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Abstract

The well-known Birkhoff-von Neumann (BvN) decomposition expresses a doubly
stochastic matrix as a convex combination of a number of permutation matrices.
For a given doubly stochastic matrix, there are many BvN decompositions, and
finding the one with the minimum number of permutation matrices is NP-hard.
There are heuristics to obtain BvN decompositions for a given doubly stochastic
matrix. A family of heuristics is based on the original proof of Birkhoff and
proceeds step by step by subtracting a scalar multiple of a permutation matrix
at each step from the current matrix, starting from the given matrix. At every
step, the subtracted matrix contains nonzeros at the positions of some nonzero
entries of the current matrix and annihilates at least one entry, while keeping
the current matrix nonnegative. Our first result, which supports a claim of
Brualdi [Canad. Math. Bull. 25 (1982), pp. 191–199], shows that this family of
heuristics can miss optimal decompositions. We also investigate the performance
of two heuristics from this family theoretically.
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1. Introduction

A square matrix A = [aij ] ∈ Rn×n is doubly stochastic if aij ≥ 0 for all i, j
and Ae = AT e = e, where e is the column vector of all ones. In other words, the
entries of a doubly stochastic matrix are nonnegative, and the sum of entries
in any row or column is equal to one. By Birkhoff’s Theorem, there exist
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α1, α2, . . . , αk ∈ (0, 1] with
∑k
i=1 αi = 1 and k different permutation matrices

P1,P2, . . . ,Pk such that

A = α1P1 + α2P2 + · · ·+ αkPk . (1)

This representation is also called Birkhoff-von Neumann (BvN) decomposition.
For a given matrix there are many different BvN decompositions. Marcus–
Ree Theorem [1] states that for a dense matrix, there are decompositions with
k ≤ n2−2n+2 permutation matrices. For a sparse, fully indecomposable matrix
with τ nonzeros, the same result holds [2, 3] with k ≤ τ−2n+2. Brualdi [3] gives
lower bounds on the number of permutation matrices in any BvN decomposition
of a given matrix. A recent work [4] shows that the problem of finding a BvN
decomposition with the smallest number k of permutation matrices is strongly
NP-complete.

There are heuristics to compute a BvN decomposition for a given matrix
A. In particular, the following family of heuristics is based on the constructive
proof of Birkhoff. Let A(0) = A. At every step j ≥ 1, find a permutation matrix
Pj having its ones at the positions of the nonzero elements of A(j−1), use the
minimum nonzero element of A(j−1) at the positions identified by Pj as αj ,
set A(j) = A(j−1) − αjPj , and repeat the computations in the next step j + 1
until A(j) becomes void. Any heuristic of this type is called generalized Birkhoff
heuristic. The original Birkhoff heuristic chooses a permutation matrix Pj at
step j which contains a one at the position of the minimum nonzero element of
A(j−1). Dufossé and Uçar [4] propose choosing a permutation matrix Pj where
the minimum nonzero element of A(j−1) identified by Pj is maximum. We refer
to this last heuristic as the Greedy heuristic.

Doubly stochastic matrices and their associated BvN decompositions have
been used in several operations research problems and applications. Classical
examples are concerned with allocating communication resources, where an in-
put traffic is routed to an output traffic in stages [5]. Each routing stage is a
(sub-)permutation matrix and is used for handling a disjoint set of communi-
cations. The number of stages correspond to the number of (sub-)permutation
matrices. A recent variation of this problem appears in routing in data cen-
ters [6]. BvN decompositions are also used to build preconditioners for solving
sparse linear systems [7]. Here, the number k of the permutation matrices is
related to the cost of applying the preconditioner.

Our contribution in this note is threefold. First, we answer an open ques-
tion asked by Brualdi [3, pp. 197–198]. Brualdi predicts that there are BvN
decompositions which cannot be written as a convex combination of other de-
compositions and which cannot be obtained by a generalized Birkhoff heuristic.
We give an example affirming the prediction of Brualdi. Second, we investigate
the worst case performance guarantee of the original Birkhoff heuristic and show
that it can be very bad. To do so, we describe a family of matrices where the
smallest number of permutation matrices required is 3 while the Birkhoff heuris-
tic finds decompositions with n permutation matrices, for a matrix of size n×n.
Kulkarni et al. [6, Theorem 7] also present examples to show that the worst case
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performance of Birkhoff heuristic can be very bad. Our construction is more
explicit and seems simpler. Our third contribution is to show an approximation
guarantee of the Greedy heuristic.

2. A result on the polytope of BvN decompositions

Let S(A) be the polytope of all BvN decompositions for a given, doubly
stochastic matrix A. The extreme points of S(A) are the ones that cannot be
represented as a convex combination of the other decompositions. Brualdi [3,
pp. 197–198] observes that any generalized Birkhoff heuristic obtains an extreme
point of S(A), and predicts that there are extreme points of S(A) which cannot
be obtained by a generalized Birkhoff heuristic. In this section, we substantiate
this claim by showing an example.

Any BvN decomposition of a given matrix A with the smallest number of
permutation matrices is an extreme point of S(A); otherwise the other BvN
decompositions expressing the said point would have smaller number of permu-
tation matrices.

Lemma 1. There are doubly stochastic matrices whose polytopes of BvN de-
compositions contain extreme points that cannot be obtained by a generalized
Birkhoff heuristic.

We will prove the lemma by giving an example. We use computational tools
based on a mixed integer linear programming (MILP) formulation of the prob-
lem of finding a BvN decomposition with the smallest number of permutation
matrices. We first describe the MILP formulation.

Let A be a given n × n doubly stochastic matrix, and Ωn be the set of all
n × n permutation matrices. There are n! matrices in Ωn; for brevity, let us
refer to these permutations by P1, . . . ,Pn!. We associate an incidence matrix
M of size n2 × n! with Ωn. We fix an ordering of the entries of A so that each
row of M corresponds to a unique entry in A. Each column of M corresponds
to a unique permutation matrix in Ωn. We set mij = 1 if the ith entry of A
appears in the permutation matrix Pj , and set mij = 0 otherwise. Let ~a be the
n2-vector containing the values of the entries of A in the fixed order. Let ~x be
a vector of n! elements, xj corresponding to the permutation matrix Pj . With
these definitions, MILP formulation for finding a BvN decomposition of A with
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the smallest number of permutation matrices can be written as:

minimize
n!∑
j=1

sj (2)

subject to M~x = ~a , (3)
1 ≥ xj ≥ 0, for j = 1, . . . , n! , (4)∑

xj = 1, for j = 1, . . . , n! , (5)

sj ≥ xj , for j = 1, . . . , n! , (6)
sj ∈ {0, 1}, for j = 1, . . . , n! . (7)

In this MILP, sj is a binary variable which is 1 only if xj > 0, otherwise 0. The
equality (3), the inequalities (4), and the equality (5) guarantee that we have a
BvN decomposition of A. This MILP can be used only for small problems. In
this MILP, we can exclude any permutation matrix Pj from a decomposition
by setting sj = 0.

Proof of Lemma 1. Let the following 10 letters correspond to the numbers un-
derneath

a b c d e f g h i j
1 2 4 8 16 32 64 128 256 512 .

Consider the following matrix whose row sums and column sums are 1023, hence
can be considered as doubly stochastic

A =


a+ b d+ i c+ h e+ j f + g
e+ g a+ c b+ i d+ f h+ j
f + j e+ h d+ g b+ c a+ i
d+ h b+ f a+ j g + i c+ e
c+ i g + j e+ f a+ h b+ d

 . (8)

Observe that the entries containing the term 2` form a permutation matrix,
for ` = 0, . . . , 9. Therefore, this matrix has a BvN decomposition with 10
permutation matrices. We created the MILP above and found 10 as the smallest
number of permutation matrices by calling the CPLEX solver [8] via the NEOS
Server [9, 10, 11]. Hence the described decomposition is an extreme point of
S(A). None of the said permutation matrices annihilate any entry of the matrix.
Therefore, at the first step no entry of A gets reduced to zero, regardless of the
order of permutation matrices. Thus, this decomposition cannot be obtained
by a generalized Birkhoff heuristic.

One can create a family of matrices with arbitrary sizes by embedding the
same matrix into a larger one of the form

B =

(
1023 · I O
O A

)
,
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A =


3 264 132 528 96
80 5 258 40 640
544 144 72 6 257
136 34 513 320 20
260 576 48 129 10


(a) The sample matrix

129 511 257 63 33 15 7 3 2 2 1
3 4 2 5 5 4 2 3 4 1 1
5 5 3 1 4 1 4 2 1 2 3
2 1 5 3 1 2 3 4 3 4 4
1 3 4 4 2 5 1 5 5 3 2
4 2 1 2 3 3 5 1 2 5 5

(b) A BvN decomposition

Figure 1: The matrix A from Lemma 1, and a BvN decomposition with 11 permutation
matrices which can be obtained by a generalized Birkhoff heuristic. Each column in (b)
corresponds to a permutation, where the first line gives the associated coefficient, and the
following lines give the column indices matched to the rows 1 to 5 of A.

where I is the identity matrix with the desired size. All BvN decompositions ofB
can be obtained by extending the permutation matrices in A’s BvN decomposi-
tions with I. That is, for a permutation matrix P in a BvN decomposition of A,(

I O
O P

)
is a permutation matrix in the corresponding BvN decomposition of

B. Furthermore, all permutation matrices in an arbitrary BvN decomposition
of B must have I as the principle sub-matrix, and the rest should correspond
to a permutation matrix in A, defining a BvN decomposition for A. Hence,
the extreme point S(B) corresponding to the extreme point of S(A) with 10
permutation matrices cannot be found by a generalized Birkhoff heuristic.

Let us investigate the matrix A and its BvN decomposition given in the
proof of Lemma 1. Let Pa,Pb, . . . ,Pj be the 10 permutation matrices of the
decomposition, corresponding to a, b, . . . , j. We solve 10 MILPs in which we set
st = 0 for one t ∈ {a, b, . . . , j}. This way, we try to find a BvN decomposition
of A without Pa, without Pb and so on, always with the smallest number of
permutation matrices. The smallest number of permutation matrices in these
10 MILPs were 11. This certifies that the only BvN decomposition with 10
permutation matrices necessarily contains Pa,Pb, . . . ,Pj . It is easy to see that
there is a unique solution to the equality M~x = ~a of the MILP with xt = 0
for t /∈ {a, b, . . . , j}, as the submatrix M containing only the corresponding 10
columns has full column rank.

Any generalized Birkhoff heuristic obtains at least 11 permutation matrices
for the matrix A of the proof of Lemma 1. One such decomposition is shown in a
tabular format in Fig. 1. In Fig. 1a, we write the matrix of the lemma explicitly
for convenience. Then in Fig. 1b, we give a BvN decomposition. The column
headers (the first line) in the table contains the coefficients of the permutation
matrices. The nonzero column indices of the permutation matrices are stored
by rows. For example, the first permutation has the coefficient 129 and columns
3, 5, 2, 1, and 4 are matched to the rows 1–5. The bold indices signify entries
whose values are equivalent to the coefficients of the corresponding permutation
matrices, at the time where the permutation matrices are found. Therefore, the
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A = 513 ·


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

+ 257 ·


0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0

+ 127 ·


0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

+ 63 ·


0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0

+

31 ·


0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

+ 15 ·


0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

+ 7 ·


0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

+ 3 ·


0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

+

2 ·


0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

+ 2 ·


0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

+ 2 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

+ 1 ·


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1



Figure 2: The output of the Greedy heuristic for the matrix given in the proof of Lemma 1.

corresponding entries become zero after the corresponding step. For example,
in the first permutation, a5,4 = 129.

The output of the Greedy heuristic for the matrix A is given in Fig. 2 for
reference. It contains 12 permutation matrices.

3. Analysis of two known heuristics for computing BvN decomposi-
tions

Empirical results in the literature demonstrated that the Greedy heuristic [4]
can obtain a much smaller number of permutation matrices compared to the
Birkhoff heuristic. Here, we compare these two heuristics theoretically. First
we show that the original Birkhoff heuristic does not have any constant ratio
approximation guarantee. Furthermore, for an n × n matrix, its worst-case
approximation ratio is Ω(n).

We begin with a small example shown in Fig. 3. We decompose a 6 × 6
matrix A(0) which has an optimal BvN decomposition with three permutation
matrices; the main diagonal, the one containing the entries equal to 4, and the
one containing the remaining entries. For simplicity, we used integer values in
our example. However, since the row and column sums of A(0) is equal to 6, it
can be converted to a doubly stochastic matrix by dividing all the entries to 6.
Instead of the optimal decomposition, in the figure, we obtain the permutation
matrices as the original Birkhoff heuristic does. Each red-colored entry set is a
permutation and contains the minimum possible value, 1.

In the following, we show how to generalize the idea for having matrices of
arbitrarily large size, with three permutation matrices in an optimal decompo-
sition, while the original Birkhoff heuristic obtains n permutation matrices.

Lemma 2. The worst-case approximation ratio of the Birkhoff heuristic is Ω(n).

Proof. For any given integer n ≥ 3, we show that there is a matrix of size n×n
whose optimal BvN decomposition has 3 permutations, whereas the Birkhoff
heuristic obtains a BvN decomposition with exactly n permutation matrices.
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A(0) =


1 4 1 0 0 0
0 1 4 1 0 0
0 0 1 4 1 0
0 0 0 1 4 1
1 0 0 0 1 4
4 1 0 0 0 1

 A(1) =


0 4 1 0 0 0
0 1 3 1 0 0
0 0 1 3 1 0
0 0 0 1 3 1
1 0 0 0 1 3
4 0 0 0 0 1



A(2) =


0 4 0 0 0 0
0 0 3 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
1 0 0 0 1 2
3 0 0 0 0 1

 A(3) =


0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 2 1 0
0 0 0 1 1 1
1 0 0 0 1 1
2 0 0 0 0 1



A(4) =


0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 1
1 0 0 0 1 0
1 0 0 0 0 1

 A(5) =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1


Figure 3: A sample matrix to show that the original Birkhoff heuristic can obtain BvN
decomposition with n permutation matrices while the optimum one has 3.

The example in Fig. 3 is a special case for n = 6 for the following construction
process.

Let f : {1, 2, . . . , n} → {1, 2, . . . , n} be the function f(x) = (x mod n) + 1.
Given a matrix M, let M′ = F(M) be another matrix containing the same
set of entries where the function is f(·) is used on the coordinate indices to
redistribute the entries of M on M′. That is mi,j = m′f(i),f(j). Since f(·) is one-
to-one and onto, if M is a permutation matrix then F(M) is also a permutation
matrix. We will start with a permutation matrix, and run it through F for
n − 1 times to obtain n permutation matrices, which are all different. By
adding these permutation matrices, we will obtain a matrix A whose optimal
BvN decomposition has three permutation matrices, while the n permutation
matrices used to create A correspond to a decomposition that can be obtained
by the Birkhoff heuristic.

Let P1 be the permutation matrix whose ones, which are partitioned into
three sets, are at the positions

1st set︷ ︸︸ ︷
(1, 1),

2nd set︷ ︸︸ ︷
(n, 2) ,

3rd set︷ ︸︸ ︷
(2, 3), (3, 4), . . . , (n− 1, n) . (9)

Let us use F(·) to generate a matrix sequence Pi = F(Pi−1) for 2 ≤ i ≤ n. For
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example, P2’s nonzeros are at the positions

1st set︷ ︸︸ ︷
(2, 2),

2nd set︷ ︸︸ ︷
(1, 3) ,

3rd set︷ ︸︸ ︷
(3, 4), (4, 5), . . . , (n, 1) .

We then add the Pis to build the matrix

A = P1 + P2 + · · ·+ Pn .

We have the following observations about the nonzero elements of A:

1. ai,i = 1 for all i = 1, . . . , n, and only Pi has a one at the position (i, i).
These elements are from the first set of positions of the permutation ma-
trices, as identified in (9). When put together, these n entries form a
permutation matrix P(1).

2. ai,j = 1 for all i = 1, . . . , n and j = ((i+1) mod n)+1, and only Ph, where
h = (i mod n) + 1, has a one at the position (i, j). These elements are
from the second set of positions of the permutation matrices, as identified
in (9). When put together, these n entries form a permutation matrix
P(2).

3. ai,j = n − 2 for all i = 1, . . . , n and j = (i mod n) + 1, where all P` for
` ∈ {1, . . . , n} \ {i, j} have a one at the position ai,j . These elements are
from the third set of positions of the permutation matrices, as identified
in (9). When put together, these n entries form a permutation matrix
P(3) multiplied by the scalar (n− 2).

In other words, we can write

A = P(1) + P(2) + (n− 2) ·P(3) ,

and see that A has a BvN decomposition with three permutation matrices. We
note that each row and column of A contains three nonzeros; and hence three
is the smallest number of permutation matrices in a BvN decomposition of A.

Since the minimum element inA is 1, and each Pi contains one such element,
the Birkhoff heuristic can obtain a decomposition using Pi for i = 1, . . . , n.
Therefore, the Birkhoff heuristic’s approximation is no better than n

3 , which
can be made arbitrarily large.

We note that Greedy will optimally decompose the matrix A used in the
proof above.

We now analyze the performance of the Greedy heuristic. We start with a few
experiments which indicate that there is a connection between the performance
of Greedy and the values in the matrix.

We create a set of n × n matrices. To do that, we first fix a set of z per-
mutation matrices {C1, . . . ,Cz} of size n × n. These permutation matrices
with varying values of α will be used to generate the matrices. The matri-
ces are parametrized by the subscript i and each Ai is created as follows:
Ai = α1 · C1 + α2 · C2 + · · · + αz · Cz where each αj for j = 1, . . . , z is a
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Table 1: Experiments showing the dependence of the performance of Greedy on the values
of the matrix elements. n is the matrix size; i ∈ {10, 20, 30, 40, 50} is the parameter for
creating matrices using αj ∈ [1, 2i]; z is the number of permutation matrices used in creating
Ai. Five experiments for a given pair of n and i. Greedy obtains ki permutation matrices.
The average and the maximum number of permutation matrices obtained by Greedy for five
random instances are given. ki/z is a lower bound to the performance of Greedy, as z ≥ Opt.

n = 30 and z = 20
average worst case

i ki ki/z ki ki/z
10 59 2.99 63 3.15
20 105 5.29 110 5.50
30 149 7.46 158 7.90
40 184 9.23 191 9.55
50 212 10.62 227 11.35

n = 200 and z = 100
average worst case

i ki ki/z ki ki/z
10 268 2.69 280 2.80
20 487 4.88 499 4.99
30 716 7.16 726 7.26
40 932 9.33 947 9.47
50 1124 11.25 1162 11.62

randomly chosen integer in the range [1, 2i], and we also set a randomly chosen
αj equivalent to 2i to guarantee the existence of at least one large value even
in the unlikely case that all other values are not large enough. As can be seen,
each Ai has the same structure and differs from the rest only in the values of
αj ’s that are chosen. As a consequence, they all can be decomposed by the
same set of permutation matrices.

We present our results in two sets of experiments shown in Table 1, for two
different n. In both cases we create five random Ai for i ∈ {10, 20, 30, 40, 50},
that is we have five matrices with the parameter i, and there are five different
i. We have n = 30 and z = 20 in the first set, and n = 200 and z = 100 in the
second set. Let ki be the number of permutation matrices Greedy obtains for
a given Ai. The table gives the average and the maximum ki of five different
Ai, for given n and i. By construction, each Ai has a BvN with z permutation
matrices. Since z is no smaller than the optimal value, the ratio ki

z gives a
lower bound on the performance of Greedy. As seen from the experiments,
as i increases, the performance of Greedy gets increasingly worse. This shows
that a constant ratio worst case approximation of Greedy is unlikely. While the
performance depend on z (for example, for small z, Greedy is likely to obtain
near optimal decompositions), it seems that the size of the matrix does not
largely affect the relative performance of Greedy.
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Now we attempt to explain the above results theoretically.

Lemma 3. Let α?1P?1 + · · ·+ α?kP
?
k? be a BvN decomposition of a given doubly

stochastic matrix A with the smallest number k? of permutation matrices. Then,
for any BvN decomposition of A with ` ≥ k? permutation matrices, we have
` ≤ k? · maxi α

?
i

mini αi
. If the coefficients are integers (e.g., when A is a matrix with

constant row and column sums of integral values), we have ` ≤ k? ·maxi α
?
i .

Proof. Consider a BvN decomposition α1P1 + · · ·+ α`P` with ` ≥ k?. Assume
without loss of generality that α?1 ≥ · · · ≥ α?k? and α1 ≥ · · · ≥ α`.

We know that the coefficients of these two decompositions sum up to the
same value. That is ∑̀

i=1

αi =

k?∑
i=1

α?i .

Since α` is the smallest of α, and α?1 is the largest of α?, we have

` · α` ≤ k? · α?1 ,

and hence
`

k?
≤ α?1
α`

.

By assuming integer values, we see that α` ≥ 1 and thus

` ≤ k? ·max
i
α?i .

This lemma evaluates the approximation guarantee of a given BvN decom-
position. It does not seem very useful, because of the fact that even if we have
mini αi, we do do not have maxi α

?
i . Luckily, we can say more in the case of

Greedy.

Corollary 1. Let k? be the smallest number of permutation matrices in a BvN
decomposition of a given doubly stochastic matrix A. Let α1 and α` be the first
and last coefficients obtained by the Greedy heuristic for decomposing A. Then,
` ≤ k? · α1

α`
.

Proof. This is easy to see as Greedy obtains the coefficients in a non-increasing
order [4, Lemma 3], and α1 ≥ α?j for all 1 ≤ j ≤ k? for any BvN decomposition
containing α?j .

Lemma 3 and Corollary 1 give a posteriori estimates of the performance of
the Greedy heuristic, in that one looks at the decomposition and tells how good
it is. This potentially can reveal a good performance. For example, when Greedy
obtains a BvN decomposition with all coefficients equivalent, then we know that
it is an optimal BvN. The same cannot be told for the Birkhoff heuristic though
(consider the example proceeding Lemma 2). We also note that the ratio given
in Corollary 1 should usually be much larger than the practical performance.
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4. Conclusion

We have investigated heuristics for obtaining Birkhoff–von Neumann decom-
position of doubly stochastic matrices and presented three results. First, there
are matrices whose decompositions with the smallest number of permutation
matrices cannot be obtained by any Birkhoff-like heuristic. Second, the worst-
case approximation ratio of the original Birkhoff heuristic is Ω(n). Third, the
performance of the Greedy heuristic depends on the values of matrix elements,
and a bound using the first and the last coefficients found by Greedy is obtained.

The shown bound for the performance of Greedy is expected to be much
larger than what one observes in practice, as the bound can even be larger than
the upper bound on the number of permutation matrices. A tighter analysis
should be possible to explain the practical performance of the Greedy heuristic
(which was demonstrated earlier [4]).
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