B. Gallone, Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts, Cell, vol.166, issue.6, pp.1397-1410, 2016.
DOI : 10.1016/j.cell.2016.08.020

URL : https://doi.org/10.1016/j.cell.2016.08.020

G. Liti, Population genomics of domestic and wild yeasts, Nature, vol.26, issue.7236, pp.337-341, 2009.
DOI : 10.1099/00207713-50-5-1931

A. Goffeau, Life with 6000 Genes, Science, vol.274, issue.5287, pp.563-570, 1996.
DOI : 10.1126/science.274.5287.546

Q. M. Wang, W. Q. Liu, G. Liti, S. A. Wang, and F. Bai, in natural environments remote from human activity, Molecular Ecology, vol.16, issue.Botany, pp.5404-5417, 2012.
DOI : 10.1002/1097-0061(20000615)16:8<773::AID-YEA599>3.0.CO;2-1

C. T. Hittinger, Remarkably ancient balanced polymorphisms in a multi-locus gene network, Nature, vol.5, issue.7285, pp.54-58, 2010.
DOI : 10.1126/science.274.5287.546

D. R. Scannell, Genus, G3&#58; Genes|Genomes|Genetics, vol.1, issue.1, pp.11-25, 2011.
DOI : 10.1534/g3.111.000273

Y. Nakao, Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid, DNA Research, vol.16, issue.2, pp.115-129, 2009.
DOI : 10.1093/dnares/dsp003

D. Libkind, Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast, Proceedings of the National Academy of Sciences, vol.464, issue.7285, pp.14539-14544, 2011.
DOI : 10.1038/nature08791

J. Souciet, Comparative genomics of protoploid Saccharomycetaceae, Genome Res, vol.19, pp.1696-1709, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00407511

B. Dujon, Genome evolution in yeasts, Nature, vol.316, issue.6995, pp.35-44, 2004.
DOI : 10.1093/nar/gkg056

URL : https://hal.archives-ouvertes.fr/hal-00104411

S. Wong, G. Butler, and K. H. Wolfe, Gene order evolution and paleopolyploidy in hemiascomycete yeasts, Proceedings of the National Academy of Sciences, vol.2, issue.5, pp.9272-9277, 2002.
DOI : 10.1038/35072009

URL : http://www.pnas.org/content/99/14/9272.full.pdf

A. R. Borneman, Insights into the Dekkera bruxellensis Genomic Landscape: Comparative Genomics Reveals Variations in Ploidy and Nutrient Utilisation Potential amongst Wine Isolates, PLoS Genetics, vol.29, issue.2, p.1004161, 2014.
DOI : 10.1371/journal.pgen.1004161.s014

B. Dunn, C. Richter, D. J. Kvitek, T. Pugh, and G. Sherlock, Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments, Genome Research, vol.22, issue.5
DOI : 10.1101/gr.130310.111

J. Leducq, Speciation driven by hybridization and chromosomal plasticity in a wild yeast, Nature Microbiology, vol.164, issue.1, p.15003, 2016.
DOI : 10.1186/1471-2148-7-214

D. Peris, and its lager-brewing hybrids, Molecular Ecology, vol.20, issue.8, pp.2031-2045, 2014.
DOI : 10.1002/evan.20301

U. Bond, C. Neal, D. Donnelly, and T. C. James, Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation, Current Genetics, vol.45, issue.6, pp.360-370, 2004.
DOI : 10.1007/s00294-004-0504-x

J. Steenwyk and A. Rokas, Extensive Copy Number Variation in Fermentation- Related Genes Among Saccharomyces cerevisiae Wine Strains
DOI : 10.1101/105502

M. A. Fares, O. M. Keane, C. Toft, L. Carretero-paulet, and G. W. Jones, The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes, PLoS Genetics, vol.148, issue.1, p.1003176, 2013.
DOI : 10.1371/journal.pgen.1003176.s005

M. Novo, Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118, Proceedings of the National Academy of Sciences, vol.12, issue.4
DOI : 10.1093/bioinformatics/12.4.357

G. Liti and E. J. Louis, YEAST EVOLUTION AND COMPARATIVE GENOMICS, Annual Review of Microbiology, vol.59, issue.1, pp.135-153, 2005.
DOI : 10.1146/annurev.micro.59.030804.121400

B. Dujon, Yeast evolutionary genomics, Nature Reviews Genetics, vol.104, issue.7, pp.512-524, 2010.
DOI : 10.1038/nrg2689

W. Albertin and P. Marullo, Polyploidy in fungi: evolution after whole-genome duplication, Proceedings of the Royal Society B: Biological Sciences, vol.142, issue.3, pp.2497-2509, 2012.
DOI : 10.1016/j.ympev.2004.04.018

URL : http://rspb.royalsocietypublishing.org/content/royprsb/279/1738/2497.full.pdf

L. A. Kavanaugh, J. A. Fraser, and F. S. Dietrich, Recent Evolution of the Human Pathogen Cryptococcus neoformans by Intervarietal Transfer of a 14-Gene Fragment, Molecular Biology and Evolution, vol.23, issue.10, pp.1879-1890, 2006.
DOI : 10.1093/molbev/msl070

S. Mallet, Insights into the Life Cycle of Yeasts from the CTG Clade Revealed by the Analysis of the Millerozyma (Pichia) farinosa Species Complex, PLoS ONE, vol.78, issue.5, p.35842, 2012.
DOI : 10.1371/journal.pone.0035842.s008

URL : https://hal.archives-ouvertes.fr/hal-01190781

G. Liti, D. B. Barton, and E. J. Louis, Sequence Diversity, Reproductive Isolation and Species Concepts in Saccharomyces, Genetics, vol.174, issue.2, pp.839-850, 2006.
DOI : 10.1534/genetics.106.062166

URL : http://www.genetics.org/content/genetics/174/2/839.full.pdf

P. Almeida, A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum, Nature Communications, vol.22, p.4044, 2014.
DOI : 10.1101/gr.130310.111

URL : https://hal.archives-ouvertes.fr/hal-01002466

E. S. Naumova, G. I. Naumov, I. Masneuf-pomarède, M. Aigle, and D. Dubourdieu, Molecular genetic study of introgression betweenSaccharomyces bayanus andS. cerevisiae, Yeast, vol.22, issue.14, pp.1099-1115, 2005.
DOI : 10.1016/S0723-2020(99)80041-1

L. Morales and B. Dujon, Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts, Microbiology and Molecular Biology Reviews, vol.76, issue.4, pp.721-760, 2012.
DOI : 10.1128/MMBR.00022-12

S. Marsit, Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts, Molecular Biology and Evolution, vol.32, issue.7, p.57, 2015.
DOI : 10.1093/molbev/msv057

V. Galeote, Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation, PLoS ONE, vol.24, issue.3, p.17872, 2011.
DOI : 10.1371/journal.pone.0017872.s002

URL : https://hal.archives-ouvertes.fr/hal-01222409

B. Dunn, Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression, PLoS Genetics, vol.7, issue.3, p.1003366, 2013.
DOI : 10.1371/journal.pgen.1003366.s010

J. Ropars, Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi, Current Biology, vol.25, issue.19, pp.2562-2569, 2015.
DOI : 10.1016/j.cub.2015.08.025

URL : https://hal.archives-ouvertes.fr/hal-01302701

M. L. Arnold and N. H. Martin, Adaptation by introgression, Journal of Biology, vol.8, issue.9, p.82, 2009.
DOI : 10.1186/jbiol176

URL : https://doi.org/10.1186/jbiol176

E. Huerta-sanchez, Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA, Nature, vol.329, issue.7513, pp.194-197, 2014.
DOI : 10.1126/science.1189406

B. M. Fitzpatrick, Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders, BMC Evolutionary Biology, vol.9, issue.1, p.176, 2009.
DOI : 10.1186/1471-2148-9-176

N. H. Martin, A. C. Bouck, and M. L. Arnold, Detecting Adaptive Trait Introgression Between Iris fulva and I. brevicaulis in Highly Selective Field Conditions, Genetics, vol.172, issue.4, pp.2481-2489, 2006.
DOI : 10.1534/genetics.105.053538

URL : http://www.genetics.org/content/genetics/172/4/2481.full.pdf

E. Giuffra, The origin of the domestic pig: independent domestication and subsequent introgression, Genetics, vol.154, pp.1785-1791, 2000.

K. Zhao, Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome, PLoS ONE, vol.38, issue.5, p.10780, 2010.
DOI : 10.1371/journal.pone.0010780.s009

I. Masneuf-pomarede, M. Bely, P. Marullo, and W. Albertin, The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges, Frontiers in Microbiology, vol.151, issue.166, 2016.
DOI : 10.1016/j.ijfoodmicro.2011.08.026

E. Tosi, M. Azzolini, F. Guzzo, and G. Zapparoli, isolated from Amarone wine, Journal of Applied Microbiology, vol.1, issue.1, pp.210-218, 2009.
DOI : 10.1002/j.2050-0416.2003.tb00602.x

C. Demuyter, M. Lollier, J. Legras, and C. Le-jeune, Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery, Journal of Applied Microbiology, vol.43, issue.6, pp.1140-1148, 2004.
DOI : 10.1007/BF00173729

G. I. Naumov, Genetic identification of Saccharomyces bayanus var. uvarum, a cider-fermenting yeast, International Journal of Food Microbiology, vol.65, issue.3, pp.163-71, 2001.
DOI : 10.1016/S0168-1605(00)00515-8

J. P. Sampaio and P. Gonçalves, Natural Populations of Saccharomyces kudriavzevii in Portugal Are Associated with Oak Bark and Are Sympatric with S. cerevisiae and S. paradoxus, Applied and Environmental Microbiology, vol.74, issue.7, pp.2144-2152, 2008.
DOI : 10.1128/AEM.02396-07

P. J. Boynton and D. Greig, The ecology and evolution of non-domesticated Saccharomyces species, Yeast, vol.31, pp.449-62, 2014.

T. Da-silva, Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions, PLOS ONE, vol.6, issue.10, p.123834, 2015.
DOI : 10.1371/journal.pone.0123834.s010

G. Lunter and M. Goodson, Stampy: A statistical algorithm for sensitive and fast mapping of Illumina sequence reads, Genome Research, vol.21, issue.6, pp.936-945, 2011.
DOI : 10.1101/gr.111120.110

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.
DOI : 10.1093/bioinformatics/btp352

URL : https://academic.oup.com/bioinformatics/article-pdf/25/16/2078/531810/btp352.pdf

P. Danecek, A. Auton, G. Abecasis, and C. Albers, The variant call format and VCFtools, Bioinformatics, vol.27, issue.15, 2011.
DOI : 10.1093/bioinformatics/btr330

URL : https://academic.oup.com/bioinformatics/article-pdf/27/15/2156/1125001/btr330.pdf

P. Cingolani, A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff, Fly, vol.8, issue.2, pp.80-92, 2012.
DOI : 10.1101/gr.4086505

B. Chevreux, T. Wetter, and S. Suhai, Genome sequence assembly using trace signals and additional sequence information, Ger. Conf. Bioinforma, 1999.

T. Massingham and N. Goldman, simNGS and simLibrary?software for simulating next-gen sequencing data, 2012.

S. Gnerre, I. Maccallum, and D. Przybylski, High-quality draft assemblies of mammalian genomes from massively parallel sequence data, Proceedings of the National Academy of Sciences, vol.462, issue.7269, 2011.
DOI : 10.1038/462021a

I. Minkin, H. Pham, E. Starostina, N. Vyahhi, and S. Pham, C-Sibelia: an easy-to-use and highly accurate tool for bacterial genome comparison, F1000Research, vol.174, 1000.
DOI : 10.1111/j.1574-6968.1999.tb13575.x

URL : https://doi.org/10.12688/f1000research.2-258.v1

I. Masneuf-pomarede, Microsatellite analysis of Saccharomyces uvarum diversity, FEMS Yeast Res, vol.16, 2016.

W. Cochran, The [chi-squared] test of goodness of fit, Ann. Math. Stat, vol.25, pp.315-345, 1952.

S. Gabriel, L. Ziaugra, and D. Tabbaa, SNP Genotyping Using the Sequenom MassARRAY iPLEX Platform, Current Protocols in Human Genetics, vol.357, 2009.
DOI : 10.1002/0471142905.hg0212s60

P. C. Dunlop, G. M. Meyer, D. Ban, and R. J. Roon, Characterization of two forms of asparaginase in Saccharomyces cerevisiae, J. Biol. Chem, vol.253, pp.1297-1304, 1978.

L. F. Burroughs, The amino-acids of apple juices and ciders, Journal of the Science of Food and Agriculture, vol.179, issue.3, pp.122-131, 1957.
DOI : 10.1002/j.2050-0416.1954.tb02779.x

M. Dizy, P. J. Martín-alvarez, M. D. Cabezudo, C. Polo, and M. , Grape, apple and pineapple juice characterisation and detection of mixtures, Journal of the Science of Food and Agriculture, vol.70, issue.1, pp.47-53, 1992.
DOI : 10.1002/jsfa.2740600109

P. Marullo, strains, FEMS Yeast Research, vol.7, issue.6, pp.941-952, 2007.
DOI : 10.1111/j.1567-1364.2007.00252.x

URL : https://hal.archives-ouvertes.fr/ensl-00186849

D. Avram, M. Leid, and A. Bakalinsky, Fzf1p ofSaccharomyces cerevisiae is a positive regulator ofSSU1 transcription and its first zinc finger region is required for DNA binding, Yeast, vol.25, issue.6, pp.473-480, 1999.
DOI : 10.1128/MCB.12.5.1940

S. K. Park, R. B. Boulton, and . Noble, Formation of hydrogen sulfide and glutathione during fermentation of white grape musts, Am. J. Enol. Vitic, vol.51, pp.91-97, 2000.

E. K. Engle and J. C. Fay, Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance, PLoS Genetics, vol.86, issue.6, 2012.
DOI : 10.1371/journal.pgen.1002763.s007

A. L. Coi, Genomic signatures of adaptation to wine biological aging conditions in biofilm-forming flor yeasts, Mol. Ecol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608516

G. Liti and E. J. Louis, Advances in Quantitative Trait Analysis in Yeast, PLoS Genetics, vol.8, issue.8, 2012.
DOI : 10.1371/journal.pgen.1002912.g003

URL : https://doi.org/10.1371/journal.pgen.1002912

I. Masneuf-pomarède, M. Bely, P. Marullo, A. Lonvaud-funel, and D. Dubourdieu, Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains, International Journal of Food Microbiology, vol.139, issue.1-2, pp.79-86, 2010.
DOI : 10.1016/j.ijfoodmicro.2010.01.038