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Abstract

In this paper, we consider the capture of dense volumetric X-ray attenuation mod-
els of non-rigidly moving samples. Traditional 3D medical imaging apparatus,e.g. CT
or MRI, do not easily adapt to shapes that deform signi�cantly such as a moving hand.
We propose an approach that simultaneously recovers dense volumetric shape and mo-
tion information by combining video and X-ray modalities. Multiple colour images are
captured to track shape surfaces while a single X-ray device is used to infer inner attenu-
ations. The approach does not assume prior models which makes it versatile and easy to
generalise over different shapes. Results on synthetic and real-life data are presented that
demonstrate the approach feasibility with a limited number of X-ray views. The resulting
dense 4D attenuation data provides unprecedented insights for motion analysis.

1 Introduction

t

Figure 1: Results of the proposed approach for Computed Tomography from Motion (CTfM)
on synthetic data (23 input frames). Dense 4D volumetric attenuation from non-rigid hand
motion rendered as planar radiographic images over time from an arbitrary viewpoint.
Global rigid motion has been suppressed here for clarity.

c
 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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On one hand, visual motion capture systems have made signi�cant progress over the
last decade and enable fast and reliable modeling of moving shapes. Whether marker-based
or markerless, relying on visible, IR, or even UV light, they can only provide observations
on the shape surface and motion and it remains unclear what the internal shape structure is
and how it moves. Prior models attached to the shape surface,e.g. a skeleton with human
bodies, can help inferring information inside the shape. However such a model is usually far
from being anatomically correct, especially due to the complex dynamics of soft and elastic
tissues such as muscles, fat, and skin [9]. In order to estimate the real structure and motion
underneath the visible surface, other observations must be considered.

On the other hand, traditional medical imaging modalities allowing for in-depth informa-
tion capture can only perform on near-static subjects (e.g. CT, MRI), on limited volume and
high ionising radiations (e.g. Multi-Detector CT and Electron Beam CT), have penetration
limits (e.g. ultrasonography), or provide solely 2D images (e.g. planar radiography).

In this paper, we are aiming at capturing both the in-depth 3D shape and the motion
of a moving sample. The resulting 4D volumetric models can �nd applications in motion
analysis, medical diagnostic and footwear or prosthesis design, among others, by providing
new insights on how movements are built. They can have a great impact in the understanding
of inside motion and the design of new anatomically-correct motion models. To this purpose,
we propose a novel approach that takes bene�t of a visual capture system to recover a shape
surface and its motion and combine it with a X-ray imaging device to model the inside
moving shape structure. The proposed CTfM approach is in essence a cross-over between
Computed Tomography (CT) and Structure-from-Motion (SfM). The key idea is to capture
surface motion and propagate this belief in-depth whilst re�ning it with actual X-ray data.

The remainder of this paper is composed of the following: in Section 2 we review related
works; in Section 3 we describe our shape and motion capture method; in Section 4 we
present our results from synthetic and real-life data, before concluding in Section 5.

2 Related work

We focus below on works that consider dense volumetric reconstruction of moving objects.
Little research has yet been carried out to perform tomography on moving samples. We note
also that the combination of visual and X-ray imaging has likewise received little attention.

A signi�cant amount of research in this context has focused on recovering moving fea-
tures from bi-planar radiography, based on prior models [3]. While these methods produce
medically relevant results, they require strong prior anatomic models, typically skeleton-
based, and usually some amount of manual intervention. Without anatomical model, sparse
data can be captured such as the position of purposefully implanted markers or speci�c, well-
segmented features [16]. These methods only capture the motion of a known shape, whereas
we aim at capturing both shape and motion.

Some approaches have been proposed to combine CT or SPECT imaging with vision-
based motion tracking [7, 13]. These methods are however usually targeted for motion cor-
rection and hence are only able to deal with a limited range of motion. They consider motion
as noise to be reduced, whereas motion is part of our acquisition process to ensure multiple
viewpoints X-ray images.

One recent work by Fuerstet al. [6] does actually capture both shape and motion, as they
coupled vision-based tracking with cone-beam radiography. In this work, video is used to
register and align several 3D tomographic volumes in order to stitch them altogether. How-
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ever, the tomographic reconstruction of the volumes itself was performed by conventional
Cone-Beam Computed Tomography (CBCT). Moreover, only rigid motion between views
was considered. In an earlier approach [11], we proposed to perform the tomographic re-
construction using solely sample motion capture from video to estimate the relative pose
between the sample and the X-ray imaging device. The assumption is anyway that shapes
undergo only rigid motions, which strongly limits the application scope.

The approach we propose is also related in spirit to the Kinect-based DynamicFusion
[10], although with radically different data: radiographic attenuation (dense and fully trans-
parent) in the present case against depth (sparse, localised, and fully opaque) for Dynamic-
Fusion. Hence the key sparsity assumption of the DynamicFusion approach does not hold in
our case.

To the best of our knowledge, our approach is the �rst to simultaneously retrieve both in-
depth shape and motion of a non-rigidly moving sample with very limited prior knowledge
and by combining visible and X-ray images.

3 Shape and motion capture method

Motion tracking

Volumetric
sampling

Computed
tomography

Warp function
sequence

Warp function
sequence

X-ray image
sequence

Raw mesh
sequence

Surface
motion

Canonical
volume

Volumetric
sequence

X-ray / video
calibration

In-depth
motion Motion

warping

Figure 2: Proposed approach for X-ray Computed Tomography from Motion (CTfM). The
captured meshes are tracked over time and the inner shape motion is derived from it. A warp
function is de�ned that transforms any mesh into a single canonical model. This warp is
combined with the X-ray images to perform Computed Tomographic (CT) reconstruction on
the canonical volume. Finally, volumetric attenuation sequences can be generated.

The proposed X-ray Computed Tomography from Motion (CTfM) approach relies on the
key assumption that the observed sample over time can be modelled as the composition of a
static 3D canonical model and a warp function which deforms the canonical model as in [10].
This assumption is theoretically sound because the total X-ray absorbance over the sample
is constant over time if we neglect the border effects (aperture). We stress that the canonical
model is estimated within the proposed method, and hence in no way a prior model.

We assume that we have a canonical 3D volumetric attenuation model represented as a
regular voxel grid, which is displaced non-rigidly over time using a volumetric warp func-
tion. The proposed approach consists of estimating the volumetric warp function and then
performing the tomographic reconstruction on the canonical model, as illustrated in Fig. 2.

We perform the tomographic reconstruction using a speci�c �avour of the Simultaneous
Algebraic Reconstruction Technique (SART) [1] and improve results from X-ray images
directly. Finally, a volumetric model in motion can be trivially generated from the warp
and the canonical model. This 4D model can be visualised in various ways over time, such
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as multiplanar 2D slices stacks (e.g. Fig. 6 and 8) or projected and integrated into planar
absorbance images (e.g. Fig. 1, 9, 10).

In the following, we �rst describe the surface tracking using visual information, then
the derived warp function over the attenuation volume, and the tomographic reconstruction
performed using registered information in the canonical model.

3.1 Surface motion estimation

Under the proposed paradigm, a sample in motion is captured simultaneously by multiple
video cameras and a single X-ray imaging device. Firstly, a temporally coherent mesh is
reconstructed exclusively from the video input, based on the segmented sample silhouettes,
using the patch-based method proposed by [5], as illustrated in Fig. 9 (third row). This
tracking method splits arbitrarily the mesh into patches and associates a rigid transformation
(translation and rotation) to each of them. Local rigidity priors are then enforced to estimate
the most likely deformations in a probabilistic fashion. This method is purely geometric,
hence not sensitive to texture and illumination issues, but has limited capabilities in capturing
motion tangential to the surface.

The captured surface motion can be interpreted as a functionG(vt;i) = vt;i transforming
any meshMt = f vt;ig composed of verticesvt;i at timet into the canonical meshM = f vt;ig.
Whilst Gis estimated sparsely on the mesh verticesf vt;ig, it is de�ned continuously on the
mesh surface by linear interpolation.

3.2 Warp function estimation

The temporally coherent mesh sequence samples the surface motion over time. More speci�-
cally this motion is discretised spatially over a set of vertices. One such mesh in the sequence
is arbitrarily selected as the canonical mesh. Since the warp is linear, this choice will theo-
retically have limited impact on the result, as long as the whole canonical sample surface is
visible (as required by many vision-based reconstruction techniques). However the numeri-
cal stability could be affected by this choice, in particular due to sampling density variations.

In order to perform tomographic reconstruction (CT), it is necessary to encode the motion
in-depth throughout the entire volume. For this purpose we cast light rays from the X-ray
image and compute their intersections with the corresponding mesh. Note that depending
on the mesh geometry, each of these ray may have multiple entry and exit points (multiple
segments). The intersecting ray segments are then warped into the canonical mesh using the
surface correspondences, as illustrated in Fig. 3. This provides a coarse discretisation of the
warp function throughout the volume.

The volumetric warp functionF is therefore the extension ofG's domain from the mesh
surface to its entire inner volume by piece-wise linear interpolation.

3.3 Tomographic reconstruction

Once the warp functionF is known for every time step we can accumulate information
from all the warped rays into the canonical model,i.e. over space and time, and solve for
the dense volumetric attenuation by computed tomography. To this aim, we iterate between
actual attenuation estimation, regularisation, and image-based re�nement. This method was
devised to cater speci�cally for the challenges posed by the sample motion, such as surface
motion tracking inaccuracies. The complete CT pipeline is illustrated in Fig. 4.
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Figure 3: Volumetric warp function sam-
pling (real-life dataset). The rays represent
the X-ray light paths warped into the canon-
ical model for two different poses, rendered
in two different colours. Only a fraction of
the actual rays are represented for clarity.
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Figure 4: Iterative Computed Tomography
(CT) reconstruction scheme: the canonical
volume is estimated from the warp function
and the X-ray images, regularised using a
TVL1 norm, and residual noise is handled in
2D using optical �ow comparison with the
reprojected volume.

The proposed method converges within a few iterations in practical cases. This can be
explained empirically because the problem is ill-posed, and hence at least a local minima will
be found which satis�es all constraints (observations,TVL1 regularisation, �ow correction).

3.3.1 X-ray imaging

X-ray imaging relies on a light source which is attenuated by photoelectric absorption as it
travels through a partly transparent sample. The attenuation coef�cient generally varies with
the actual material and hence spatially in the sample.

Given partly transparent material with a linear attenuation coef�cientm(x) over a line-
of-sight (e.g. a raywi), illuminated with a intensityL0, the intensityL(wi) transmitted to the
receiver is governed by the Beer-Lambert Law [2] in integral form:

L(wi) = L0e
�

Z

wi

m(x)dx
: (1)

We discretise the problem in 3D and reformulate it as a weighted sum over the voxelsv j
along the given raywi , d j being the distance covered within the voxelv j andmj the attenua-
tion assumed uniform withinv j , de�ning the absorbanceI(wi):

I (wi) = log
L(wi)

L0
= � å

j2wi

d j mj : (2)

In the reminder of this paper, we assume thatL0 is either known, or the reconstruction will
be performed up to scale. Therefore we work only on absorbance imagesA = f I (wi)g, in
which each pixel value is equal to the absorbanceI(wi) over its corresponding raywi given
the X-ray camera projection model.
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3.3.2 Attenuation estimation

Computed Tomography (CT) consists in integrating information from multiple intersecting
rayswi in order to solve for the originalmj absorbance values.

In this paper, we tackle the dense volumetric tomographic reconstruction with a variation
of the Simultaneous Algebraic Reconstruction Technique (SART) [1] from the X-ray images
and the warp function. The modi�ed SART method relies on the warp function sampling
rather than on regular sampling of the volume.

To this end, we discretise the rayswi with pixel valueI(wi), as the list of theN intersected
voxels v in the reconstructed volumeX and their associated projection weightsw: wi =

f (vi;1;wi;1); :::; (vi;N;wi;N)g and de�ne its norm:kwik2 =
N

å
l= 1

w2
i;l .

We then iteratively apply equations (3) and (4) to reconstruct the attenuation volume
X = f mjg from the observed images with a relaxation parametera :

Ĩ (wi)k =
N

å
l= 1

wi;l X
k �

vi;l
�

(3)

Xk+ 1
j = Xk

j + a
å
i

wi; j
I (wi) � Ĩ (wi)k

kwik2

å
i

kwik2 (4)

3.3.3 Total variation regularisation

Furthermore, in order to regularise an otherwise ill-posed problem when the number of X-ray
views is limited (with respect to the required volumetric resolution), a Total Variation norm
(TVL1) [12] smoothing pass is applied between SART iterations, as originally proposed by
[14] (albeit combined with ART [8]).

The choice of this norm is guided by the typical nature human tissues, usually a set of
compact elements with homogeneous attenuation within them. Indeed, unlike a least-square
minimisation which would lead to excessive smoothing, theTVL1 norm allows for sharp,
albeit localised, gradients. This assumption also holds for a wide range of objects. We would
like to stress here that this rather generic regularisation is the one and only prior required by
our approach to solve for the attenuation volume. This improves signi�cantly the quality of
the results, as illustrated in Fig. 6 (bottom).

The TV minimisation process is a non-linear iterative process detailed in equations (5),
(6), and (7). In these equationsDt is a step size,h the voxel size,s is the expected standard
deviation of the noise,X0 is the original volume, andDf x;y;zg is the derivative operator along
thex, y, or zaxis.

kÑXn
i jkk =

q
(DxXn

i jk )2 + ( DyXn
i jk )2 + ( DzXn

i jk )2 (5)

l n = �
h

2s 2 å
i; j ;k

 

kÑXn
i jkk �

DxX0
i jkDxXn

i jk + DyX0
i jkDyXn

i jk + DzX0
i jkDzXn

i jk

kÑXn
i jkk

!

(6)

Xn+ 1
i jk = Xn

i jk � Dtl n(Xn
i jk � X0

i jk ) +
Dt
h

"

Dx

 
DxXn

i jk

kÑXn
i jkk

!

+ Dy

 
DyXn

i jk

kÑXn
i jkk

!

+ Dz

 
DzXn

i jk

kÑXn
i jkk

!#

(7)

The parametersDt ands must be pre-de�ned. To this aim, the noise level is measured
in a non-regularised reconstruction.
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Figure 5: Synthetic input data (2 selected frames over time). Left: X-ray absorbance images
rendered by raycasting. Right: skin mesh used for surface tracking.

3.3.4 X-ray based re�nement

The volumetric warp function is solely estimated from the surface motion which is not nec-
essarily correct due to the complexity of the inner motion within the samples, as well as the
motion tracking limitations. Hence this initial solution must be corrected using the X-ray
images themselves.

To this end, we compare and correct the projected estimated volume with the actual
image as proposed by [11]. A coarse-to-�ne approach to optical �ow is used [4]. This is
equivalent to displace the warp function orthogonally to the sampling rays. Whilst this alone
does not suf�ce to handle large motion estimation errors, it does eliminate streak artefacts
due to slightly misaligned images and surfaces. We then warp the original image accordingly,
and iterate.

4 Experimental results

The proposed method was validated using synthetic data, allowing for quantitative assess-
ment, and with a real-life moving hand, demonstrating its capabilities for actual applications
with elaborate motions and in presence of multiple noise sources.

4.1 Synthetic results

In order to validate quantitatively the proposed approach, a synthetic dataset was generated.
To this aim, a mesh model of a human forearm was considered. The skeletal mesh compo-
nents were “rigged” with standard skeletal animation techniquesi.e. bones linked together
with forward kinematics actuators, and the skin mesh was deformed using linear blend skin-
ning. The motion was mainly composed of an overall translation and rotation (approx. 180� ),
a palm �exion (approx. 90� ), and a �nger �exion (over 180� along the phalanges), as illus-
trated in Fig. 5.

The simulated forearm in motion was then rendered as X-ray images over time using a
speci�c raycasting method: each (closed) mesh was associated with a constant inner attenu-
ation, and the total X-ray absorbance was integrated based on the entry and exit points. As
for the surface information, we used directly the raw skin mesh (albeit not tracked). The
complete recorded sequence consisted of 104 frames, but was down-sampled using 1 every
4 frames (without speci�c selection), and only 23 were use for reconstruction in order to
demonstrate the value of the proposed method with a very limited number of views.
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Figure 6: Synthetic data results based on 23 input frames only (6 selected slices, �ngers
to elbow). Top: ground truth sampling, middle: canonical model reconstruction, bottom:
reconstruction withoutTVL1 regulariser. Skeletal features are well reconstructed, even on
the �nger areas (left), where structures are thinner and motion signi�cantly non-rigid. The
regulariser is key to ensure convergence and reduce noise.

We then applied the full proposed pipeline,i.e. temporal mesh tracking, warp function
estimation, and tomographic reconstruction on this data.

In order to evaluate quantitatively the resulting canonical model, we discretised the orig-
inal mesh into a voxel grid to obtain volumetric ground truth as illustrated in Fig. 6 (top) and
computed the difference with the resulting volume. The average voxel value difference was
relatively low, at 7:9� 10� 4, and the RMS was 4:0� 10� 3.

The raw results illustrated in Fig. 6 demonstrate that the proposed method is able to infer
accurately the volumetric attenuation canonical model from a non-rigidly moving sample. In
particular, thin features such as the �nger tips (only a few voxels wide) are recovered by the
proposed method, despite a strongly non-rigid deformation. The main remaining artefacts
lie between the phalanges in the palm (second from left in Fig. 6) where a resonance effect
between the model and the sampling directions is observed.

The reprojected results illustrated in Fig. 1 show the practical value of the proposed
method, as the combination of the estimated canonical model and warp function allows to
visualise the dense 4D model at any instant in time and under any chosen viewpoint, whereas
a single one was captured originally. Better still, the complete sequence (104 frames) can be
visualised using the whole skin mesh sequence for motion estimation, whereas the canonical
volumetric model is estimated from 23 frames only. In other words, the proposed method is
able to render images in con�gurations where neither the requested viewpoint nor the sample
pose were actually captured by X-ray imagery.

We did not attempt to evaluate the motion estimation on its own, since good performance
on the canonical model reconstruction is intrinsically linked to correct motion estimation.
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4.2 Real-life results

In order to evaluate our algorithm in a real-life scenario, a subject was asked to freely move
a hand in a non-rigid fashion.

The scene was recorded by 10 video cameras and a single static X-ray ampli�er at 30 fps,
as illustrated in Fig. 7. Video cameras and X-ray imaging device were calibrated in a com-
mon coordinate system, using a method similar to [15]. The video segmentation required for
3D reconstruction was performed half-automatically (i.e. a limited number of parameters to
be adjusted manually). The number of video cameras is suf�cient to deal with self-occlusions
exhibited by relatively simple geometry such as that of a human hand.

Figure 7: Proposed capture platform actual
implementation: X-ray ampli�ers and 10
video cameras surrounding the acquisition
volume. Note that only a single ampli�er is
actually used in the proposed approach.

The recorded motion was composed of an overall rotation and translation as well as a
�nger �exion and dorsi�exion. Only a subset of these frames was actually used in order to
demonstrate the performance of the proposed method with sparse input. Indeed, we achieve
a tomographic reconstruction with as little as 30 views, whereas traditional (CB)CT systems
typically require 100 to 1000 views.

To the best of our knowledge, there is currently no mean to acquire 4D volumetric data of
this kind, and hence no ground-truth data was available. Qualitative results illustrated in Fig.
8, 9, and 10 demonstrate the performance of the proposed approach. The real-life moving
hand sequence can be played back over time as an X-ray image under an arbitrarily chosen
viewpoint, independently from the captured one.

Figure 8: Real-life results (3 selected slices).
Main inner structures are clearly visible, in-
cluding bone cavities only a few voxels wide,
although some streak artefacts remain due to
motion estimation innacuracies.

These results clearly demonstrate that the proposed approach is able to reconstruct a
dense volumetric attenuation model from real-life non-rigidly moving sample. Indeed, the
results show that even thin structures are reconstructed, the inner structure of the bones being
visible, in particular in the palm.

5 Conclusion and future work

In this paper we proposed CTfM, a novel approach to X-ray Computed Tomography purely
based on the sample motion. The proposed approach models a non-rigidly moving sample
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Figure 9: Real-life data and results (30 frames used as input). Left-to-right: motion over
time (8 selected frames). Top-to-bottom: X-ray input image, raw mesh generated from 10
videos, tracked mesh (patches), resulting 3D volume rendered as planar X-ray images from
a novel view-point. High level of details are visible in the novel rendering – see Fig. 10 for
zoom.

����

Figure 10: Real-life results: raycasting ren-
dering (zoom from Fig. 9). The resulting im-
ages exhibit high level of details, including
the bones inner structure, particularly visible
in the palm area, even in presence of non-
rigid motion, i.e. between the metacarpals
and the proximal phalanges (green arrow).

by the composition of a static 3D canonical model and a warp function encoding the motion
throughout the volume over time. A very limited number of X-ray views is required, the
motion �eld being mostly estimated on the surface and propagated in-depth. This method
provides a unique insight in moving samples inner structure.

As for the improvements, some artefacts related to large locally non-linear motion could
be reduced by devising and estimating a higher order warp function.
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