N

N

Typing heterogeneous dataflow graphs for static
buffering and scheduling

Pierre Donat-Bouillud, Jean-Louis Giavitto

» To cite this version:

Pierre Donat-Bouillud, Jean-Louis Giavitto. Typing heterogeneous dataflow graphs for static buffering
and scheduling. ICMC 2017 - 43rd International Computer Music Conference, Oct 2017, Shanghai,
China. hal-01585489

HAL Id: hal-01585489
https://inria.hal.science/hal-01585489

Submitted on 11 Sep 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01585489
https://hal.archives-ouvertes.fr

Typing heterogeneous dataflow graphs for static buffering and scheduling

Pierre Donat-Bouillud
Sorbonne Universités/STMS/Inria
pierre.donat-bouillud@ircam. fr

ABSTRACT

Interactive multimedia system usually represents compu-
tations as a dataflow graph — the patching model. Nowa-
days, dataflow graphs integrate multiple medias from var-
ious dedicated languages and systems, with multiple rates,
for instance audio rate, video rate, control rate, but also
the rate of FFT frames, as well as requirements on buffer
sizes, or on what kind of data they consume or produce. We
design a type system for the DSP extension of Antescofo
that makes it possible to safely combine effects in such a
heterogeneous graph. We show how to infer the types given
known types in the graph, and how we use this type system
to compute buffer sizes and to schedule the graph. Our ap-
proach is exemplified on an Antescofo program that does
speed tracking of a foreground object in a video stream to
drive an audio effect.

1. INTRODUCTION

The patching paradigm is nearly universal in modern com-
puter music real-time environments. It corresponds to a pe-
riodic dataflow model where the fundamental unit of time,
the tick, is defined by n audio samples.

This computation model has also been proven relevant
and useful for the processing of other kind of signals, from
video to sensor data streams like accelerometers or GPS.
The difference lies in the kind of samples (a whole image
in video, or a few floats for an accelerometer) and in the
data rate.

New interactive multimedia applications require more and
more the integrated management of such streams. This
problem has been addressed in ad-hoc ways in current en-
vironments. For example, GEM is a set of external objects
for PD where images (GEM states) are referred through a
handle. Handles are transferred in the control graph from
a processing node to the other. A node receiving an handle
can access the image through the handle and creates a new
handle to refer to the output result.

This approach is effective but suffers from several draw-
backs. Such handling of non-audio signal lives on the con-
trol level. Thus the fact that the computations to perform
on it are periodic, is not taken into account. For example,
one may imagine that the strict succession of signal sam-
ples is not granted if samples do not take the same com-
putation paths. Another side effect is that the management

Copyright: (©2016 Pierre Donat-Bouillud et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution

License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

Jean-Louis Giavitto
CNRS/Sorbonne Universités/STMS
jean—-louis.giavitto@ircam. fr

of different kinds of signals becomes asynchronous: the
temporal alignment of signal (e.g. audio and video) must
be reconstructed, for example by time-stamping each sam-
ples.

A natural solution to avoid these problems is to unify the
processing of the various kinds of signals under the same
dataflow graph where each node defines a signal trans-
formation. However, the computation model must be ex-
tended to handle different sample types and different rates
within the same graph.

Multirate signal processing is usually considered through
up- and down-sampling operations to deal with heteroge-
neous ADCs and DACs (sample-rate conversion), to min-
imize computational cost and in the development of com-
plex filter (e.g. to minimize noise power). Here multirate
is tackled so as to unify the management of heterogeneous
signals in the same dataflow graph to ensure synchrony.

Contributions. In this work, we address the handling of
multirate signal processing by developing a type inference
system. Our objective is to infer for each signal processing
node, the relevant rate and the type of data consumed and
produced at each periodic node activation. A link between
a source and a target node is seen as an active adapter that
uses a buffer to adapt the production rate of the source node
to the consumption rate of the target node.

The type of nodes and links is used to derive the length
of the communication buffers and to manage the schedul-
ing of computations through the determination of the pe-
riod of activation for each node and link. The type system
accommodates generic processing nodes corresponding to
the parametric implementation of a signal transformation
(the parameter being the buffer length). For instance, such
parametric implementation are produced as an output of
the Faust compiler.

This type system is used to extend the patching sublan-
guage of Antescofo [1] to the handling of heterogeneous
dataflow graphs. Antescofo patches are textual descrip-
tion of synchronous dataflow graph where the nodes are
defined as external plugins or in an external dedicated lan-
guage (like Faust).

The type inference approach proposed here is particularly
relevant to the Antescofo framework. It makes it possible
to set scheduling constraints on given nodes (like input and
output nodes), it determines the instance of a parametric
node that minimizes the memory footprint and is fully in-
dependent of the actual implementation of the processing
node once an adequate type is specified for them.

Organization of the paper. Next section gives some back-
ground elements of the Antescofo system and the patching
sublanguage. The types associated to a DSP node and to

mailto:pierre.donat-bouillud@ircam.fr
mailto:jean-louis.giavitto@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

a DSP link are described in sect. 3 with the inference pro-
cedure. The information captured by the type system are
used to produce a static scheduling of the signal computa-
tions, in sect. 4. An application, sect. 5 combining audio
and video signals illustrates our approach.

2. EMBEDDING DSP EFFECTS IN ANTESCOFO

Antescofo [2] is a score following system that combines a
listening machine with a reactive engine. It uses a dedi-
cated synchronous language to define an augmented score
where musical events to follow, the electronic reactions
to these musical events, and the synchronization between
these actions and the human performers, are specified to-
gether. Its has been primarily used for written mixed mu-
sic, such as for Anthemes 2 (1997) by Pierre Boulez. An-
tescofo can drive sound synthesis, but also video displays,
light scenarios, and also react to some arbitrary analysis of
the audio signal or to the speed of an accelerometer. An-
tescofo is usually embedded in a host such as Max/MSP [3]
or Puredata [4], that perform all the signal processing while
Antescofo is in charge of the control computations and of
the timing mechanisms. However, an Antescofo extension
for signal processing [1] has started to be developed.
In Antescofo, signals flow through processing nodes, called

effects, which transform samples, connected through links
that can modify the temporal characteristics of the signal.

2.1 Instantiating an effect

Effects and links are declared in the score and are instan-
tiated at parsing time, whereas the connections between
effects can be changed all along the performance. The dec-
laration

@dsp_def my_effect : type := dsp::F(argl, , argn)

introduces an instance my_effect of a dsp node dsp::F with the
optional type specification type. Giving an explicit type to a
dsp node makes possible to bypass the type inference sys-
tems, for instance to impose some constraints induced by
the environment. The argument in the right hand side are
instantiation parameters (e.g. the size of a FFT window).
The effect dsp::F can be a builtin effect or can be defined
in another DSP processing language, such as Faust [1], for
which effect can be defined with a @faust.def.

Links are declared only to specify the identifiers that can
be used in a patch:

@dsp_channel $$my_channel

2.2 Connecting effects

Effects are connected together to create a dataflow graph,
that typically takes an audio signal from the soundcard or
the host environment, and sends back a transformed sig-
nal. In Antescofo, connecting effects is an elementary ac-
tion in the score, called a patch action. Patches describe
the dataflow graph in a functional style: it lists a number
of equations with the outputs on the left-hand side, and
the digital signal processor and its inputs on the right-hand
side.

In Fig. 1, a builtin sampler that plays a wav sound file
is connected to the audio output. The type specifies that

the sampler takes one control input (to trigger the play-
back) and outputs two data: a signal (from the sound file)
and a control value that indicates the end of the playback.
The whenever construction defines a reaction which is per-
formed each time its condition $end_sample iS set to true.
The boolean control variable $play_sample triggers the play-
back. Notice the intersection between the control vari-
able in the program and the control variable in the patch.
The patch plugs the sampler through control variables and
links. When $play_sample is set to true, the sampler starts its
playback. Once the playback finished, the output $end_sample

is set to true by the effect, which triggers the reaction,
making it easy to loop a sample for instance.

As an Antescofo action, a patch action can be played after
detecting some musical event, waiting for some delay, and
can be synchronized with the usual synchronization strate-
gies [5] of Antescofo.

3. THE TYPE SYSTEM

The previous example gives a glimpse of Antescofo DSP
types. Languages such as Kronos [6] or Faust [7] have
introduced a sophisticated type system, including support
for multirate signals, to describe signal processing low-
level dataflow operations, while Antescofo type effects are
seen as blackboxes, that can be coded in very different lan-
guages, such as C++, or Faust. Typing these blackboxes
adds some information that makes it easier to combine
them correctly and schedule them.

The Antescofo signal type system aims at grasping the
following idea: a signal is a timed sequence of samples.
For efficiency reason, samples are not handled one by one,
but periodically in group of a fixed size s. But if a DSP
node processes n samples every p seconds, nothing (ex-
cept latency) prevents from scheduling the DSP computa-
tion two times every 2p seconds to process 2n samples.

$play_sample := false
$end_sample := false

@dsp_channel $$out

@dsp_def dsp::my_sampler

© $ —[88200] — $$, $

;= dsp::sampler(”sample.wav”)

whenever ($end_sample) { print "Playing._Done” }

patch{

$$out, $end_sample := dsp::my_sampler($play_sample)
dsp::output[0]($$out)

¥

$play_sample := true

Figure 1. An Antescofo score where a sampler is connected to the sound-
card output. The sampler used a 88200 samplerate, has one scalar input
to indicate when the sample must be played, one audio signal output and
one scalar output to say when the sample has been played. The syntax of
type expressions is presented in sect. 3

3.1 The language of types

We define the primitive types of our signal type system as
(n; are constant integers):

PTYPE ::=int | float | double | PTYPE x PTYPE
| Array(PTYPE, ny,no, ...)

The construction Array(PTYPE, nq,...) is a dependent
type where n; represents the number of element in the ¢th
dimension of a multidimensional array.

The type of a signal is a term:

STYPE ::= s | VAR | STYPE x STYPE
| Signal(PARAM, PARAM, PTYPE)

The symbol $ denotes the type of a control (a scalar value)
which can be seen as a “sporadic signal”: a succession of
values without constraint of periodicity. The set VAR is
the set of type variables «, 3, ... that makes it possible to
have generic types. Given a name to a yet-to-be-inferred
type makes it possible to refer to this type elsewhere (e.g.
to constraint behavior of some nodes). If the variable must
not be referred elsewhere, one can use $$ to spare an iden-
tifier.

The set PARAM is the set N U Id of signal parame-
ters. Signal parameters are either an integer constant or
a variable whose value must be deduced by the type infer-
ence algorithm. We use the letter f and s to refer respec-
tively to the first and the second element of the tuple. In
Signal(f, s, e), f represents a frequency in Hertz, s is a
buffer size, and e is the type of each element of the stream.

Effects and links are seen as functions that transform sig-
nals, that’s to say they have the following types:

FTYPE ::= STYPE — STYPE

3.2 Type Constraints

Effects are functions on signals or tuples of signals where
all incoming and outgoing signals are constrained to the
same frequency whereas links do not touch the samples
but reorganizes the streams in term of succession. That is
to say, they can change the frequency of a stream and its
buffer size as long as the “bandwidth” remains the same.
Links should not modify samples: for instance, they cannot
be used to mix stereo channels into mono, which should be
performed by a dedicated node.

For example, a DSP effect e consuming p signals and pro-
ducing ¢ signals has type:

e : Signal(fi, s1, t1) x --- x Signal(fp, sp, t,) —
Signal(fy, s}, t}) x -+ x Signal(f/,s!, t')

@ %q Yq
where fi = --- = f, = f{ = --- = f;. For the sake of
brievety, as f1 = --- = f, = f{ = --- = f/, the common

frequency can be specified by annotating the arrow:

e : Signal(sy, t1) x --- x Signal(s,, t,) —[f] —
Signal(s}, t}) x --- x Signal(s,, t;)

A link e has type:

e: Signal(fl, S1, tl) —
Signal(fi, s}, tj) x --- x Signal(f/,s,, t.)

p>=p’ P

where t; = t} = --- = t. The target of a link is de-
scribed by several signal types because it may appears has
the input of several DSP node, each imposing its own con-
straint. If a link identifier occurs p times in the right hand
side of the patch equations, then the size of the tuple of
types in the right hand side of the arrow is p.

We also enforce a constraint on links type that represents

the rate of consumption over production in the link:
. S1 sl
Vi € [1,p], AT (1)
It means that if s samples are produced at frequency f,
then in a period lf, % are produced. The /ink must output
the same number of samples in one output period, which
entails the above equality.

The patch action finally defines a DSP graph. A DSP
graph is also a function on signals, resulting of alterna-
tively composing effects and links: links connect effects,
with inputs and outputs which are effects. Usually, most
effects in a DSP graph will have generic types, except in-
puts and outputs to the signal sources and sinks, and em-
bedded legacy effects.

3.3 Type inference, or solving the constraints

Antescofo embeds Faust effects and builtin effects. Each
effect is associated to a type 7" and each instance of an ef-
fect has an associated type derived from 7'. Many effects
are generic (or polymorphic), meaning their inputs and/or
outputs are parametrized in one or several of the three com-
ponents of the type of a signal. For instance, Faust effects
are sets of equations on samples and the Faust compiler
produce a compute function that is parametrized by the
length of the processed buffers (and so accept any buffer
size).

Inferring the types of a DSP graph entails inferring the
types of links that are always generic, as well as to infer
the generic types of the effects, and checking if the already
defined types are coherent. Consequently, the inference of
types has to be done for each DSP graph definition, i.e. for
each patch action. Note that in a working DSP graph, i.e. a
graph that has some outputs, there is at least one node that
has a non-generic type (the output).

The idea of the type inference algorithm is to propagate
the known types in the graph to nodes with generic types,
until all types are known, by looking for a fixpoint. We do
not show here all the propagation rules (or inference rules)
as it would be beyond the scope of this article.

Fig. 2 shows a link that connects Effectl to Effect2. The
link has a generic input type « and a generic output type
(. Different propagation rules can arise depending on what
component of a Signal are generic. Here, we suppose that
we know frequencies f; and fo.

e If 55 is known, we can compute s; using Eq. 1. If s1
is also already known, Eq. 1 has to hold.

e If s; is known but not s5, we also apply Eq. 1.

We also have to have t; = t5 as a link does not manipulate
the samples themselves.

Fig. 3 shows how known types on links are propagated
to an effect. A constraint on frequencies is that all the fre-
quencies of the types on Effect must be the same frequency

Effect 1

Signal(fl, S1, tl)

om
B

Signal(f2, s2,t2)
Effect 2

UA

Figure 2. Propagation of types from effects to links.

f. We choose f = max(f1,..., fn), which means that the
effect must run at the rate of its quickest inputs and out-
puts. This strategy minimizes the required buffer length.
Another strategy is to choose f = min(f1,..., f,) to min-
imize the number of computations (at the expense of com-
putation length).

Propagations are iterated until we reach a fixed point,
that’s to say all frequencies, buffer sizes, and element types
are known and do not change on two consecutive iterations.
The number of iterations cannot exceed the diameter of
the graph which is well defined because the DSP graph is
acyclic by construction. The propagation of frequency and
buffer size must be done at the same step, as they are linked
by Eq. 1. Then, we do the PTYPE inference and checking.

On Fig. 4, two effects Effect] and Effect2 with generic

types 3, 8, v, are connected together and are connected
to links that have known types, i.e. Signal(f,s,e) and
Signal(f’,s’,¢e’). If we suppose that these known types
are different, the inferred types for Effectl and Effect2
could be different depending on where we start propagat-
ing types. In the current implementation, types are first
propagated from the outputs, but we could choose a prop-
agation order to optimize some function on the whole DSP
graph, for instance to maximize buffer sizes to optimize
for performance with vectorization, or to minimize buffer
sizes to optimize for temporal precision.

4. SCHEDULING

During the performance, the execution of the dsp graph is
driven by a period called dsp tick. Every dsp tick, some
nodes are activated, they consume some data available in
the buffer’s links, do some computations, and produce some
data in the buffer’s links.

Each time a patch action is found, the dsp graph is modi-
fied: first, we solve the type constraints for the new graph,
and the scheduling order is computed to take into account
the dependencies of the effects, with a topological sort. Af-
ter that, the types of the nodes are used to compute their
actual periods of activation. For an effect, inputs and out-
puts have the same period, wich is this activation period.

(Link1) -+ (Linkn)
Signal(f1, s1, 1) Signal(f, Sn, tn)
o I}
[Effect j

Figure 3. Propagation of types from links to effects

Signal(f, s,)

Figure 4. Chained generic effects.

For links, which convert the “impedance” of signals and as
such do not have the same periods in their inputs and out-
puts, the activation period is the period of the input type.

The dsp tick is computed as the smallest tick such that it
divides all the periods of all the nodes, that is to say, their
greatest common divisor (GCD).

Links. Links store an internal circular buffer that is used
to adapt to the various rates. As /inks do not perform mix-
ing, it has only one input, but they can have several outputs.
The effect that is connected to its input writes in the internal
buffer and the ones that are connected to its outputs read it.
We use virtual memory functionalities (mmap system call
on Linux and mac OS) to remap the memory addresses af-
ter the end of the buffer into the the buffer itself. It makes
it possible to directly give the effect a pointer to the inter-
nal buffer, without having to copy buffers that would span
the end and the beginning of the circular buffer, thus opti-
mizing for less copying. It also means that we can allocate
memory only multiple of a page size, typically, 4 KiB on
x86 processors. For a graph with 10 effects and 20 links,
the memory consumption will be roughly 80 KiB which
is quite small for modern computers, and even for small
boards such as the Raspberry Pi. !

Control. An effect processes one buffer of the size indi-
cated by its type at each tick but can modify or read an
antescofo variable at buffer boundary.

5. TWO DIFFERENT RATES AT PLAY: VIDEO
AND AUDIO

The type system is flexible enough to accomodate very dif-
ferent rates and effects. We developed a proof of concept
that does speed tracking of the largest foreground object
in a video, to control an audio effect. It can be used to
roughly track the speed of a waving arm, for instance. The
video input has typically a rate of an order of magnitude
of 10 Hz, for example, 29.97 frames per second, whereas
the audio output usually requires a 44.1 kHz samplerate to
keep all human-perceivable frequencies. Video frames and
audio rates must also be carried in the same way through
the DSP graph.

In Puredata [4] with Gem [8], although Puredata makes
it possible to change the samplerate in a subpatch using a
block object, it is difficult to have several rates live to-
gether in the same patch, as mixing video and audio would

! The Raspberry Pi 3 has 1 GiB RAM.

BPM 120

$speed := 0.
$max_speed := 1
$pitch_freq :=
$c0 := 16.35
$c7 := 2093.00

5
0;

@faust_def faust::SimpleSynth($frequency)

{
import(”stdfaust.lib”);
freq = hslider(”frequency”, 16.35, 16.35, 2093.0,
0.01) : si.smoo ;
process = os.osc(freq) : re.mono_freeverb
(0.5,0.5,0.5,23);
}

@dsp_def dsp::webcam := dsp::camera(0)
@dsp_def dsp::tracking := dsp::speedtracking()

@dsp-def dsp::synth := dsp::SimpleSynth ()
@dsp_def dsp::audioOut := dsp::output(0)

@dsp-channel $$video
@dsp-channel $$out

whenever ($speed)
{
print "Speed.update”
$pitch_freq := $c0 + @min($max_speed, $speed) * (
$c7 — $c0) / $max_speed
}
6 print Start

patch{
$$video := dsp::webcam ()
$speed := dsp::tracking ($$video)
$$out:= dsp::synth($pitch_freq)
1= dsp::audioOut($$out)
}
40s print DONE DONE

Figure 5. An Antescofo score that uses speed tracking of an arm to con-
trol a synthesiser.

require. In GEM, a gemHead object creates [9] a state
that can store images, and a pointer to this state is car-
ried through the inlets and oulets in a Puredata atom, as
a gemList, ie., the frames are not carried as signals. In
Chuck [10], results of unit analyzers are stored in an object
called a UAnaBlob [11] which contains a timestamp indi-
cated when it was computed, whereas in Antescofo, spec-
tral bins resulting from a FFT for instance would also be
represented as a signal, but with a different rate depending
on the parameters of the FFT.

A type system ensures that frames can be carried safely
and in a general way within the DSP graph: a video stream
with a framerate fps, seen as a stream of images of given
width and height, will have a type such as

Signal(fps, 1, Image(width, height))

as shown on Fig. 6. Image(width, height) is an alias
for Array(int X int X int,width, height). The output
of the speed tracking node is a control variable, that is up-
dated for each frame. It means that we can further process

$$video

webcam } »| tracking |

Signal(fps, 1, Image(width, height)) Control

whenever
($speed)

$$out Y
audioOut } (SVnth

Signal(samplerate, n, AudioSample)

Figure 6. The DSP graph is made of four main nodes: a input node
connected to a video source (video camera or video file), a node that does
speed tracking, a node that plays a sound, and an audio output, to the
soundcard.

this control variable, by detecting when it changes with a
whenever, as shown on Code 5. In Antescofo, the whenever
control instruction watches a condition on variables of the
score and computes something when the values of the vari-
ables changes and the condition evaluates to true. The code
associated to that whenever computes here a frequency from
the speed. After that, the frequency is used to drive a syn-
thesizer which is coded in Faust.

Speed tracking To track the speed of a foreground object,
we embedded the library OpenCV [12] in Antescofo. The
speedtracking effect is a builtin effect coded in OpenCV. We
extract the foreground using the Substractor Background
MOG?2 [13], eroding and deleting the result to get rid of
noise, and then detecting the contours and keeping the largest
one with respect to its area, as shown on Fig. 7. The speed
is computed by measuring the displacement of its mass
center, and smoothed. When the detected contour changes
are higher than a given threshold, the speed is reset.

Synthesizer The Faust effect is embedded in Antescofo as
described in [1]. The input frequency is smoothed then
used to drive a simple oscillator, to which we add some
reverb using freeverb, an opensource implementation of a
Schroeder/Moorer reverb model [14].

Figure 7. Detection of waving arm and hand in a video using OpenCV.
The centroid of the contour is the yellow point left to the wrist.

6. CONCLUSIONS

We have defined a type system for the dsp extension of
Antescofo. The type system makes it possible to combine
heterogeneous nodes that operate on streams with various
rates, and various types of elements. The type system is

used to check for the correctness of the dsp graph, to stat- ond intercollege computer music concerts, pp. 3741,
ically allocate the communication buffers between effects, 1996.

and to schedule them. Most nodes have generic types, for
which the actual types are inferred given already known
types, which can enable Antescofo to choose an inference
strategy that can optimize some performance or precision
metrics. The flexibility of the type system is showcased on
an example that connects various heterogeneous effects,
i.e. a Faust effect, an OpenCV effect, and controlled by
Antescofo code.

[5] A. Cont, J. Echeveste, J.-L. Giavitto, and F. Jacque-
mard, “Correct Automatic Accompaniment Despite
Machine Listening or Human Errors in Antescofo,”
in Proceedings of International Computer Music Con-
ference (ICMC). Ljubljana, Slovenia: IRZU - the
Institute for Sonic Arts Research, Sep. 2012. [Online].
Available: http://hal.inria.fr/hal-00718854

We aim at allowing even richer types, that can express [6] V. Norilo, “Kronos: A Declarative Metaprogramming
more complex constraints, such as affine relations between Language for Digital Signal Processing,” Computer
frequencies and buffer sizes among several inputs and out- Music Journal, 2016.
puts of a node, to more precisely state how effects can be
connected together. For instance, it would be useful to ex- [7]1 Y. Orlarey and P. Jouvelot, “Signal rate inference for
press that the buffer size of one input must be the double multi-dimensional faust,” in The 28th symposium on
of another input on an effect. Implementation and Application of Functional Lan-

In this article, we have described how the type system guages (IFL 2016), 2016.
makes it possible to statically choose a buffering size and]) o
schedule the effects. However, depending on the current [8] M. Danks, “Real-time Image and Video Processing in
conditions and requirements of the execution of the score, GEM.” in ICMC, 1997.
that is to say, the overIOFIQing of the processor, and the need 9] J. Zmélnig, “Gem for pd-recent progress.” in ICMC,
for more temporal precision, the type system could express 2004.

how the frequency and buffer sizes of the dsp graph can be
adapted individually to react dynamically to them, for in- [10] G. Wang, P. R. Cook, and S. Salazar, “Chuck: A
stance by specifying ranges. To improve accuracy in the strongly timed computer music language,” Computer
handling of control, we envision to use dynamic buffer Music Journal, 2016.
sizse when the processing node accept generic size. At o)
the occurrence of a control, the buffer current buffer pro- [11] G Wang, .R- Fiebrink, .ar?d P. R. Cook, Combln—
cessing is stopped and the input buffer are properly split ng Analy51§ and synthesis in the Chuck Programming
in two (corresponding to the data before the occurrence of Language.” in ICMC, 2007.
the contro and the date. after this occurence). Then these [12] G. Bradski, “OpenCV Library,” Dr. Dobb’s Journal of
buffers are propagated into the rest of the dsp graph. The

L] . . Software Tools, 2000.
motivation is to achieve almost sample accuracy while keep-

ing the buffers as large as possible, to benefit from vector [13] Z. Zivkovic and F. Van Der Heijden, “Efficient adap-

instructions and cache locality. tive density estimation per image pixel for the task of
background subtraction,” Pattern recognition letters,
Acknowledgments vol. 27, no. 7, pp. 773-780, 2006.

[14] M. R. Schroeder, “Digital simulation of sound trans-
mission in reverberant spaces,” The Journal of the
Acoustical Society of America, vol. 47, no. 2A, pp.
424-431, 1970.

We would like to thank Clément Poncelet for proofread-
ing the article, and Florent Jacquemard for his support.

7. REFERENCES

[1] P. Donat-Bouillud, J.-L. Giavitto, A. Cont, N. Schmidt,
and Y. Orlarey, “Embedding native audio-processing
in a score following system with quasi sample accu-
racy,” in ICMC 2016-42th International Computer Mu-
sic Conference, 2016.

[2] A. Cont, “Antescofo: Anticipatory Synchronization
and Control of Interactive Parameters in Computer Mu-
sic,” in Proceedings of International Computer Music
Conference (ICMC), Belfast, Irlande du Nord, August
2008.

[3] D.Zicarelli, “How I learned to love a program that does
nothing,” Computer Music Journal, vol. 26, no. 4, pp.
44-51, 2002.

[4] M. Puckette er al., “Pure Data: another integrated
computer music environment,” Proceedings of the sec-

http://hal.inria.fr/hal-00718854

	 1. Introduction
	 2. Embedding DSP effects in Antescofo
	2.1 Instantiating an effect
	2.2 Connecting effects

	 3. The type system
	3.1 The language of types
	3.2 Type Constraints
	3.3 Type inference, or solving the constraints

	 4. Scheduling
	 5. Two different rates at play: video and audio
	 6. Conclusions
	 7. References

