E. Alkim, P. Jakubeit, and P. Schwabe, NewHope on ARM Cortex-M, Security, Privacy, and Applied Cryptography Engineering -6th International Conference, SPACE 2016 Proceedings, pp.332-349, 2016.
DOI : 10.1137/S0097539795293172

W. L. Baily and J. , On the Theory of ??-Functions, the Moduli of Abelian Varieties, and the Moduli of Curves, The Annals of Mathematics, vol.75, issue.2, pp.342-381, 1962.
DOI : 10.2307/1970178

D. Bernstein and T. Lange, eBACS: ECRYPT Benchmarking of Cryptographic Systems, pp.2017-2022

D. J. Bernstein, Curve25519: New Diffie-Hellman Speed Records, Public Key Cryptography ? PKC 2006, pp.207-228, 2006.
DOI : 10.1007/11745853_14

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. J. Bernstein, Elliptic vs. hyperelliptic, part 1, p.19, 2006.

D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe, Kummer Strikes Back: New DH Speed Records, Advances in Cryptology ? ASIACRYPT 2014, pp.317-337, 2014.
DOI : 10.1007/978-3-662-45611-8_17

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, High-speed high-security signatures, Journal of Cryptographic Engineering, vol.30, issue.2, pp.77-89, 2008.
DOI : 10.1023/A:1025436905711

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. J. Bernstein, T. Lange, and P. Schwabe, The Security Impact of a New Cryptographic Library, Progress in Cryptology -LATINCRYPT 2012 -2nd International Conference on Cryptology and Information Security in Latin America Proceedings, pp.159-176, 2012.
DOI : 10.1007/978-3-642-33481-8_9

G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, The Keccak sponge function family, p.24, 2016.

J. W. Bos, C. Costello, H. Hisil, and K. E. Lauter, Fast cryptography in genus 2, Advances in Cryptology ? EUROCRYPT 2013, pp.194-210
DOI : 10.1007/s00145-014-9188-7

J. W. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, p.19, 1996.
DOI : 10.1017/CBO9780511526084

D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests, Advances in Applied Mathematics, vol.7, issue.4, pp.385-434, 1986.
DOI : 10.1016/0196-8858(86)90023-0

P. Chung, C. Costello, and B. Smith, Fast, uniform, and compact scalar multiplication for elliptic curves and genus 2 jacobians with applications to signature schemes, Cryptology ePrint Archive, vol.2, p.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214259

R. Cosset, Applications des fonctions theta à la cryptographie sur les courbes hyperelliptiques, 2011.

W. Diffie and M. E. Hellman, New directions in cryptography. Information Theory, IEEE Transactions on, vol.22, issue.6 1, pp.644-654, 1976.
DOI : 10.1109/tit.1976.1055638

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar et al., High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers. Design, Codes and Cryptography, pp.2015-2040

M. J. Dworkin, SHA-3 standard: Permutation-based hash and extendable-output functions, National Institute of Standards and Technology (NIST), 2015.
DOI : 10.6028/NIST.FIPS.202

A. Fiat and A. Shamir, How To Prove Yourself: Practical Solutions to Identification and Signature Problems, Advances in Cryptology -CRYPTO '86 Proceedings, pp.186-194, 1986.
DOI : 10.1007/3-540-47721-7_12

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. E. Gamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, Advances in Cryptology, Proceedings of CRYPTO '84 Proceedings, pp.10-18, 1984.

P. Gaudry, Fast genus 2 arithmetic based on Theta functions, Journal of Mathematical Cryptology, vol.15, issue.3, pp.243-265, 2005.
DOI : 10.1090/S0025-5718-02-01422-9

URL : https://hal.archives-ouvertes.fr/inria-00000625

P. Gaudry and E. Schost, Genus 2 point counting over prime fields, Journal of Symbolic Computation, vol.47, issue.4, pp.368-400, 2012.
DOI : 10.1016/j.jsc.2011.09.003

URL : https://hal.archives-ouvertes.fr/inria-00542650

M. Hamburg, Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, 2012.

M. Hamburg, The STROBE protocol framework Cryptology ePrint Archive, p.4, 2017.

C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols, 2010.
DOI : 10.1007/978-3-642-14303-8

R. W. Hudson, Kummer's quartic surface, p.20, 1905.

M. Hutter and P. Schwabe, NaCl on 8-Bit AVR Microcontrollers, Progress in Cryptology ? AFRICACRYPT 2013, pp.156-172, 2013.
DOI : 10.1007/978-3-642-38553-7_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Karati and A. Das, Faster Batch Verification of Standard ECDSA Signatures Using Summation Polynomials, Applied Cryptography and Network Security: 12th International Conference, ACNS 2014 Proceedings, pp.438-456, 2014.
DOI : 10.1007/978-3-319-07536-5_26

N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, vol.48, issue.177, pp.203-209, 1987.
DOI : 10.1090/S0025-5718-1987-0866109-5

URL : http://www.ams.org/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf

Z. Liu, P. Longa, G. Pereira, O. Reparaz, and H. Seo, FourQ on embedded devices with strong countermeasures against side-channel attacks. Cryptology ePrint Archive, p.26, 2017.
DOI : 10.1007/978-3-319-66787-4_32

V. Miller, Use of Elliptic Curves in Cryptography, Advances in Cryptology -CRYPTO 85 Proceedings, pp.417-426, 1986.
DOI : 10.1007/3-540-39799-X_31

P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Mathematics of Computation, vol.48, issue.177, 1987.
DOI : 10.1090/S0025-5718-1987-0866113-7

D. Naccache, D. M-'raïhi, S. Vaudenay, and D. Raphaeli, Can D.S.A. be improved? ??? Complexity trade-offs with the digital signature standard ???, Advances in Cryptology -EUROCRYPT '94, Workshop on the Theory and Application of Cryptographic Techniques Proceedings, pp.77-85, 1994.
DOI : 10.1007/BFb0053426

E. Nascimento, J. López, and R. Dahab, Efficient and Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers, Security, Privacy, and Applied Cryptography Engineering, pp.289-309, 2015.
DOI : 10.1007/3-540-45418-7_17

K. Okeya and K. Sakurai, Efficient Elliptic Curve Cryptosystems from a Scalar Multiplication Algorithm with Recovery of the y-Coordinate on a Montgomery-Form Elliptic Curve, Cryptographic Hardware and Embedded Systems ? CHES 2001, pp.126-141, 2001.
DOI : 10.1007/3-540-44709-1_12

T. Perrin, The XEdDSA and VXEdDSA Signature Schemes. https://whispersystems.org/docs/ specifications/xeddsa, pp.2017-2022

D. Pointcheval and J. Stern, Security Proofs for Signature Schemes, Advances in Cryptology -EU- ROCRYPT '96, International Conference on the Theory and Application of Cryptographic Techniques, pp.387-398, 1996.
DOI : 10.1007/3-540-68339-9_33

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind Signatures, Journal of Cryptology, vol.13, issue.3, pp.361-396, 2000.
DOI : 10.1007/s001450010003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Renes, P. Schwabe, B. Smith, and L. Batina, µKummer: Efficient hyperelliptic signatures and key exchange on microcontrollers, Cryptographic Hardware and Embedded Systems -CHES 2016 -18th International Conference Proceedings, pp.301-320, 2016.
DOI : 10.1007/978-3-662-53140-2_15

URL : http://arxiv.org/pdf/1604.06059

C. Schnorr, Efficient identification and signatures for smart cards, Advances in Cryptology -CRYPTO '89, pp.239-252, 1989.
DOI : 10.1007/3-540-46885-4_68

I. A. Semaev, Summation polynomials and the discrete logarithm problem on elliptic curves, IACR Cryptology ePrint Archive, issue.2, p.31, 2004.

C. Stahlke, Point compression on jacobians of hyperelliptic curves over Fq Cryptology ePrint Archive, p.30, 2004.