monotonicity and positive homogeneity, but not
the property of subadditivity. Hence quantiles fail to be coherent, while they are elicitable.
In contrast to quantiles, the most popular coherent risk measure, referred to as Expected
Shortfall, is not elicitable. The relationship of coherency with elicitability has been addressed
in e.g. Ziegel (2016). From a statistical viewpoint, the asymptotic variance of quantile esti-
mators involves the value of the density function oK at gp gwhich is notoriously di cult
to estimate. From an extreme-value perspective, and perhaps most seriously, quantiles are
often criticized for being too liberal or optimistic since they only depend on the frequency of
tail losses and not on their values. To reduce this loss of information and other vexing defects
of quantiles, Newey and Powell (1987) substituted the absolute deviations in the asymmetric
loss function of Koenker and Bassett with squared deviations to de ne the concept ath
expectile

pq argpglinEp X q29 pX;2qq
q

where x;2q | 1000 X2. The special case 1{2 leads to the expectation oiX .
More generally, by taking the derivative with respect tog in the L? criterion and setting it
to zero, we get the equation

E X paflixe pau .
EX  pa
that is, the th expectile speci es the position p gsuch that the ratio of the average distance
from the data to and below p gto the average distance of the data top qis 100 %. Thus,
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the expectile shares an interpretation similar to the quantile, replacing the distance by the
number of observations. Jones (1994) established that expectiles are precisely the quantiles,
not of the original distribution, but of a related transformation. Abdous and Remillard
(1995) proved that quantiles and expectiles of the same distribution coincide under the
hypothesis of weighted-symmetry. Yao and Tong (1996) showed that there exists a unique
bijective function h : p0; 1q N p0; 1g depending on the underlying distribution, such that
gp gcoincides with php qqgfor all P ®;1g More recently, Zou (2014) has derived a class
of generic distributions for which p gand gp gcoincide for all P ®;1qg Also, as suggested
by many authors including Efron (1991), Yao and Tong (1996), Schnabel and Eilers (2013)
and Schulze Waltrupet al. (2014), quantile estimates and their strong intuitive appeal can
be recovered directly from asymmetric least squares estimates of a set of expectiles.

The advantages of expectiles include their computing expedience and their e cient use of
the data as the weighted least squares rely on the distance to observations, while the quantile
method only uses the information on whether an observation is below or above the predictor.
Also, inference on expectiles is much easier than inference on quantiles ésgeAbdous and
Remillard, 1995). Most importantly, expectiles depend on both the tail realizations of the
loss variable and their probability. This motivated Kuan et al. (2009) to introduce the
expectile-based VaR as p qfor real-valued pro t-loss distributions. The key advantage of
this new instrument of risk protection is that it de nes the only coherent risk measure that
Is also elicitable (Ziegel, 2016). Further theoretical and numerical results obtained by Bellini
and Di Bernardino (2015) indicate that expectiles are perfectly reasonable alternatives to
both classical quantile-based VaR and Expected Shortfall.

A disadvantage of the expectile method is that, by construction, it is not as robust
against outliers as the quantiles. This may cause trouble when estimating the tail risk that
translates into considering the prudentiality level n N 0or , N 1asthe sample siza
goes to in nity. The behavior of tail expectiles p ,gand the connection with their quantile
analoguesgp g have been elucidated only very recently by Bellinet al. (2014), Maoet al.
(2015), Bellini and Di Bernardino (2015) and Mao and Yang (2015), wheK belongs to
the domain of attraction of a Generalized Extreme Value distribution. The estimation of

p ngin the challenging maximum domain of attraction of Pareto-type distributions, where
standard empirical expectiles are often unstable due to data sparsity, has been considered in
Daouiaet al. (2017). In most studies on actuarial and nancial data, it has been found that
Pareto-type distributions, with tail index j 0, describe quite well the tail structure of losses
[see,e.g, Embrechtset al. (1997, p.9) and Resnick (2007, p.1)]. An intrinsic di culty with
expectiles is that their existence requireg€|X| 8 , which amounts to supposing 1.
Even more seriously, the condition 1{2 is required to ensure that asymmetric least
squares estimators of p ,qare asymptotically Gaussian. Already in the intermediate case,



wherenpl  ,qN 8 as , N 1, good estimates may require in practice  1{4. Similar
concerns occur with the Expected Shortfall, the so-called Conditional Tail Expectation or
certain extreme Wang distortion risk measures [see El Methet al. (2014) and El Methni
and Stup er (2017a, 2017b)]. This restricts appreciably the range of potential applications
as may be seen in the nancial setting from the R package&CASdatasets'where realized
values of the tail index were found to be larger than {4 in several instances.

Instead of the asymmetric square loss, a natural modi cation of the expectile check
function is to use the power loss function

X;pq | Tixaod |X[P; P¥ 1

leading to
q g argpgwinEp X gpq pX'; paq

These quantities have already been coined &% quantiles by Chen (1996). They de ne

a special case of the generic concept of M-quantiles introduced earlier by Breckling and
Chambers (1988). Their existence requireE|X|°P * 8 . This is a weaker condition,
compared with the condition of existence of expectiles, when 2. The choice ofp 2

is also required when the in uence of potential outliers is taken into account. The class of
LP quantiles, with p P [; 29 steers an advantageous middle course between the robustness
of quantilesp  1gand the sensitivity of expectilespp  2qto the magnitude of extreme
losses. For xed levels staying away from the distribution tails, inference onq ppq is
straightforward using M-estimation theory. The main purpose of this paper is to extend the
estimation of g ppgand its large sample theory far enough into the upper tail N 1as

n N 8 . There are many important events including big nancial losses, high medical costs,
large claims in (re)insurance, high bids in auctions, just to name a few, where modeling and
estimating the extreme rather than centralL? quantiles of the underlying distribution is

a highly welcome development. We refer to the book of de Haan and Ferreira (2006) for a
modern formulation of this typical extreme value problem in the casp 1 and to Daouia

et al. (2017) in the casep 2.

More speci cally, it is our goal to establish two estimators ofj , ppgfor a generalp and to
unravel their asymptotic behavior for , at an extremely high level that can be even larger
than pl 1{nq in a framework of weak dependence motivated by the aforementioned nancial
and actuarial applications. To do so, we rst estimate the intermediate tailL® quantiles
of order , N 1 such thatnpl ,q N 8, and then extrapolate these estimates to the
proper extremelLP quantile level ,, which approaches 1 at an arbitrarily fast rate in the
sense thatnpl  ,q N ¢, for some constantc. The main results, established for a strictly
stationary and suitably mixing sequence of observations, state the asymptotic normality of
our estimators for distributions with tail index r 2o 1gs?t. As such, unlike expectiles,
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extremeLP quantile estimates cover a larger class of heavy-tailed distributions for 2.
It should also be clear that, in contrast to standard quantiles, generalized® quantiles
take into account the whole tail information about the underlying distribution forp j 1.
These additional bene ts raise the following important question: how to elaborate the choice
of p in the interval rl;2s? This choice is mainly a practical issue that we rst pursue here
through some simulation experiments. Although the value gf minimizing the Mean Squared
Error of empirical LP quantiles depends on the tail index , Monte Carlo evidence indicates
that the choice ofp P {:2; 1:6q guarantees a good compromise for Pareto-type distributions
with 1{2. In contrast, when the empirical estimates are extrapolated to properly
extreme levels ,,, the underlying tail LP quantiles seem to be estimated more accurately for
p P r1;1:3sor pP r1:7;2s. We elaborate further this question from a forecasting perspective,
trying to perform extreme L quantile estimation accurately on historical data.

Yet, the LP quantile approach is not without disadvantages. It does not have an intuitive
interpretation as direct as ordinaryL! quantiles. More precisely, the generalized quantile
g ppg exists, is unique and satis es

E |X q quF 1:Iltan ppqu |
ErX qpagpP 's

It can thus be interpreted only in terms of the average distance frort in the (nonconvex
when 1 p 2)spaceL? . This should not be considered to be a serious disadvantage
however, since one can recover the usual quantilgs ,q q ,plgof extreme order , N 1
and their strong intuitive appeal from tail LP quantilesq,pg n» N 1, that coincide with
g, plg Indeed, given a relative frequency of interest,,, the level , suchthatq, mpq g ,plg
can be written in closed form as

E |X q npqu 1]ltXDq » plaqu
" ErX q,plgP s

in view of (1). One can then estimate , via extrapolation techniques before calculating
the correspondingLP quantile estimators. In this way, we perform tailLP quantile esti-
mation as a main tool when the ultimate interest is in estimating the intuitiveL! quantiles
themselves.

From the point of view of the axiomatic theory of risk measures, theP quantile method
can be criticized for not being coherent for all values @ According to Bellini et al. (2014)
and Ziegel (2016), the onlyL.? quantiles that are actually coherent risk measures are the
expectiles, oiL? quantiles. This disadvantage does not prevent the investigator, however, to
employ tail LP quantiles g, pog as a tool for estimating extreme expectilesp .q g ,[2q
by applying again (1) in conjunction with similar considerations to the above in extreme
quantile estimation. Built on the presented extreme.P quantile estimators, we construct

(1)

(2)

5



three di erent tail expectile estimators and derive their asymptotic normality. Two among
these new estimators appear to be appreciably more e cient relatively to the rival expectile
estimators of Daouiaet al. (2017) in the important case of pro t-loss distributions with long
tails.

The paper is organized as follows. Section 2 describes in some detail how population
LP quantiles q pog are linked to standard quantilesq plgas N 1. Section 3 deals with
estimation of intermediate and extremeLP quantilesq poqfor pj 1. Estimators of the
extreme level , in (2) are discussed in Section 4, with implications for recovering composite
estimators of high quantilesq ,plg Extrapolated high expectilepp  2q estimation is dis-
cussed in Section 5. The theory in these sections is derived in the general case of stationary
and dependent data satisfying a mixing condition. A detailed simulation study and a con-
crete application to the S&P500 Index are given, respectively, in Section 6 and Section 7 to
illustrate the usefulness of extremal P quantiles. Proofs and further simulation results are
deferred to a supplementary material.

2 Extremal population LP quantiles

This section describes in detail what happens for large populatidu? quantiles and how they
are linked to large standard quantiles. We denote in the sequel the cumulative distribution
function of X by F, that we suppose to be continuous, and its survival function bf 1 F.
We rst assume that X has a heavy right-tail or, equivalently, thatF satis es the following
regular variation condition:

C.p gThe function F is regularly varying in a neighborhood of8  with index 1{ 0,
that is, o

F_FIXCI ¥
Fpq

This is equivalent to the standard rst-order condition

lim forall xi O:
tN 8

x forall xj O;

by Theorem 1.2.1 in de Haan and Ferreira (2006), wheftgptqg p1{F pqis the left-
continuous inverse of {F. In contrast to many situations in extreme value analysis, we do
not assume here thatX is positive or even bounded below. In particulaX may have a
heavy left-tail as well, a case that we shall discuss in what follows.

Under this condition, the asymptotic properties (for N 1) of the usual quantileq plq
have been extensively studied in the literature as may be seen froerg. de Haan and
Ferreira (2006). Here, we focus on the less discussed generalized quardilgswith pj 1.



Denoting by X maxp X; Ogthe negative part ofX , we rst have the following asymptotic
connection betweerF py ppggand Fpg plgg 1

Proposition 1. Assume that the survival functionF satis es condition C,p g For any
pi 1, wheneverEpXx? 'q 8 and K{pp 1g we have

Fpy maq
1 Bmp; ' p 1q

lim
a.

»l

where Bp; yq t* 'pl  td dt stands for the Beta function.
0

Note that when the survival function F satis es condition C;p qand Kpp 1q we
have EpXP 'q 8 with X maxpX; Og This entails together with condition EpX P q
8 that E[X|P ' 8 , and hence theLP quantiles of X are indeed well-de ned. Even
more strongly, we get the following direct asymptotic connection between pog and q plq
themselves.

Corollary 1. Under the conditions of Proposition 1, we have

lim 3.
aqpg Bmp;, ' p Iq

Accordingly, extreme LP quantiles are asymptotically proportional to extreme usual
quantiles, for allpj 1. The evolution of the proportionality constant

Cp ;py: :

B mp; p 1q

with respect to P ®; 1{2s is visualized in Figure 1, for some values ¢f P 11;2s It can
be seen that the usual quantileq plqis more spread (conservative) than thé.P quantile
q ma as the level N 1. This property is of particular interest in actuarial risk theory,
where loss distributions typically belong to the maximum domain of attraction of Pareto-
type distributions with tail index 1{2. Indeed, when the ordinary quantile breaks down
at an extremely high tail probability (and hence the underlying VaR changes drastically
the order of magnitude of the capital requirement), its generalizetd® quantile analogue
remains de nitely more liberal. The latter would result in less excessive amounts of required
capital reserve, which might be good news to actuarial institutions.

In the particular case of integersp, we get the next corollary immediately from the
identities

Xq pq
B x; —_—
. Reya X yq

where xq 08 t* le 'dt denotes Euler's Gamma function.

and  1q x pxq forall x;yi O;



Figure 1: Behavior of P ®;1{2s PRCp ; pqfor some values op P r1; 2s

Corollary 2. Assume that the survival functionF satis es condition C;p g Assume that
p k 1wherek is a positive integer. WheneveEpXk g 8 and 1{k, we have

+ |
i Rk lgg [ jg
a 1 KK! '

Note that for p 2, we nd that

lim Fp 299 1
a 1
which was already shown in Daoui&t al. (2017).
Next, we shall derive some asymptotic expansions bP quantiles, which shall be very
useful when it comes to establish the asymptotic normality of extremie? quantile estima-
tors in the next section. As is customary in the case of ordinary quantiles, this requires the

extra condition:

Cp; ;A qThe function F is second-order regularly varying in a neighborhood of
8 with index L 0, second-order parameter @ 0 and an auxiliary function A
having constant sign and converging to 0 at in nity, that is,

1 f_ptxq x U
Ap{Fpqq Fpq

. . x Y logx
where the right-hand side should be read as———— when 0.

x{ 1
x U :

@i O

lim
tN 8

This classical second-order condition controls the rate of convergenceéCiyp ¢ in particular,
the function |A| is regularly varying with index o 0, and therefore, the larger | is, the
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faster the function |A| converges to 0 and the smaller the error in the approximation of the
right tail of X by a Pareto tail will be. Further elements of interpretation of the extreme
value conditionG,p; ;A gcan be found in Beirlantet al. (2004) and de Haan and Ferreira
(2006) along with a list of examples of commonly used continuous distributions satisfying
this assumption: for instance, the (Generalized) Pareto, Burr, Fechet, Student, Fisher
and Inverse-Gamma distributions all satisfy this condition. More generally, so does any
distribution whose distribution function F satis es

1 Fxg x % a bx® ox °q as xN8 ;

whereaj 0,bPRztOuandcj O are constants. This contains in particular the Hall-Weiss
class of models (see Hua and Joe, 2011), and it is straightforward to see that in any such
case, conditionG,p; ;A qis met with c and Apq ac bc?t °.

Besides, as can be seen from Theorem 2.3.9 in de Haan and Ferreira (2006), condition
Cp; ;A qis equivalent to the perhaps more usual extremal assumption on the tail quantile
function U that

o e 1 Upxq x 1
@i O lim Amtq Ung X X ;

From now on, we denote byF the survival function of X. Also, a survival function

S will be said to be light-tailed (and by convention, we shall say it has tail index 0) if it
satis esx2Spxq N 0 asx N 8 , forall aj 0. The following second-order based re nement
of Proposition 1 is the key element in order to obtain the desired asymptotic expansion of
LP quantiles.

Proposition 2.  Assume thatpj 1 and:

F satis es condition Gp ;; ;A g
F s either light-tailed or satis es condition C,p - g

. UYpp 1g and - Ifpp 1qin caseF is heavy-tailed.

Then
F ppag : .
where
1
. r . .
Rpipd g5 g A 91 oflag K A g— Pl ofag
minp r;1q
r .
pp 1q B, .! p 1q Rrpa plg p; q
r{maxp -;1q
: R-po plg p; -q

Bmp: ;' p 1q
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as 01, with
r
% ¢ Bm .t p 1g |
Kmp: ;q , ™1 &®mppl q,* p 1g Bp;  * p Iogs if O

boP 21 x 1 2x Hr logpedx if 0;
r 1
?L EpX 1o x qqul oplqq if a1
Repip; d o, @ T
FpoBmp L1 ‘gd oplagif .+ 1
$ .
! EpX 1 ¢ x oud if o]
& a _
and R{:p: q . q AL oplaq or F s light-tailed;
% .
FpagBp-' p L1 .'gd oplqqif - L

When X is integrable, and in particular when expectiles oX can be computed, the
asymptotic expansion ofL? quantiles reduces to the following.

Corollary 3. Under the conditions of Proposition 2, ifE|X| 8 , then

Fpg pag ‘
1 Bm; /! p 1g

Pl rp;pqq

as 01, where
r 1
B, ;! p 19 qplq

r 1
B, L p lqup; r; OA 1 pl  oplgq

Finally, we get the following re ned asymptotic expansion ofy ppqitself with respect to
the ordinary quantile q plg

rp;pq pp Iqg PEPXq oplgq

Proposition 3. Under the conditions of Proposition 2, if in additionF is strictly decreasing:

# +
aq g 1 r 1
— Cpy; 1 Rp: - 1 0 A ——
q plg pPripPg rRP;PQg B .! p Ig plg 1
as Ol

3 Estimation of high LP quantiles

Suppose, as will be the case in the remainder of this paper, that we observe a random
samplepX 1;:::; X,gfrom a strictly stationary sequencepX ;; X,;:::q in the sense that for
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distribution. Suppose further that the common marginal distribution of that sequence is that
of X and denote byX ., @ a X, the ascending order statistics of the observed sample

of X, where , N 1asn N8 . Here ,, may approach one at any rate, covering the special
cases of intermediateLP quantiles with npl  ,q N 8 and extremelLP quantiles with
npl  .q N ¢, wherecis some constant.

In order to do so, we need to specify the dependence framework we shall be working in.
Dependence frameworks and time series models have been used for a long time in statis-
tical and econometric considerations when estimating nonextremee( central) quantities,
including regression contexts, by employing well-established theoretical arguments; we refer
in particular to Boente and Fraiman (1995), Honda (2000), Zhaet al. (2005), Kuanet al.
(2009) and references therein in the case of quantiles and Yao and Tong (1996), Cai (2003)
and references therein in the case of expectiles. Let us emphasise that this is arguably not,
however, the case in statistical treatments of extreme value theory, even when considering
the kind of nancial or actuarial applications this paper focuses on. The earliest theoretical
development in this context is Hsing (1991), who worked on the asymptotic properties of
the Hill estimator (Hill, 1975) of the tail index for strongly mixing (or mixing) se-
guences. Related studies are Resnick and Saria (1995, 1997, 1998), although they worked
in a di erent dependence framework. An important theoretical advance was made by Drees
(2000, 2002, 2003), who in a series of papers obtained tools making it possible to exam-
ine the asymptotic properties of a wide class of statistical indicators of extremes of strictly
stationary and dependent observations through a general approximation result for the tail
quantile process by a Gaussian process. These papers were written for absolutely regular (or
mixing) sequences and in uenced a sizeable part of very recent research on the extremes
of a time series: we refer, among others, to Davis and Mikosch (2009, 2012, 2013), Robert
(2008, 2009), Rootzn (2009), Drees and Rootzn (2010) and de Haahal. (2016), which,
in their respective contexts, worked under mixing conditions or under assumptions that can
be embedded in a mixing framework.

Due to the exibility of the results of Drees (2003), and the necessity here to extrapolate
beyond the available data and therefore to use an estimator of the tail index, we also elect
to work in such a mixing framework, which we introduce hereafter. For any positive integer
m, let F1., and F,.g denote the past and future - elds generated by the sequencpX g

Fim 1,05, Xmg and Fpg PXm; Xm 100G
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De ne then the  mixing coe cients of the sequencepX ,q by:

@ PNztOu, mg sup |PBB|Aq PpBqt
mPNztOu
APF 1:m
BPFm n; 8

The sequenceX ,qis said to be mixing if g N 0 asn N 8 , and this is precisely the
notion of mixing we shall work with to obtain our theoretical results. Intuitively, this condi-
tion means that the sequenceX ,qis asymptotically memoryless: an event that happened in
the past has a vanishingly small in uence on current and future events as the time elapsed
since this past event increases.

While this notion of mixing is not the  mixing condition introduced in Drees (2003), the
rationale behind this choice is twofold:

(i) First, mixing is stronger than  mixing, which shall be used in our extrapolation
step. See Bradley (2005).

(i) Second, the mixing condition implies a  mixing condition in the following sense:
let, for any eld A, L?pAgdenote the space of square-integrable random variables
which are A measurable. IfpXq; Xo;:::qis  mixing, then the  mixing coe cients

Y;Z
@ PNztOu;, pnq sup a COVpa’ g
mPNztOu VarpYq VarpZq
YPL2pF1:m q

ZPL?0Fm n:s q

must satisfy mng N 0, see Bradley (2005). If moreover the positive quadrant depen-
dence of any pairpX 1; Xq (for k ¥ 2) is assumed, in the sense that

@1; Xk PR; PpX1 i X1; Xk i XkQ ¥ PpX1i XiPpXk i XkG

thenthe  mixing condition, which by de nition is adapted to variance and correlation
considerations, shall make it easy to compute the exact rate of growth of the variance
of a wide class of sums of square-integrablepX;q measurable random variables, of
which our empirical least asymmetrically weighted_P estimator at the intermediate
level introduced in Section 3.1 below is precisely an element. This will then be used
in conjunction with limit theory from Utev (1990), valid in our  mixing framework,

to obtain the asymptotic normality of the aforementioned estimator. We refer the
reader to Lemmas 7 and 8 in Appendix B of our supplementary material document
for the full technical developments. Let us highlight that mixing alone is in general
not su cient to compute the exact rate of convergence of a sum of strictly stationary
random variables, see Ibragimov (1975), Peligrad (1987) and Bradley (1988).
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It should, nally, be noted that there is in general no relationship between mixing and

mixing, and that  mixing is the least restrictive of the widely used mixing conditions
that imply both and mixing, see again Bradley (2005). The mixing framework
therefore seems to be convenient and reasonable for our purpose.

All in all, we shall work under the following dependence condition on the sequenge, g

Sp gThe sequencgX; X,;:::qis a strictly stationary and  mixing sequence with
positive quadrant dependent bivariate margins.

Note that the positive quadrant dependence of bivariate margins is itself a fairly weak as-
sumption, see Nelsen (2006, p.200). It is satis ed if and only if the copula functidy of the
pair pX; Xq satis es Cypu; vq ¥ uv for any u;v P 10; 1s (the function Cy always exists by
Sklar's theorem; see Sklar, 1959). This, in turn, contains the case of extreme-value copulas,
which are particularly adapted to the description of the joint extremes of a random pair, see
e.g. Gudendorf and Segers (2010). Finally, let us mention that conditio®p g allows for
the case of an independent and identically distributed sequenp¥ 1; X,;:::q and we shall
speci cally highlight the particular form of our results in this case.

3.1 Intermediate levels

We de ne the empirical least asymmetrically weighted_? estimator of q , pog as

A, g argmin}’ PXiu;pq argminl’ | o LixoudXi Ul 3)
uPR ni 1 uPR ni 1
Clearly
a
Q.09 -
n n 1 argmin ,pu; 4
Pl g g Do PP “)
where
1 S a__
nfu;pqr ————— . Xi dq,pq ug.mpa{ npl gp - PXi q, g pa:

pra ., mpas
Since this empirical criterion is a convex function ofi, the asymptotic properties of the
minimizer follow directly from those of the criterion itself by the convexity lemma of Geyer
(1996); see also Theorem 5 in Knight (1999). For this, we require the second-order condition
Cp; ;A qgor, alternatively, the following re ned rst-order condition:

H1p gqFor x large enough, the survival functiorF veri es
»
M
u

Fmxg x % cxgexp

Xo
where i 0, cis a di erentiable function such that cgxq N ¢g j 0 andxc'xq N 0 as
xN 8 ,xoj 0and isa measurable function converging to O at8
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This is a slightly more stringent assumption than the usual rst-order conditiorC;p gand its
related Karamata representation [see Theorem B.1.6 in de Haan and Ferreira (2006, p.365)].

Theorem 1. Assume thatpj 1 and:

condition Sp gholds, with 2

a__
n 1 mq 8 ;
there is | O such thatEpx™ % g 8 ;
F satis es either conditionH ;p qor Gp; ;A g with Hr2mp 1gs

» O1is such thatnpl ,qN 8 ;

a
under conditionC,p; ;A q we have npl ,cApd .glqg Oplg

Then there is 2 ¥ 0 such that

a
Q.gq ; .2 . 2 N .
n . 1 RN 0 2vp: as nN 8 :
il g q. p;pogd  “q
with B 1. 1 2p 2 @p 1 1 2n 2
vp:pqg PP L p 29 p 1qp P 2q

Bm Lpg pap ' p 19
In the particular case of an independent sequenp& 1; X,;:::q then 2 0, i.e.

a ——— 0,mq

n 1 YN O 2vp: as nN 8 :
pL  nq q. P pPq

Note that the condition Hr2p 1gsimplies 4pp 1gand henceEpX® 'q 8 .
Moreover, the conditionEpXx ® ™ g 8 impliesEpX® 'q 8 . HenceE[X|P ! 8 ,and
thus the LP quantiles exist and are nite. Note also that conditions Hr2p 1gsand
Epx™ 9 199 8 ensure the convergence of the (convex) empirical criterion pu; pg which
entails the convergence of its minimizer. Finally, the estimatog , pog has the same rate of
convergence under the dependence conditi®p qas it has for independent observations,
the price to pay for allowing our dependence setup being an enlarged asymptotic variance.

When the sequenceX ;; X,;:::qis independent and in the special casgsO1 and p
2, we recover the asymptotic normality of intermediate sample quantiles and expectiles,
respectively, with asymptotic variances

. plg p 'q . mgp ' 2 2
Vp ;1q m 1 and Vp;2q 2qp ¢ 1g 1 2

The behavior of the variance PNV p ; pgis visualized in Figure 2 for some values ofP r1; 2s
with P ®; 1{2s It can be seen in this Figure that for values op close to but larger than 1,

14



the asymptotic variance of the intermediate sampléP quantile is appreciably smaller than
the asymptotic variance of the traditional sample quantile. In particular, values gb between
1:2 and 14 seem to yield estimators who may be more precise than the sample quantile in
all usual applications (for which P [®; 1{2s).

0
0

Figure 2: Asymptotic variance P ®;1{2s bRV p ;pg for some values op P r1;2s Black
line: p 1, Red line: p  1:2; Yellow line: p  1:4; Purple line: p  1:6; Green line:
p 18; Blueline: p 2

3.2 Extreme levels

We now discuss how to extrapolate intermediate? quantile estimates of order , O1, such
that npl  ,q N 8, to very extreme levels } O1 withnpl qNc¢c 8 asnNS8.
The basic idea is to rst use the regular variation conditionC,p gthat entails the following
classical Weissman extrapolation formula for ordinary quantiles:

q:plg Upd Jg'g 1 ;
q,plg Upd .qlqg 1

as , and !approach 1 [Weissman (1978)]. The key argument is then to use the asymptotic
equivalence

gmg Cp;pg gplg as O (5)

shown in Corollary 1, to get the purelyLP quantile approximation

q:pq 1}
q.mq 1

15



This motivates us to de ne the estimator

W 1 1 Pn
Aapa: ., g (6)
n
a - = - - - . .- .
forsome npl ,q consistent estimatorp, of r, with g, ppgbeing the empirical least

asymmetrically weightedL? estimator of q , pog

Theorem 2. Assume thatpj 1 and:

o

a__
condition Sp gholds, with ﬁ . g 8 ;

F is strictly decreasing and satis esC,p ,; ;A qwith , 2{r2mp 1gsand (0
F s either light-tailed or satis es condition C,p - g
Yr2mp 1gsin caseF is heavy-tailed.
Assume further that
nand 'O1, withnpl ,qN8 andnpl qNc 8 ;

npl nqPn rq\’(f{l , for a suitable estimatorp, of ., and a nondegenerate

limiting random variable;

a
npl  ,gmaxtl ,;Apd  .q'g Repd,pAlGp; (G Rp,plgp; qu Oplq(in this

bias condition the notation of Proposition 2 is used);
"l aflogl  aofd lgsN8:
Then

npl nd A"l pog . -
L 1 YKI as NN 8 :
logrpl  ha{d  1gs q:ppq

Another option for estimating q :ppqgis by using directly its asymptotic connection (5)
with q:plgto de ne the plug-in estimator

q{ma:  Cpon; pan’i plg (7)

obtained by substituting in a npl ,qg consistent estimatorp, of and the traditional

Weissman estimator .
1 n

1
fifla  T—" A0 (8)
n

of the extreme quantileq :plg whereg ,plg X, wwu ,qn @andt udenotes the oor function.

16



Theorem 3. Assume thatpj 1 and:
F is strictly decreasing and satis esC,p ;; ;A qwith ,  1{pp 1gand 0;
F s either light-tailed or satis es condition C,p - g
Ypp 1qin caseF is heavy-tailed.
Assume further that
nand 'O1, withnpl ,qN8 andnpl qNc 8 ;
nIOl nd Xn tpt oan{d,Pld 1  Opplg

a . . :
npl  .q P quﬂI , for a suitable estimatorp, of ; and a nondegenerate

Ilmltlng random variable;

npl aqmaxtl .; Apd Qg Rpo,plgp; (G R, plgp; ~qu  Oplq(in this
condition the notation of Proposition 2 is used);

"l nqllogpl  .ofl  losN8:

Then w
npl nQ 91 Pq 1 W

as nN8 :
logrll  na{d  Jgs q:poq

Both these results, as well as the extrapolatlon results of the upcoming Sections 4 and 5,
require a tail index estimator p, such that npl  ,qpon +q W with a limiting
random variable with nondegenerate distribution. Under our dependence conditi@p g
the sequenceX 1; X,;:::qis in particular  mixing, and it then follows from Drees (2003)
that, under further conditions on the  mixing coe cients as well as regularity conditions
on the tail of the underlying distribution and on the joint tail of bivariate margins, there
exists a wide class of estimatorg, satisfying this convergence condition. In particular, it is
mentioned in Drees (2003, pp.625{626) that the Hill estimator (Hill, 1975), the Pickands esti-
mator (Pickands, 1975), the moment estimator (Dekkerst al., 1989) and the maximum like-
lihood estimator in a generalized Pareto model are all part of this %{ass; later, de Haemnal.
(2016) proved that a bias-reduced version of the Hill estimator is alsonpl  ,q consistent
in thls sense. Theorem 3 further requires that the empirical estimatof, tn ,qun 0f g, plq
be npl  .q consistent; under the regularity conditions of Drees (2003), this is also true
and X, wm ,qn IS in fact asymptotically Gaussian, see Theorem 2.1 therein. Finally, let us
mention that this convergence condition orX,, na ,qn IS clearly satis ed for independent
observations, see Theorem 2.4.1 in de Haan and Ferreira (2006, p.50).
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Our experience with simulated and real data indicates that, for non-negative loss distri-
butions, the plug-in Weissman estimatoqu':{ppq in (7) tends to be more e cient relative to
the least asymmetrically weighted_P estimator qV‘n{ pPqin (6), for all values ofp i 1. However,
for real-valued pro t-loss random variables, the least asymmetrically weighted® estimator
q‘ﬁ{ ppqg is sometimes the winner following the values qf and . In particular, q"‘n{go 2q
appears to be superior th"r‘%’m 2qfor all values of .

4 Recovering extreme quantiles from LP quantiles

The generalizedLP? quantiles do not have, forp j 1, an intuitive interpretation as direct
as the originalL* quantiles. If the statistician wishes to estimate tailL? quantiles g :ppq
that have the same probabilistic interpretation as a quantileg ,plg with a given relative
frequency ,, then the extreme level ! can be speci ed by the closed form expression (2),

that is,
E |X qnplcﬂ) 11tannplqu.
ErX q,plgp s

TP 0l
or equivalently
E X q,paP "Lix;q,pmau (9)

ErfX q,plgP 's

In order to manage extreme events, nancial institutions and insurance companies are typ-
ically interested in tail probabilites , N 1 with npl . N ¢, a nite constant, as the
sample sizen N 8 . For example, in the context of medical insurance data with 75,789
claims, Beirlant et al. (2004, p.123) estimate the claim amount that will be exceeded on
average only once in 100,000 cases. In the context of systemic risk measurement, Acharya
et al. (2012) handle once-in-a-decade events with one year of data, while Brownlees and
Engle (2012) and Caiet al. (2015) consider once-per-decade systemic events with a data
time horizon of ten years. In the context of the backtesting problem, which is crucial in
the current Basel 1l regulatory framework, Chavez-Demouliret al. (2014) and Gonget al.
(2015) estimate quantiles exceeded on average once every 100 cases with sample sizes of the

1 7 o~ lg

order of hundreds. Such examples are abundant especially in the extreme value literature.
The statistical problem is now to estimate the unknown extreme level'mp; ,;1qfrom
the available historical data. To this end, we rst note that under conditionC,p ,gand if
+  Upp 1g then Proposition 1 entails

F o 2ppqq ‘
1 7 Bm; ;! p 1g

as nN8 :

It then follows from q:ppq g ,plgand Fpg ,plaqg 1, that

1 n r

N8 :
1 2 Bmp ! p 1g as n

18



Therefore !  mp; ;1gsatis es the following asymptotic equivalence:

1 1 i
1 9 nlg pl =B p;= p 1 asnN8:
r

r

Interestingly, 1 }m; n;1qgin (9) then asymptotically depends on the tail index , but
not on the actual valueq , plq of the quantile itself. A natural estimator of 1 m; ,;1q
8an now be de ned by replacing, in its asymptotic approximation, the tail index . by a

npl  ,g consistent estimatorp, as above, to get

1 1
b nslg 1 pl nqp—B pio P 1 (10)
n

h
Next, we derive the limiting distribution of plp; »; 1g
Theorem 4. Assume thatpj 1 and:
F satis es condition Gp ; ;A g
F is either light-tailed or satis es condition C,p - g
. Ypp 1lg and - Ifpp 1qin caseF is heavy-tailed.

Assume further that

hnand ,O1 withnpl ,qN8;

a - .

npl g quf{I , for a suitable estimatorp, of , and a nondegenerate
limiting random variable;
a_

npl  ngmaxtl ., Apd  .q ‘g R ,plgp; (G Rp,plgp; ~qu Oplg(in
this condition the notation of Proposition 2 is used).

Then: a 1 L 1
— pys ns1qg
LG Imp; ;g

1 Opplq

asn N 8 . If actually

a__ ( .
npl  hgmax 1 ny Apd nQ 1q; Repd plgp; (g Rpg,plgp; g N O
then:
a_——— 1 p'w; nilg . 1 1 1
n . 1 YR 1 = il 1 - 1
L9 T g r C P r r

asn N8 , where mxq ‘xq{ pxgdenotes the digamma function.
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In practice, given a tail probability , and a powerp P {;2s the extreme quantile
g ,plg can be estimated from the generalizetl? quantile estimators q"}q{ g and q";{ Qg in
two steps: rst, estimate ! lm; n;1gby pi; . 1gand, second, use the estimators
A% pog and g g as if | were known, by substituting the estimated valuempp; «; 19 in
place of }, yielding the following two extreme quantile estimators:
1 . Pn
q\[;\{pp; n;lqmq L iﬂm, n,lq Q.19

n

and q\rgpp; a11g00 Cnon;pqq‘;n!pp; L aqfla

This is actually a two-stage estimation procedure in the sense that the intermediate levegl
used in the rst stage to computep}mp; n»; 1gneeds not be the same as the intermediate levels
used in the second stage to compute the extrapolatdd® quantile estimators p"‘n{ ppg and

q‘ﬁ{ g Detailed practical guidelines to implement e ciently the nal composite estimates
q‘éﬁm; L 1qPd and q‘éﬂ‘{m; ,1qPq are provided in Section 7 through a real data example. For
the sake of simplicity, we do not emphasise in the asymptotic results below the distinction
between the intermediate level used in the rst stage and those used in the second stage. It
should be, however, noted that when the estimation procedure is carried out in one single
step instead,i.e. with the same intermediate level in bothplpp; n; 1gand the extrapolated

LP quantile estimators, then the composite versioq‘gn‘{pp; . 1gPPdis nothing but the Weissman
quantile estimator g plg Indeed, in that case, we have by (8) and the de nition oCp; q
below Corollary 1 that

q\lﬁm; a119Pd Cppon; pqq‘;gpp; Laghld

Pn 1 1 : ’1 Pn
- BB 028 g g
Bmo:p, p 1q 1
1 D1 Pn
pn pl nqp_nB p'p_n p 1
Q.p0lq

Bm;p,t p 1q 1 .

1 N Pn

I p.plg " plg
n

Our next two convergence results examine the asymptotic properties of the two composite
estimatorsq‘éﬂ‘{m; LagPpaand q‘;n‘{pp; .1qP4 We rst consider the estimatorq‘rjn‘{m; e ol

Theorem 5. Assume thatpj 1 and:

o

a__
condition Sp gholds, with ﬁ 1 Mg 8 ;

F is strictly decreasing and satis esC,p ; ;A qwith ,  1Lr2p 1lgsand 0;

F s either light-tailed or satis es condition C,p - g
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Yr2mp 1gsin caseF is heavy-tailed.
Assume further that

nand ,O1 withnpl ,qN8 andnpl ,.,qNc 8 ;

a . . :
npl QP quﬂI , for a suitable estimatorp, of ; and a nondegenerate

I|m|t|ng random variable;

npl aqmaxtl .; Apd  .q 'g Rpo,plgp; (G R, plgp; ~qu Oplq(in this
condition the notation of Proposition 2 is used);

npl npl  ngflogrl  ha{ll  .qsN 8.

Then a "
npl nq 1o n ;1qmq 1 YKI
logrpk na{d .gs  q,plq

as nN8 :

As regards the alternative extrapolated estimatom‘éj‘{m .1gPG we have the following
asymptotic result.

Theorem 6. Assume thatpj 1 and:

F is strictly decreasing and satis esC,p ;; ;A qwith ,  1{pp 1gand 0;

F s either light-tailed or satis es condition C,p - g
Ypp 1qin caseF is heavy-tailed.

Assume further that
nand , 01 withnpl ,qN8 andnpl ,qNc 8 ;

npl nd Xn tnpt ncun{q plg 1 Opplqg

npl n dPn rq\?ﬂl , for a suitable estimatorp, of , and a nondegenerate
I|m|t|ng random variable;

npl aqmaxtl .; Apd  .q 'g Rpo,plgp; (G R, plgp; ~qu  Oplq(in this
condition the notation of Proposition 2 is used);

npl L ha{logrpl  ho{ll  .asN 8.

Then a "
npl  »q Ot pp; 194 1 YR

as nN 8 :
logrpl na{d n0s q,plq
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Just as in the previous section, we note that Theorems 4, 5 and 6 hold true in the
dependence frameworlSp q for a wide class of estimatorg,, under further conditions
on the  mixing coe cients as well as regularity conditions on the tail of the underlying
distribution and on the joint tail of bivariate margins, see Drees (2003).

The analysis above is concerned with the heavy right-tailp , N 1qg of non-negative
loss distributions as well as real-valued pro t-loss random variables. Similar considerations
evidently apply when the focus is on the heavy left-taip , N 0q of a series of nancial
returns. In this case, the problem translates into estimating the quantile ¢z , plqwith the
sign convention for values oK as the negative of returns.

A comparison and validation on nancial time series in Section 7 shows that the two-
stage estimation procedure may a ord more accurate estimatqﬁm; 1gPgand q‘g‘n{m; L 1gPPd
of g , plgthan the traditional Weissman estimatorg” plqde ned in (8).

5 Recovering extreme expectiles from LP quantiles

In this section we focus orL? quantiles, or equivalently expectiles, which de ne the only
M-quantiles that are coherent risk measures, and we assume therefore tkgX g 8 and

+ 1 to guarantee their existence. We consider extrapolated estimation of tail expectiles
q.®2q where , Olandnpl ,gNc 8 asn N8 . The rst presented asymmetric
least squares estimatop” p2qin (6) reads as

p
W 1 n "

o eZie 1 .

A, G (11)

where,2qis de ned in (3) with p 2. The second plug-in Weissman estimatay” g
described in (7), translates into

a" g :  Cpon; 209" plg (12)
pp,t 1q ™ " plg

where@" plgis the classical Weissman quantile estimator given in (8). The asymptotic prop-
erties of both extreme expectile estimatorg” p2q and gV 2q had been already established
in Daouia et al. (2017) for independent observations. It was also found there tha¥ 2q

is superior tog"” @qin the case of real-valued pro t-loss random variables, whilg" p2q es-
sentially is the winner in the case of non-negative loss distributions. Here, we suggest novel
extrapolated estimators that might be more e cient than g¥ @2qand " R2qthemselves. The

rst basic tool is the following asymptotic connection between the extreme expectitg  [2q
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and its L? quantile analogueq , pg
q,”9  Cpr294q,plg as ,O1
Cpr;29 C 'pripa q,pq as o OL

whenpj 1lissuchthat . 1{pp 1q[in particular, this is true for any p P d; 2s since it
is assumed here that, 1]. This asymptotic equivalence follows immediately by applying
Corollary 1 twice. One may then de ne the alternative estimator

o @29 : Cppn;29 C ‘monipg 0¥ g (13)
Pn
1 qq P Pn W
a

obtained by substituting ina npl  ,q consistent estimatorp, of , and the extrapo-
lated version " ppq of the least asymmetrically weighted_P quantile estimator, given in
(6). The idea is therefore to exploit the accuracy of the asymptotic connection between
population LP quantiles and traditional quantiles in conjunction with the superiority of
sampleL? quantiles in terms of nite-sample performance. Note that by replacin@®” pq

in (13) with the plug-in estimator ¢" pqintroduced in (7), we recover the estimatog” p2q
described in (12).

Theorem 7. Pick pP fd;2s Assume that:

o

condition Sp gholds, with 2

a__

n1 Mg 8

F is strictly decreasing and satis esCp ,; ;A qwith , 1{maxrl;2p 1gsand
0;

F s either light-tailed or satis es condition C,p - g
Y maxrl;2mp 1gsin caseF is heavy-tailed.
Assume further that

nand ,O1 withnpl ,qN8 andnpl ,qNc 8 ;

a _ .
npl L qmn quﬁI , for a suitable estimatorp, of , and a nondegenerate

limiting random variable;

a
npl  ngmaxtl . Apd g ‘g Rm,plgp; (G Rp,plgp; qu Oplq(in this

condition the notation of Proposition 2 is used);

a___ ~
npl  qq{logrpl  na{d  nasN 8.
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Then a ¢ 2
npl  nQ q .
n 1 YR

logrpl  na{d nds q ,P2q

As a matter of fact, ¢ f2q approachesn” p2qwhen p tends to 2, whereas it approaches
0" P2g when p tends to 1. In practice, as suggested by our experiments with simulated
data in Appendix C.1 of the supplementary material document, we favor the use qf 2q
with p very close to 1 for non-negative loss distributions, and witlp very close to 2 for
real-valued pro t-loss random variables. It is in the latter case thatP 2q may appear to
be appreciably more e cient relatively to both estimators 9 ®2q and " 2q especially for
pro t-loss distributions with long tails.

Another way of recovering expectiles fronb.P? quantiles is by proceeding as in the pre-
vious section in the case of ordinary quantiles. To estimate the extreme expectie p2q,

as nN8 :

the idea is to use a tailLP quantile g :ppgwhich coincides with (and therefore has the same
interpretation as) q , g Given , and the powerp, the level 1 such thatq:mpq g ,p2q
has the explicit expression

E |X q nFQqP l:Iltan n P2qu
ErX q,m@qpP s

in view of (1). This closed form of }  m; n;2qdepends heavily org , g but for any
pi lsuchthat , 1{pp 1q condition C;p ,qand Proposition 1 entail that

A ni 20 (14)

Fpg ;g r Ga -
1§ Bm i p ig o "NE

It follows from g :ppq g ,@2qthat
Fm ,2qq : as nN8 :

1 & B ' p 1q
We also have by Theorem 11 in Bellinet al. (2014) that

Fpg,@q9 pl  .0p, ' 19 as nN8:

Therefore !in (14) satis es the asymptotic equivalence

1 1 .
1 M ;29 pl .gp,! 1g-B p;= p 1 as nN8:

r

a____
By substitutinga npl g consistent estimatorp, in place of the tail index ., we obtain

the following estimator of ‘m; ;2q

1 1
P 290 1pl  .gp,t 1B p— p 1°: (15)
Pn Pn
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Finally, one may estimate the extreme expectile .29  q1p; .29 by the following
compositeL? quantile estimators

Pn

1 pio; o2
Al o 2P0 pl”pp 0 ma (16)
n
and i, 2qfP0 Con; PR p: o 2gPLG (17)

obtained by replacing ; in 9" ppqand g ppg with pipp; n;2g It is remarkable that these
two estimators are intimately linked to those of Section 4, since

A 2 2gP0  CPon; PR e 2P0 @Nd €l g0 CEPns PO ;1400
We rst unravel the limit distribution of the extrapolated estimator q‘éﬂ‘{m +:2gP0
Theorem 8. Pick pP f;2s Assume that:

o

condition Sp gholds, with 2

a__
n1 Q8

F is strictly decreasing and satis esC,p ,; ;A qwith , 1{maxrl;2mp 1gsand
0;

F is either light-tailed or satis es condition C,p - q
1 maxrl;2mp 1gsin caseF is heavy-tailed.
Assume further that

»and , 01 withnpl ,qN8 andnpl ,qNc 8 ;

a _ .

npl g P quﬂI , for a suitable estimatorp, of ;, and a nondegenerate
limiting random variable;
a__

npl  hgmaxtl . Apd g 'g R, plgp; G R, plgp; cqu Oplg(in
this condition the notation of Proposition 2 is used);

a _ ~
npl  qq{logrpl  na{d  .asN 8.

Then a "
npl  nq Lpp; o ;2qP 1 W

as nN 8 :
logrpl  na{d n0s 9,089

Next, we derive the asymptotic distribution of the composite estimatoqmm; 2P0
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Theorem 9. Pick pP fd;2s Assume that:

F is strictly decreasing and satis esC,p ; ;A qwith , 1and 0;
F s either light-tailed or satis es conditionC;p -q
1in caseF is heavy-tailed.
Assume further that

nand ,O1 withnpl ,qN8 andnpl ,qNc 8 ;:

a
nal w9 Xn tnp nqni{d,.plg 1 Opplg

a _ .
npl g P quﬂI , for a suitable estimatorp, of ; and a nondegenerate

limiting random variable;

a___
npl  ngmaxtl o; Apd 9 'g Repo,plgp; (G R, plgp; ~qu  Oplg (in
this condition the notation of Proposition 2 is used);

a_ ~
npl  noflogrpl no{dk s N8.

Then a W
npl nq qp%m, n;zqmq 1 Yﬁl
logrpl na{d  n0s 9,19

as nN8 :

Our experience with simulated data in Appendix C.2 of the supplementary material
document indicates thatq‘rﬁn‘{m; L +2gPd in (16) behaves very similarly tog®_p2qin (13). In
particular, qﬁm; . 2qPg exhibits better accuracy relative to both rival estimatorsp” @2q and
d" @qin the important case of pro t-loss distributions with heavier tails. By contrast, the
second composite estimatoq‘é:{m; . :2qPd in (17) does not bring Monte Carlo evidence of any
added value with respect to the benchmark estimatog” @2qand g" p2q

6 Some simulation evidence

To evaluate the nite-sample performance of the.? quantile estimators described above
we have undertaken some simulation experiments. The experiments all employ the Pareto
distribution Fpxqg 1 x ¥ ; x i 1, the Fechet distributon Fpxqg e * ™ ; x i 0,
and the Studentt-distribution with degree of freedom { . The accuracy of the estimators

Is assessed through the Relative Mean-Squared Error (RMSE) and the bias computed over
3,000 replications. Most of the error is due to variance, the squared bias being typically much
smaller. We present mainly the RMSE estimates to save space. All the experiments here
have sample sizen  200. Further simulation results about extreme expectile estimation
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are discussed in Appendices C.1 and C.2 of the supplementary material document. We also
investigate the normality of some presented extremeP quantile estimators in Supplement
C.3, where the QQ-plots indicate that our limit theorems provide adequate approximations
for nite sample sizes.

6.1 Which LP quantiles can accurately be estimated?

To answer this rst question we compare the least asymmetrically weighted® estimators

0 mpq of g ppg with two intermediate levels 0:9 and 0:95, for di erent values of

p. The obtained Monte Carlo estimates are graphed in Figure 3 fgu P t1;1:05,:::;2u

and P t0:1;0:15;:::;0:45u. Not surprisingly, the quality of the estimation deteriorates
when increases. In particular, for large values of (say ¥ 0:2), the expectile estimation
appears to be the worst as the RMSE achieves its maximum at 2. In contrast, for

these patrticularly large values of (although this seems to be true for smaller as well), the

estimation accuracy is clearly higher for small values @ sayp & 1:45. Also, we see that
the value of p minimizing the RMSE depends heavily on . Yet, the choice ofp P [.2; 1.6q

seems to be a good global compromise.

This conclusion is, however, no longer valid when it comes to estimate extretrfe quantiles
q :peqwith, for instance, Pl %; 1g To see this, we compare the extrapolated least asym-
metrically weighted LP estimators q"‘n{ pogin (6) and the plug-in Weissman estimatorsq‘ﬁ{ g
in (7). The experiments all employ 1 1 1{n and various values op in r1;2s We also
used here the intermediate level, 1 k{n and the Hill estimator p, % :‘ 1 Iogw
of the tail index (see Hill, 1975). The numbek can be viewed as the e ective sample size
for tail extrapolation.

The evolution of the RMSE of the two classes of estimatorm"l‘q{ gy and th‘n{ Ay in
terms of the valuek is displayed in Figures 4, 5 and 6 for the Fechet, Pareto and Student
distributions, respectively. To save space, we show only the Monte Carlo estimates obtained
for the tail index values 0:1 (top panels) and 0:45 (bottom panels). It may be seen
that both extreme LP quantile estimatorstq"r‘%’ gy, in the left panels, andt q"‘n{ Ay, in the
right panels, attain more accuracy forp P r1;1:3sor p P r1:7;2s This can also be observed
from Figure 12 where the RMSE is graphed as function of the powgrin dashed red for
p% ppg and in dashed blue forg"{ ppg with k being chosen optimally so as to minimize the
RMSE of each estimator.

It should also be emphasized that, in 8 cases among the 12 pictures in Figures 4{6, the
best accuracy is not achieved gb 1 orp 2, but at inbetween values: a zoom in on some
pictures where the best accuracy is achieved with values pfR t1; 2u is given in Figure 7.
We shall discuss below the important question of how to pick oyt in practice in order to
get the most accurate extremd.P quantile estimates from a forecasting perspective.
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Figure 3: Relative MSE (in log scale) as a function op, for di erent values of . From left
to right, 0:9; 0:95. From top to bottom, Fechet, Pareto and Student distributions.
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Figure 4: Fechet distribution|RMSE (in log scale) of p‘ﬁ{ppq in left panels andq";{ g in
right panels. From top to bottom: 0:1; 0:45.

6.2 Which extreme LP quantile estimator:  @ppqor 6" poc?

Based on the experiments above, we would like to comment here on the performance of the
least asymmetrically weighted_P estimator qV;{ ppgin comparison with the plug-in Weissman
estimator q‘ﬁ{ g for each xed value ofp P {,; 2s.

In the Fechet and Pareto cases that correspond to non-negative random variables, it
may be seen from Figures 4 and 5 tham"‘n{ g in the right panels, behaves almost overall
better than p"r‘%’ g in the left panels. This can be visualized more clearly in Figures 8 and
9 for three chosen values gf P t1:2; 1:5; 1:8u. This may also be seen from Figure 12 where
the RMSE is plotted againstp (in dashed lines) fork chosen to minimize the RMSE.

In the case of the Student distribution, it may be seen from Figures 6 and 10 thq‘lfn‘{ g
remains still competitive, but qu\%/ ppgbecomes more reliable for large values pfsay,p ¥ 1.9.
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Figure 5: Pareto distribution|RMSE (in log scale) of q"ﬁ{ g in left panels andq";{ g in
right panels. From top to bottom: 0:1; 0:45.

In particular, q"‘n{ ppgis clearly the winner forp 2 as already demonstrated in Daouiat al.
(2017) via other scenarios. We repeated this kind of exercise with di erent values gfand
arrived at the same tentative conclusions.

Interestingly, for p close to 1 and for the positive distributions, both estimators seem
to perform comparably. The important gap in performance which sometimes occurs as
p increases is most certainly due to the sensitivity of the least asymmetrically weighted
estimator to the top extreme values in the sample. The estimatoq"g ppg does of course
bene t from more robustness since it is computed using a single sample quantile.

6.3 Selection of the sample fraction k

The computation of the dierent presented extreme-value estimators requires the deter-
mination of the optimal value of the sample fractionk involved in the intermediate level
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Figure 6: Student distribution|RMSE (in log scale) of q"n‘{ ppg in left panels andq"g pPq in
right panels. From top to bottom: 0:1; 0:45.

n 1 k{n. A commonly used heuristic approach is to plot each estimator verssand
then pick out a suitable k corresponding to the rst stable part of the plot [seege.g, Sec-
tion 3 in de Haan and Ferreira (2006)]. A vexing defect with this heuristic approach from a
forecasting perspective is that it requires looking at the plot of the estimator at each forecast
case. Instead of such a semi-automatic procedure, a fully automatic data-driven device can
be performed to recover a suitabl& in each forecast case. The basic idea is to evaluate
rst the estimator of interest [e.g, pn, q";{mq, q"l{ g Piw; n; 1qor ¢ p2d over the range
of values ofk, and then to select thek where the variation of the results is the smallest.
We achieve this by computing the standard deviations of the estimator over a \window"
of successive values d&f. The value ofk where the standard deviation is minimal de nes
the desired sample fractiork. This idea was already implemented recently by Daouiat
al. (2010), Daouiaet al. (2013), Stup er (2013), Goegebeuet al. (2014) and Gardes and
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Figure 7: Zoom in on some pictures in Figures 4, 5 and 6, where the best accuracy corresponds
to values ofp R t1; 2u.
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Figure 8: Fechet distribution|RMSE (in log scale) of @"{ppq (blue) and g" ppq (red) as
function of k P t2;:::;n  1u. From left to right, 0:1; 0:45. From top to bottom,
p 12, 1.5; 1.8.

Stup er (2014), among others. Here, we apply the improved algorithm developed by El
Methni and Stup er (2017a, pp.919-920). The calculations all employ the same window of
approximately 10 successive values kf

The main di culty when employing this automatic selection method is that the estima-
tor of interest may be so unstable as a function & that reasonable values ok [which would
correspond to the true quantity we want to estimate] may be hidden in the plot. Conse-
quently, the nal estimates obtained from the selectek may exhibit considerable volatility
as a function of the powem. Typical realizations are shown in Figure 11 when computing
the optimal estimates"{ ppgand ¢'{ ppgof the extremeLP quantile g ;ppg with 1 1{n
and p P d;2s Based on simulated samples from Fechet, Pareto and Student distributions
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Figure 9: Pareto distribution|RMSE (in log scale) of @"{ppq (blue) and ¢"{ pq (red) as
function of k P t2;:::;n  1u. From left to right, 0:1; 0:45. From top to bottom,
p 12, 1.5; 1.8.

with P t0:10; 0:45y, the resulting graphs ofp PNg"{ pog and p PNg"{ ppg are plotted in red
and blue, respectively, along with the trueL? quantile function p PNq g in green. It
may be seen that the selection data-driven method a ords reasonable estimates regarding
the very small sample sizen 200, but very good results with stable plots may require a
large sample size of the order of several thousands.

To evaluate the performance of the automatic data-driven method, we have undertaken
some Monte Carlo experiments using the same sample size 200. As a benchmark method
for selecting the optimalk, we have used the value df which minimizes the relative MSE
of each estimator. The nal RMSE and bias estimates of the two estimatorﬁ‘ﬁ{ ppg and
q"}q{ ppg computed over 3,000 replications, are graphed in Figures 12 and 13 as functions of
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Figure 10: Student distribution|RMSE (in log scale) of q"g ppq (blue) and q";{ ppq (red) as
function of k. From left to right, 0:1; 0:45. From top to bottom,p 1:2; 1.5; 1.8.

the powerp. The solid curves in red and blue indicate the respective Monte Carlo estimates
for q"‘n{ ppgq and q";{[:pq obtained via the data-driven method, while the dashed versions give
the benchmark optimal results obtained via the RMSE minimization. These results give a
good overall impression of the precision of the two estimatoq‘:‘;{ ppgand q"‘n{ ppgas well as the
adopted data-driven method. In particular, it may be seen that the evolution of the Monte
Carlo estimates obtained via the data-driven method (solid lines) is generally coherent with
the evolution of those obtained via the RMSE minimization (dashed lines).
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Figure 11: The plots of the estlmatorsp ppg and q ppg against p, respectively, in red and
blue, with } 1 1{n and k selected by the data-driven method. The true® guantile
function p Dqu}mq in green.
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Figure 12: Relative MSE estimates off{ ppqin red and " ppgin blue, as functions ofp, with
1 1{n. In solid lines the estimates obtained via the data-driven method, in dashed
lines the estimates obtained via the RMSE minimization.
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7 Validation and comparison on historical data

An important step beyond estimation of extremeLP quantiles g :ppg from historical data

is to be able to validate and compare the presented estimation procedures. We already
know that, in the case of non-negative loss distributions, it is more e cient to use the plug-
in Weissman estimatorq":{ ppg than the least asymmetrically weightedLP estimator q"‘n{ e 0lel

as indicated by the Monte Carlo evidence above. In contrast, there is no clear winner in
terms of the MSE in the case of real-valued pro t-loss random variables. Here, we focus
on the latter case when the ultimate interest is in an estimate of the loss return amount
(negative log-return) that will be fallen below (on average) only once ilN cases, withN
being typically larger than or equal to the sample size [see,e.g, Acharya et al. (2012),
Chavez-Demoulinet al. (2014), Gonget al. (2015) and Caiet al. (2015) for similar recent
studies]. More speci cally, we wish to useq":{ ppg and p";{ ppg as estimators of thepl{nch

L' quantile qynplg g :ppg for which veri cation and comparison is possible thanks to its
elicitability property [see, e.g, Gneiting (2011) and Ziegel (2016)]. Following the ideas of
Gneiting (2011) and Ziegel (2016), we consider in this section the evaluation and comparison
of the two competing estimatorsq"‘n{ ppg and n"‘n{ ppg with the standard left tail Weissman
quantile estimator ql"‘{’nplq from a forecasting perspective, trying to give the best possible
point estimate for tomorrow with our knowledge of today. The portfolio under consideration
is represented by the S&P500 Index from 4 January 1994 to 30 September 2016, which
corresponds to 5727 trading days. The corresponding logarithmic returns are reported in
Figure 14.

Figure 14: Log-returns of the & P500 Index.

39



Let the random variable X model the future observation of interest. If thep }cth
LP quantile g ;ppgcoincides with thepl{ncth L* quantile cy(nplq then it equals the optimal
point forecast for X given by the Bayes rule

q:q  Ounplg argminErl,p; Xo;

qPR

under the asymmetric piecewise linear scoring function
Ln: REWro0;8q;: pi:xqbPN:mx ¢ lqg

where L,; Xq represents the loss or penalty when the point forecastis issued and the
realization x of X materializes. Following Gneiting (2011) and Ziegel (2016), the point
estimatesq"ﬁmq qV‘n{ pog and q‘l"{’n plg of g 1 ppg can then be compared and assessed by means
of the scoring functionL,. Suppose that, inT forecast cases, we have point forecasts

g% g and realizing observationsxy;:::;x7g where the indexm numbers the
competing forecasters

plq:

¢ ol o @ipog and ¢ g

then be ranked in terms of their average scores (the lower the better):
1 T
LPma =7 Ly, %% ;o m 1,23 (18)
T t 1

In our motivating application concerned with the logarithmic returns of the S&P500 Index,
the three estimates were computed on rolling windows of length 2510, which corresponds
to T 3217 forecast cases. Based on the US market, there are on average 251 trading days
in a year, and hence each rolling window of size 10 251 trading days corresponds to
a period of 10 years. Therefore, the tail quantity of interest| :ppg 0y plq represents the
daily loss return (negative log-return) for a once-per-decade market crisis. Such a choice of
once-in-a-decade extreme event is often used to evaluate systemic nancial risk such as in,
for instance, Brownlees and Engle (2012) and Cat al. (2015) and the references therein.
We also used the same considerations as before for the choice of the intermediate lgyvel
and the estimator %, of the tail index , with the sign convention for values ofY X as
the negative of returns. With this sign convention, the quantile of interestgy,plg can be
written as Qi 1nplg whereQ pogstands for the th LP quantile of Y. The extreme level
YtsuchthatQ :ppg  Q: inplghas the closed form expressiontmp; n; 1qdescribed in (9),
with , 1 1{n, and can be estimated byp!m;1 1{n;1qin (10). Alternatively, without
recourse to this sign convention as the negative of returns, it is not hard to check that the
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level }suchthatq:pg ounplqgcan directly be estimated by

11 1
pim; 1{nq: ﬁp_B pp— p 1

n n

(a) Calculate the rst competing estimate ¢ Ay, pLg
(b) For a given value ofp P d; 2s calculate the ! estimate tq pimo;1{ng

(c) Calculate the other competing estimatex;‘pzq q"‘n{ ppgand qp3q q";{ ppg by substituting
the estimated value 4ptqin place of 1.

As a matter of fact, we use in step (c) the two-stage estimatorci,pzol p)"n{gqqoq and quq
q}’:{nqmo; rst, we estimate , by Aitgin step (b) and, second, we use the estimatog} ppq
and g"{ppg as if ; were known, by substituting ftqin place of .

Of course, the computation of the di erent point estimates in steps (a), (b) and (c)
requires the determination of the optimal values of the sample fractiok involved in the
intermediate levels , of these estimates. Here, we apply the data-driven method described
in Section 6.3. For instance, the plot of the estimatoqplqp(q q‘l"{’n plg that is obtained at
the rst forecast caset 1, can be visualized in Figure 15 (a) as a rainbow curve. The e ect
of the Hill estimator ~,kgon q"lqpkq is highlighted by a colour-scheme, ranking from dark
red (low #,) to dark violet (high ~,). The resulting optimal estimate qplqdélq is indicated
by the horizontal yellow dashed line, which a ords a less pessimistic forecast than the worst
observed loss returnX.,, indicated by the horizontal pink dashed line.

When proceeding to step (b) in the rst forecast case, with the choice g 2, we
obtain the plot of the estimator ptq  ~mo; kg graphed in Figure 15 (b) as a rainbow
curve, along with its optimal value indicated by the horizontal yellow dashed line. We can
see that the resulting optimal expectile level, ¥tq 0:000137, is much more extreme than
the chosen quantile level (relative frequency{h  0:000398) indicated by the horizontal
pink dashed line. Finally, by proceeding to step (c), we get the estimatocéﬁquq p";{ g
and quqpkq q"n‘{ ppq displayed in Figure 15 (c), along with their optimal valuesquqpﬁzq and
iksq

It may be seen in this rst forecast case that both expectile estimatorp";{ p2g and q";{ 2q
point towards similar forecasts as the rival quantile estimaton‘l"{’n plg This can be visualized
more clearly in Figure 16, where the plots of the three estimators are superimposed. Inter-
estingly, pl"‘{’nplq (in blue) remains very close tqu‘n{ p2q (in black) before being extrapolated
beyond the minimum log-return X 1., (in pink). Then it becomes very close to the other
expectile estimatorq";{ [2q (in orange). In order to decide on the global accuracy of the three
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Figure 15: Step(a) |The plot of the estimator qplqr.kq q‘l"{’n plqgversusk as a rainbow curve.

The selected optimal estimate}plqdélq indicated by the horizontal yellow dashed line. The
sample minimum log-returnX ., indicated by the horizontal pink dashed line. Stép) |The
plot of the estimator~lmp; kg with p 2, versusk as a rainbow curve. The selected optimal
estimate ~'pp; kg indicated by the horizontal yellow dashed line. The relative frequentfn

indicated by the horizontal pink dashed line. Stgp) |The plots of the estimators ofzquq

q"l{ ppg and q‘sqp(q q";{ ppqg versusk, respectively, as rainbow and black curves, with 2.
The selected optimal estimatequqrﬁzq and qmq&gq indicated, respectively, by the horizontal
yellow and grey dashed lines. The minimum log-retuiX,., indicated by the horizontal pink
dashed line. The e ect of*,pkqon ¢”%kqis highlighted by the colour-scheme.
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Figure 16: The plots of the three estimatorsf ‘pkq A, pLg in blue, kg
orange, andquqpkq qV‘n{ 2q in black. The sample minimumX 1., in pink.

Y g in

competing methods, we shall need to rank the values of their realized losk#8" by making
use of theT forecasts and realizing observations, as described in (18).

The plots of the realized loss versus are graphed in Figure 17 (a) fop}"{n plgand q"‘n{ o 0lel
with various values ofp P t1:1; 1:2; :: :; 1:9; 2u, and in Figure 17 (b) for theq‘l"{’n plgbenchmark
and qu\%/ ppq with the same values ofp. We can already see thap
both 9{ ppg and g ppg estimators.

The optimal values of the realized loss for the three methods (the lower the better),
displayed in Table 1, indicate that the popular Weissman quantile estimatqq}"{’n plgdoes not
ensure the best accurate forecasts of the classical risk measyfgplo

2 is a worse choice for

LR 5758 05
p 11 p 12 p 13 p 14 p 15
LF9 | 5856 05 | 5842 % | 5632 % | 586k % | 5.727% %
L | 5.75% 05 | 5752 05 | 5,748 05 | 5.745% 05 | 5742 5
p 16 p 17 p 18 p 19 p 2
LP9 | 5712 % | 5.847% % | 5.918 % | 6.024 % | 6.11& %
LF9 | 573% 05 | 573% % | 591% % | 6.03¢k % | 6.02%

Table 1: Optimal values LR LP and L of the realized loss for the three forecasters
A, rlg A% ppg and 6" ppg respectively. Results based on daily loss returns.

The top forecaster isqVI:{ppq for p  1:3;1:6; 1.5 in this order, followed by qV‘n{ ppq for
p 17,16 15;1:4,1:3;1:2;1:1, and then q‘l"{’n plg Their optimal values obtained in the rst
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Figure 17: (a)|Plots of the realized loss k PNLR™ kg for iy plgin magenta andg” poq with

di erent values of p. (b)|Results with q"n¥ poq in place ofq";{naq Results based on daily loss
returns.

and last forecast cases are shown in Table 2. In the forecast case 1, based on the loss
returns observed during the rst decade from 1994-01-05 to 2003-12-19, all forecasts of the
Value at Risk o, plg do not succeed in falling below the worst recorded loss retui;.,.
Yet, all of the generalizedLP quantiles q‘ﬁ{ ppg and q";{n:)q appear to be smaller and hence
more conservative than the usual® quantile pl‘A{’n plg Here, the tail index estimate is found

to be p,fkq 0:256. In the forecast cas¢ T, based on the last decade from 2006-10-11
to 2016-09-29, all forecasts of the Value at Risk were capable of extrapolating outside the
minimal loss return X 1.,. This is due to the turbulent episodes that have been experienced
by nancial markets during 2007-2008, as visualized in Figure 14. In particular, the tail
index estimate becomep,kq 0:359. Yet, the top forecastersp"r‘]{ g and q"‘n{ g appear to

be larger and hence less pessimistic than thet quantile q‘l"{’nplq In both forecast cases,
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that eternal maxim of the pessimists, \expect the worst, and you won't be disappointed”
seems to be transformed into a more realistic calculus via tdilP quantiles than classical
quantiles.

forecaster p"n‘{ pl:3q q"r‘%’ pl:6q qu\%/ pl:5q q"n‘{ pl:7q qu\%/ pl:6q q";{ pl:5q

t 1 -0.067901| -0.067169| -0.067288| -0.066846| -0.066841| -0.066837
t T -0.105717| -0.103084| -0.104613| -0.101254| -0.102211| -0.103131
forecaster qu\}’ pl:4q q"r‘%’ pl:3q q"‘n{ pl:2q qu\%/ pl:1q p‘l"{’ Pl X1n

t 1 -0.066832| -0.066828| -0.066824| -0.066820| -0.066816| -0.071127
t T -0.104016| -0.104870| -0.105695| -0.106493| -0.107266| -0.094695

Table 2: Optimal values of the top forecasters, obtained in the rst and last forecast cases,
along with the sample minimunX.,. Results based on daily loss returns.

Finally, we would like to comment on the evolution of the extrem&P quantile level g
with t. The optimal estimatest PNA'tq obtained for the di erent values ofp, are graphed
in Figure 18. It can be seen that }tqdecreases, uniformly irt, asp increases. Also, it may
be seen that the curve corresponding to the best choipe 1:3 (dark blue) exhibits two
di erent trends before and after the severe losses of 2007-2008. Both trends appear to be
much more extreme than the quantile level {h.

Let us now consider lower frequency data to reduce the potential serial dependence in
this application. The theory for the extremelLP quantile estimators is derived for dependent

pendence with reduced asymptotic variances. Here, similarly to Cai al. (2015), we reduce
substantially the potential serial dependence by choosing weekly (Wednesday to Wednesday)
returns in the same sample period. This results in a sample of size 1176. We compute the
three estimatesqy}, plg 9" ppg and g% pog of gynplq on rolling windows of lengthn 520,
which corresponds toI' 656 forecast cases. Given that there are 52 weeks in a y&g, plq
can be viewed as the weekly loss return for a once-per-decade nancial crisis. The plots of
the realized lossk PNLR"%kq are graphed in Figure 19 (a) fom!f, plg and gfpog and in
Figure 19 (b) with 6" ppqin place ofg"{ pg

The optimal values of the realized loss for the three methods, displayed in Table 3,
indicate that the best forecaster isq":{ ppgfor p 2;1:9; 1:8 in this order, followed byp":{ g
forp 12, q¥ppgforp 1:7,1:4,15;1:6, and thengff plg Allin all, the nal results based
on weekly loss returns seem to indicate tha1V‘n{ pPq is the winner, while the results based on
daily loss returns tend to favor the use op";{ g
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Figure 18: The nal estimatest PNA\}tq obtained forp P t1:1;1:2;:::;1:9; 2u.
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Figure 19: (a)|Plots of the realized loss k PNLR™ kg for Y plgin magenta andg® poq with

di erent values of p. (b)|Results with q";{ ppqg in place of p"‘n{ g Results based on weekly
loss returns.
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| PLa

0:0001791

p 11

p 12

p 13

p 14

p 15

LR

0.0001834

0.0001771

0.0001845

0.0001911

0.0001821

LR

0.0001792

0.0001796

0.0001801

0.0001790

0.0001790

p 16

p 17

p 18

p 19

p 2

LR

0.0001829

0.0001830

0.0001814

0.0001811

0.0001815

LR

0.0001790

0.0001788

0.0001768

0.0001763

0.0001762

Table 3: Optimal values LR LP and L of the realized loss for the three forecasters
A, rlg A% pog and 6" ppg respectively. Results based on weekly loss returns.

Supplementary material

The supplement to this article contains additional simulations, a second application to med-
ical insurance data, technical lemmas and the proofs of all theoretical results of the main
article.
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