
HAL Id: hal-01586583
https://inria.hal.science/hal-01586583

Submitted on 13 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cooperative Data Access in Multi-cloud Environments
Meixing Le, Krishna Kant, Sushil Jajodia

To cite this version:
Meixing Le, Krishna Kant, Sushil Jajodia. Cooperative Data Access in Multi-cloud Environments.
23th Data and Applications Security (DBSec), Jul 2011, Richmond, VA, United States. pp.14-28,
�10.1007/978-3-642-22348-8_4�. �hal-01586583�

https://inria.hal.science/hal-01586583
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Cooperative Data Access in Multi-cloud
Environments ?

Meixing Le, Krishna Kant, Sushil Jajodia
{mlep, kkant, jajodia}@gmu.edu

Center for Secure Information Systems,
George Mason University, Fairfax, VA 22030

Abstract. In this paper, we discuss the problem of enabling cooperative
query execution in a multi-cloud environment where the data is owned
and managed by multiple enterprises. We assume that each enterprise
defines a set of allow rules to facilitate access to its data, which is assumed
to be stored as relational tables. We propose an efficient algorithm using
join properties to decide whether a given query will be allowed. We also
allow enterprises to explicitly forbid access to certain data via deny rules
and propose an efficient algorithm to check for conflicts between allow
and deny rules.
Keywords: Cloud; Rule Composition; Join Path

1 Introduction

With increasing popularity of virtualization, enterprises are deploying clouds to
flexibly support the IT needs of their internal business units or departments
while providing a degree of isolation between them. Enterprises may need to
collaborate with one another in order to run their businesses. For example, an
insurance company needs information from a hospital, and vice versa. Clouds
remove the physical boundaries of enterprise data so that several enterprises can
share the same underlying physical infrastructure. Physical location of the data is
important when planning an optimal query plan with data cooperation among
enterprises. However, in this work, it suffices to assume that each enterprise
has access to a logically separate cloud. We assume that all data is stored in
relational databases and accessed via relational queries. The enterprises disclose
some information to others based on their collaboration requirements, but would
like to avoid leakage of other information.

Similar data sharing scenarios arise in other contexts as well, including those
between independently owned data centers and between the enterprise clouds
and the underlying physical infrastructure. Figure 1 shows the latter situation
more clearly where the enterprise clouds A and B run on top of the physical
? This material is based upon work supported by the National Science Foundation

under grants CCF-1037987 and CT-20013A. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsoring organizations.



infrastructure I. Similarly, enterprise cloud C runs on top of a different physi-
cal infrastructure II. In this case, the enterprise clouds need to know suitable
configuration information from the infrastructure providers and the providers
may need to know the characteristics of the software deployed by the enterprise
clouds. Given the standard CIM [10] (common information model) based storage
of configuration data, it may even be necessary to consider access to information
that is obtained by combining the stored data in some way (much like joins in
normal databases). Thus, the collaboration requirements among these entities
can be similar to those in the context of multiple enterprises sharing data.

Fig. 1. Cooperative data access in cloud en-
vironment.

If in Figure 1, enterprise A needs
data from enterprise B to satisfy its
business needs, A and B need to ne-
gotiate and establish policies regard-
ing the accessibility of each other’s
data. This results in authorization
rules for A and B to follow. With
these authorization rules, A is able
to answer some queries that require
information from B but not others.
If A also has authorization rules for
cloud C, then A may be able to
answer a query that requires some
data from both B and C. In the first
part of our work, we want to decide
whether a given query against enter-
prise A is allowed according to all
the authorization rules given to A.

In general, there are two ways of
specifying the authorizations: explicit (as in reference [1]), and implicit. The
explicit method is easier in that any queries that do not match any explicit
authorization rule will not be answered. However, the number of rules could
become large and cumbersome to manage. In the implicit approach, the enter-
prises are only given some basic rules, and are free to compose them and thereby
access more information than the rules imply directly. The implicit method can
be more concise, and is the focus of this paper. The main problem with implicit
method is that there is no way to exclude certain compositions. We fill this gap
by introducing deny policies as well.

Deny policies are needed for two reasons. The first reason is simply to avoid
certain combinations and thereby achieve the same level of expressiveness as
the explicit authorizations. The second reason is that an enterprise may be able
to do compositions locally after having obtained the desired data from other
enterprises, but such compositions may not be intended.

In this paper, we also present an algorithm to verify whether a deny rule
will be violated by the authorization rules. In other words, we check the conflict
between allow rules and deny rules. In some cases, the deny rules may still be



difficult to enforce with existing parties. In such case, the conflicts found by our
algorithm can be used to alert the data owners to change their authorizations
or policies in order to remove the conflicts. On the other hand, if it is possible
to implement deny rules using a third-party, then they should be given higher
priority over the allow rules. Of course, if a deny rule does not conflict with the
allow rules, it has no effect and can be ignored. Thus our consistency checking
algorithm can be used to reduce the number of deny rules.

The main purpose of this paper is to come up with efficient algorithms for
query permission and conflict checking. This paper does not address the next
step of actually formulating a query plan as well as the problem of implementing
and enforcing all the rules, which will be explored in a subsequent paper.

The outline of the rest of the paper is as follows. Section 2 discusses the
related work. Section 3 presents the concepts related to join group and compos-
able rules, and the intuition behind our approach. For checking whether a query
originating from a cloud can be authorized, we propose a new two-step algorithm
which first selects all the related given rules, and then tries to compose these
rules to determine authorization of the query. This is discussed in Section 4.
In section 5, we present an algorithm for checking whether the deny rules are
consistent with the given authorization rules. Finally, in section 6 we conclude
the discussion and outline future work.

2 Related Work

De Capitani di Vimercati, Foresti and Jajodia [1] studied the problem of au-
thorization enforcement for data release among collaborating data owners in a
distributed computation so as to make sure the query processing discloses only
data that has been explicitly authorized. They proposed an efficient and expres-
sive form of authorization rules which define on the join path of relations and
they also devise an algorithm to check if a query with given query plan tree
can be authorized using the explicit authorization rules. In our work, we follow
the format of authorization rules they proposed. However, it is possible that
these explicit authorization rules given to the same enterprise can be composed
together to implicitly allow more information to be released through queries.

In another work [2], the same authors evaluate whether the information re-
lease the query entails is allowed by all the authorization rules given to a par-
ticular user, which is similar to the problem of query permission checking in our
work. Their solution uses the graph model to find all the possible compositions
of the given rules, and checks the query against all the given allow rules. In our
work, the rules are given to different clouds instead of users, and we propose a
more efficient algorithm to filter more unrelated rules first. Moreover, we deal
with deny policies also.

Processing distributed queries under protection requirements has been stud-
ied in [9, 12, 14]. In these works, each relation/view is constrained by an access
pattern, and their goals are to identify the classes of queries that a given set
of access patterns can support. These works with access patterns only considers



two subjects, the owner of the data and a single user accessing it, whereas the
authorization model considered in this work involves independent parties who
may cooperate in the execution of a query. There are also classical works on the
query processing in centralized and distributed systems [8, 13, 5], but they do not
deal with constraints from the data owners. Superficially, the problem of check-
ing queries against allow and deny rules is similar to checking packets against
firewall allow and deny rules [6]. However, firewall rules are usually explicit, and
one rule can contain another rule but not compose with another rule.

There are several services such as Sovereign joins [11] to enforce the autho-
rization rule model we used, such a service gets encrypted relations from the
participating data providers, and sends the encrypted results to the recipients.
Also, there are some research works [3, 4, 7] about how to secure the data for
out-sourced database services. These methods are also useful for enforcing the
authorization rules in our work, and their primary purpose is to provide mech-
anisms for information sharing among untrusted parties.

3 Composing Rules for Query Checking

In order to check if a query is admissible according to the authorization rules,
one naive idea is to generate all the possible compositions of the given basic
rules, so as to convert each implicit rule into explicit one, and then check the
query permission. The problem is that the compositions may generate too many
rules, which make the approach very expensive.

Instead of generating all possible compositions, we organize the rules based
on join attributes, and then use a two-step algorithm to check whether a given
query can be authorized. In the first step, we filter as many rules as possible
according to the given query. In the second step, we compose these rules based
on their join attributes.

In this section we build up the machinery to enable this checking. In order to
illustrate the various concept and models, we start with an e-commerce example
that we will use throughout the paper. The example has the following schema:

1. Order (order id, customer id, item, quantity) as O
2. Customer (customer id, name, creditcard no, address) as C
3. Inventory (item, retail price, date) as I
4. Warehouse (location, item, supplier id, stock) as W
5. Supplier (supplier id, supplier name, cost price) as S
6. Shipping (location, customer id, days, ship cost) as Sp

The underlined attributes indicate the primary keys of the relations. We
assume that relations Order and Customer are stored at Cloud A, and other
relations are on the other clouds. The authorization rules for Cloud A are given
below. The first two rules define access to local relations, and the following rules
define remote access cooperated with other clouds. Each authorization rule has
an attribute set, and is defined on one relation or a join path; the rule is also
applied to a specified cloud.



1. (order id,customer id,item,quantity),(Order) → Cloud A
2. (customer id,name,creditcard no,address),(Customer) → Cloud A
3. (item,supplier id,supplier name), (Warehouse, Supplier) → Cloud A
4. (item,order id,retail price), (Order, Inventory) → Cloud A
5. (location,supplier id,retail price,stock), (Warehouse, Inventory) → Cloud A
6. (location,item,customer id,ship cost), (Shipping, Warehouse) → Cloud A
7. (ship cost,stock, cost price), (Shipping, Warehouse, Supplier) → Cloud A

For simplicity, we assume identical attributes in different relations have the
same name, and queries are in simple Select-From-Where form. In addition, re-
lations satisfy the Boyce-Codd Normal Form (BCNF), and possible joins among
the relations are all lossless joins. Also, we assume there is no collusion between
clouds to bypass access limitations.

To illustrate query authorization, we shall consider two specific queries:

1. Select name, address, ship cost, retail price
From Customer as C, Shipping as Sp, Warehouse as W, Inventory as I
Where C.customer id = Sp.customer id and Sp.location = W.location and
W.item = I.item

2. Select supplier name, stock
From Supplier as S, Warehouse as W, Inventory as I
Where S.supplier id = W.supplier id and W.item = I.item
and cost price>‘100’

3.1 Basic Concepts

In order to perform efficient authorization checking, we group relations according
to their join capability. For this we define a Join Group as a set of relations
that share the same set of attributes and any subset of them can be joined based
on that attribute set. A relation can appear in several Join Groups. A Join
Group is identified by the set of attributes that its relations can join over, and
we call this as Joinable Attribute Set (JAS) for the group. In our example,
relations Shipping,Warehouse are in the same Join Group, and attribute set
{location} is the JAS of this group. Other JASes among these relations are:
customer id, supplier id, item. In order to address information release by joining
two or more relations, we define the notation of Join Path.

Definition 1 (Join Path) Given a set of relations T1, T2...Tn, a Join Path
< T1, T2...Tn > is an ordered chain of these relations, where each pair of relations
< Ti, Ti+1 > are joined with each other on the JAS.

Each query itself has an associated Join Path called Query Join Path .
In contrast, join path associated with a rule is called Rule Join Path . For
instance, the Query Join Path of Query 1 is < C, Sp,W, I >, and Rule 7 is
defined on the join path < Sp, W, S >. For each rule, the Join Path defines a



view, and the attribute set further refines the view. Therefore, a rule for a cloud
defines a view that this cloud can access. Similar to relations, views (rules) can
also be joined together. By joining two views, the resulting view is defined over a
longer join path. Next, we define the concept of Sub-Path relationships between
two join paths, which is useful for determining the relevant rules for checking
the authorization.

Definition 2 (Sub-Path Relationship) A Join Path A is a Sub-Path of an-
other Join Path B if: 1) The set of relations in Join Path A is a subset of the
relation set of Join Path B. 2) For each join pair < Ti, Ti+1 > joins on a JAS
henceforth denoted as JASi, and < Ti, Ti+1 > also appears in Join Path B and
joined on JASi.

Given two join paths A and B, whether A is a Sub-Path of B cannot be
determined by a simple linear matching of Join Paths. It is because the order
of the relations may be interchanged in a join path, and JASes in the join path
also need to be compared.

3.2 Graph Model to Determine Sub-Path Relationship

Here, we use a graph model to determine the Sub-Path relationships. We present
Join Path via a labeled graph. G =< V, E >, where each node v ∈ V represents
a relation in the Join Path, and each labeled edge e ∈ E connects two nodes if
the two relations form a join pair in the Join Path, and the label indicates the
JAS. The graph model applies to both queries and the authorization rules. To
determine whether an authorization rule is defined on a Sub-Path of a query is
equivalent to checking whether graph G(r) of a rule r is a sub graph of query
graph G(q).

Fig. 2. Rules defined on the Sub-Paths of
Query Join Path of Query 1 in example.

Fig. 3. Rules defined on the Sub-Paths of
Query Join Path of Query 2 in example.

Figure 2 shows the query 1 in our example, and the rules in the boxes are the
ones defined on the Sub-Path of the Query Join Path. Figure 3 does the same



for query 2. For query 1, rules 2, 5, 6 are defined on the Sub-Paths of the Query
Join Path. For query 2, the rules are 3 and 5.

Determining Sub-Path relationship is an important step to figure out the
composable rules as we shall show later in Theorem 1. However, a rule defined
on a Sub-Path of the Query Join Path is not necessarily a composable rule of the
query. Hence, we also look at the attributes that can be used to compose rules
in the given query. We call the JAS in a Query Join Path as Query JAS . Each
Query JAS is also associated with the relation pair that join over it. For example,
in query 2, the Query JASes are: supplier id(S, W ), item(W, I). As rules can be
composed using join operations, we define the concept of Composable rule below.

Definition 3 (Composable rule) An authorization rule is a composable rule,
if the attribute set of the rule contains at least one JAS.

According to the definition, only Rule 7 in our example is not a composable
rule because its attribute set does not contain any of the four JASes. Similarly,
with a given query, we define Query Composable rule as an authorization
rule whose Join Path is defined on a Sub-Path of the Query Join Path and
attribute set contains one Query JAS. For illustration, Rules 2, 5, 6 are the
Query composable rules for query 1 since Rule 2 contains customer id and Rule
5 and 6 contain location. As join operations can occur in rules, the concept of
Join Groups can also be applied to rules instead of basic relations. Within each
Join Group of rules, there are the rules whose attribute sets contain a common
JAS.

Definition 4 (Join Group List) Each entry in a Join Group List is a Join
Group of composable rules. There is a unique JAS to identify each entry and
within the entry there are composable rules whose attribute sets contain this
JAS.

It is clear that one rule may appear in multiple entries. The Join Group List
can be generated with the given rules, and an example of Join Group List can
be found in section 5.3.Query Join Group List is a Join Group List based on
the given query. For each entry in such list, it is identified by a Query JAS, and
within each entry are the Query composable rules whose attribute set contains
this Query JAS. Only rules in the Query Join Group List are the relevant rules
that will be considered in the composition step. In section 4.2 we show the Query
Join Group Lists of queries in our example.

3.3 Rule Composition Rationale

Our mechanism first checks if a single rule can authorize the query. If not, we
compose the relevant rules to see whether the given query can be authorized. All
the rules within the same entry of the Query Join Group List can be composed
together since they are all composable on that Query JAS. Therefore, rules
within one entry can be composed into one single composed rule with longer
join path and larger attribute set. If one rule appears in two or more entries of



the list, it indicates that this rule can be used to connect these Join Groups so
that the composed rules from these entries can be further composed.

Such a composition is also transitive. If a rule ra appears in entries of JAS1

and JAS2 and a rule rb appears in entries of JAS2 and JAS3, then all the rules
within these 3 entries can be composed into one rule. It is because ra and rb share
JAS2, these two rules can be composed by joining on JAS2, and their connected
entries can be further composed. Therefore, we group the entries in the Query
Join Group List based on their connectivity. All the rules within a connected
entry group can be composed into one rule. This procedure produces one or more
maximally composed rules such that no further composition is possible. If there
is more than one such composed rule, at most one of them can be defined on
the Query Join Path. This follows from the fact that if two composed rules are
defined on the same join path, then they can be further composed together. In
addition, since the Query composable rules are all defined on the Sub-Path of
the Query Join Path, composition of the rules will not have a join path longer
than Query Join Path. Therefore, we only need to check the composed rule
which includes the greatest number of relations (longest join path). If this rule
is defined on the same join path as the query join path, then we check whether
the attribute set of the composed rule is a superset of the attribute set in the
query. The query can be authorized if and only if this is the case.

3.4 Theorems and Proofs

In this section, we prove a number of assertions regarding the rule composition
and query checking which are useful in formulating the checking algorithm and
proving their correctness.

Theorem 1 All authorization rules that are not defined on a Sub-Path of query
Join Path are not useful in the rule composition.

Proof. Assume a query q has a Join Path of < T1, T2...Tn >. A rule r not
defined on a Sub-Path of the Query Join Path will have two possibilities by
definition. 1) The Join Path of r includes at least one relation Tm which is
not in the set of {T1, T2...Tn}. 2) The Join Path of r is defined on the set of
relations which is a subset of {T1, T2...Tn}, but join over different JASes. The
composed rule that can authorize the query must have the same Join Path as
Query Join Path. Otherwise, the query results will have incorrect tuples because
the underlining views are joined differently, and such a case also means the
query is not authorized. Thus, if an authorization rule r has Tm in its Join Path,
then any composed rule using this rule will also have Tm in its Join Path which
is different from Query Join Path. For the second case, such a rule generates
a different view, and any composed rule containing this rule also have a Join
Path different from Query Join Path. Therefore, both types of rules need not be
included to compose a rule that will authorize the query.

Theorem 2 Only Query Composable rules are useful in the rule composition.



Proof. A rule that is not a Query composable rule can have two possibilities: 1)
it is not defined on a Sub-Path of Query Join Path. Theorem 1 indicates these
rules are not useful. 2) the rule is defined on a Sub-Path of query Join Path,
but the attribute set of the rule does not contain any Query JAS. To compose a
rule with others to authorize the query, it must join with other rules on Query
JAS. Otherwise, either it cannot compose with any other rule, or the composed
rule has a join path different from Query Join Path. Therefore, only the Query
composable rules should be included for rule composition step.

Theorem 3 The composition step can cover all the possible ways to authorize
the query.

Proof. From Theorem 2, we know that any composition including non-Query
Composable rules will not authorize the query. Then the composition step looks
for only possible compositions among Query Composable rules. According to the
connectivity among the entries, if two rules are in two disconnected entries, then
they cannot be composed into one rule. On the other hand, for rules within the
connected entries, we compose them into a maximally composed authorization
rule. Such a rule maybe more than enough to authorize the query, but the Join
Path of the rule can be at most the same as the Query Join Path. From above
two observations, all the possible compositions that may authorize the query are
included in these composed rules from separate connected entry groups. Finally,
only one composed rule that has the same join path as the Query Join Path can
authorize the rule, and there is at most one such composed rule.

4 Verifying Query Admissibility

Our two-step algorithm first builds up the Query Join Group list, and then uses
composition step to construct rules that can possibly authorize the query.

4.1 Algorithm For Checking Query Permission

In the first step, the algorithm examines all the given rules and builds the Query
Join Group List as discussed above. Each Query composable rule is put into the
entries based on its Query JAS. If one rule appears in multiple entries, these
entries are connected. Also, each entry is augmented with the relations which
are accessible from the rules in this entry. At the end of this step, the algorithm
maintains the connected entry group with the greatest number of relations.

In the second step, the algorithm can compose rules efficiently with Query
Join Group List. The algorithm only examines all the entries within the con-
nected group that holds the largest number of relations (can be multiple), and
entries with only one rule are also ignored. The rules within each connected entry
group are composed into one rule as discussed above. As the algorithm exam-
ines the groups with most relations, if these composed rules cannot authorize
the query, then the query is not authorized.



We assume the complexity of the basic operation that checks whether a given
rule r can authorize the query q is C, and there are N given rules, and the query
q is defined on a Join Path of m relations. In the algorithm, step one has the
worst case complexity of O(N ∗C ∗m). It is because the complexity of Sub-Path
determination is lower than that of checking the query authorization; both of
them need to compare the Join Paths and attribute set. If all the rules pass
the Sub-Path checks, then the algorithm compares each rule with the m − 1
Query JASes to decide which entries to put in. None of the rest operations is
more expensive than C. Similarly, in step two, at most m entries and N rules
are checked, and composing the rules is not expensive than C also, thus, the
complexity of step two is O(N ∗ C). Therefore, the overall complexity of the
algorithm is O(N ∗C ∗m). Considering the fact that most join paths in practice
involves less than 4 or 5 relations, the number of m is expected to be very small
in most cases. Therefore, in average cases, we can expect the complexity of the
algorithm close to O(N ∗ C).

Algorithm 1 Query Permission Checking Algorithm

Require: Set of authorization rules, the query q
Ensure: Query can be authorized or not

STEP ONE:
1: for each authorization rule r do
2: if r authorizes q then
3: q is authorized
4: return true
5: else if Sub-Path(r, q) then
6: for each Query JAS in q do
7: if r is composable on this JAS then
8: Add r into the entry of this JAS in Query Join Group List
9: Connect this entry with previous entry that r also appears

10: Update the relation set associated with this entry
11: for each unvisited entry in Query Join Group List do
12: Follow the link to the connected entries
13: Update the relation set associated with each entries in the same group
14: Keep the largest connected entry groups with most relations

STEP TWO:
15: Construct an empty rule rc

16: for each largest connected groups do
17: Begin from one entry in the group
18: Follow the link to the connected entries
19: Compose the rules in entry with the existing composed rule rc

20: Generate a composed rule rc

21: if rc authorizes q then
22: q is authorized
23: return true
24: q is denied
25: return false



4.2 Illustration with The Running Example

We begin with query 1. In the first step, the algorithm examines all the rules.
As no single rule is defined on the Query Join Path, none of the given rule can
authorize this query. Based on the definitions, rules 1, 3, 4, 7 are not defined on
the Sub-Path of the Query Join Path, so that they are not useful to authorize
the query. The Query Join Group List is:

1. customer id (C, Sp) → {Rule 2, Rule 6}.
2. location (Sp, W) → {Rule 5, Rule 6}.
3. item (W, I) → {Rule 6}.

Since Rule 6 appears in all three entries, these three entries form the only
connected entry group in this list. Then in second step of the algorithm, the
entry item is ignored since there is only one rule in the group, and Rule 6
is composed with Rule 2 by joining on Query JAS customer id which further
composes with Rule 5 by joining on Query JAS location. Thus, the composed
rule is “(customer id, name, creditcard no, item, address, retail price, stock,
ship cost, location), (Customer, Shipping, Warehouse, Inventory) → Cloud
A”. This composed rule is defined on the Query Join Path of query 1, and the
attribute set contains all the attributes required in query 1. Therefore, the query
is authorized.

Query 2 has Query Join Path < S, W, I >, attribute set {supplier name,
stock, cost price}, and Query JASes are {supplier id (S,W ), item (W ,I)}. Here,
attribute cost price appears in Where clause is put into the attribute set, since
the query needs the authorization on that attribute to do the select operation.
As no single rule can authorize the query, the algorithm builds the Query Join
Group List during the first step. Rules 1, 2, 4, 6, 7 are filtered as their Join Paths
are not Sub-Paths of Query Join Path. The Query Join Group List is:

1. supplier id (S, W)→ {Rule 3, Rule 5}.
2. item (W, I) → {Rule 3}.

Then the algorithm ignores entry item, and composes the Rule 3, 5 by joining
on Query JAS supplier id. The resulting composed rule is “(item, supplier name,
supplier id, retail price, stock), (Supplier, Warehouse, Inventory) → Cloud
A”. Since attribute cost price is not in the attribute set of the composed rule,
this query cannot be authorized.

5 Checking Consistency with Deny Policies

In addition to the authorization rules to allow access, cloud owners usually have
deny rules to make sure that certain combinations of attributes are not accessible
so that the information contained in such a relationship will not be released. We
want to check using all the given authorization rules whether there exists any
possible authorized query that violates the deny rules. For example, we can have
a deny rule as below:



1. (Inventory.item, Inventory.retail price, Supplier.cost price) → Cloud A

This rule means the Cloud A does not allow to get these three attributes
from two tables at the same time (in one tuple), however the appearance of two
of the attributes at the same time is allowed. Unlike the authorization rule, deny
rules are not defined on join paths because such a rule is more restrictive than
the one defined on a join path from the perspective of deny. Without join path,
a deny rule prohibits any composition result that make the attribute set appear
together no matter which join path is used. Since they are not defined on join
paths so that they cannot be composed, and we always check them one at a
time. To make sure a deny rule is not violated, all the possible join paths and
rule compositions that will allow the attribute set need to be checked. To do so,
one naive idea is to generate all the possible authorization rules and check if any
one of them violates the given deny rules. Again, this is highly inefficient and
we need a better algorithm.

5.1 Join Group List Approach

If the attributes within one deny rule are not explicitly allowed by an autho-
rization rule, then the only possible way to violate it is the composition of the
given authorization rules. We use the Join Group List to check the possible rule
compositions that may violate the deny rules. Unlike query authorization con-
sidered earlier, the rule composition here is not constrained by the Query Join
Path, and any composition of the rules that may violate the deny rule should
be considered. Similar to the above algorithm, rules in a connected entry group
of the Join Group List can be composed into one rule. Beginning with one basic
rule and following all the connected entries, we can get a maximally composed
rule including that basic rule.

To test whether a given deny rule is violated, we begin with the deny rule
by randomly pick an attribute from the rule. We can randomly pick the first
attribute because that for the attributes in a deny rule to appear together in one
tuple, there must exist a composed or given rule to include all these attributes.
After picking the first attribute, we choose all the basic rules that include this
attribute. It is because any composed rule that violates the deny rule must be
composed with at least one of such rules. We then compose the rules much like
that for the query authorization one. In addition, there is no need to generate
the real composed rule, as we are only concerned with the attribute set of the
composed rule. This can be achieved by taking the union of the attribute set
from all the connected Join Group List entries.

5.2 Deny Rule Verification Algorithm

The deny rule verification algorithm first generates the Join Group List with
given rule, and then composes rules to check violation. The first step of the
algorithm can be treated as a pre-computation step since once the authoriza-
tion rules are given, the list can be generated. According to the definition, by



examining the authorization rules with each JAS, putting the rules in the cor-
responding entries, and creating the connections among the entries, the list is
generated. In the second step, the algorithm goes through all the rules containing
the randomly picked attribute and tries to compose maximum possible rules to
violate the rule. If and only if one of such rule is found, the deny rule is violated.
Algorithm 2 is the detail description of Deny Rule Verification procedure.

Algorithm 2 Deny Rule Verification Algorithm

Require: Set of authorization rules, the deny rule d, the JAS set
Ensure: Deny rule can be violated or not

STEP ONE(Join Group List Generation):
1: for each authorization rule r do
2: for each JAS do
3: if JAS ⊆ Attribute set of r then
4: Add r into the entry of this JAS in Join Group List
5: Connect this entry with previous entry that r also appears

STEP TWO(Verification):
6: Pick one attribute A from deny rule d
7: Create an empty attribute set UA
8: for each rule r includes attribute A do
9: if r is in Join Group List and not visited then

10: Get the attribute set from the rules in the entry that includes r
11: Follow the links among the entries to get all connected entries
12: Union all the attributes from the rules in these entries, get set UA
13: if The attribute set of deny rule d ⊆ UA then
14: Deny Rule can be violated
15: return true
16: else
17: if The attribute set of deny rule d ⊆ The attribute set of r then
18: Deny Rule can be violated
19: return true
20: Deny Rule cannot be violated
21: return false

In order to examine its complexity, suppose that there are N given rules, and
there are m possible JASes among them, and the cost of checking whether an
attribute is included in a set is C. Then the complexity of step one is O(N∗C∗m).
If the largest number of rules in each entry in the list is t, and basic operation
cost for getting the attribute set from a rule is C, the worst complexity of step
two is O(N ∗ C ∗ t). It is because in step two, at most N rules are examined,
and for each entry, at most t rules are checked. Therefore, the overall complexity
depends on the number of given rules and the relationships among them. On the
other hand, since such verification can be done offline with all given authorization
rules and deny rules, complexity is not a big concern here.



5.3 Illustration of Deny Rule Checking

Based on the definition in section 3, the Join Group List of our running example
including all the relations is:

1. (customer id) → (Rule 1, Rule 2, Rule 6)
2. (supplier id) → (Rule 3, Rule 5)
3. (item) → (Rule 1, Rule 3, Rule 4, Rule 6)
4. (location) → (Rule 5, Rule 6)

Fig. 4. Composition of the rules 1 to 6.

For the verification, the al-
gorithm randomly picks one at-
tribute, let us say retail price.
Since retail price appears in
Rule 4 and Rule 5, the al-
gorithm only needs to begin
with these two rules. Start-
ing with Rule 4, the algo-
rithm first gets the attribute
set of the rules within entry
item, and then examines the
connected entry group includ-
ing entry item. Since entries
location and customer id con-
nect to item with Rule 6, and entry supplier id connects entry location with
Rule 5, all the entries in this list are connected. Therefore, Rule 5 does not need
to be checked again. Figure 4 depicts how the rules 1 to 6 are composed together
with JASes to obtain the attribute set. The resulting composed rule will have
the attribute set which is the union of the attribute sets from rule 1 to 6. Because
this set is not a superset of {item, retail price, cost price}, the deny rule cannot
be violated.

6 Conclusions and Future Work

In this paper, we examined the problem of cooperative data access in multi-
cloud environments. Given the authorization rules for allow policies, using the
join properties among the given rules, we presented an efficient algorithm to
decide whether a given query can be authorized. In addition, we proposed an
algorithm to check whether the given authorization rules are consistent with the
deny rules that the enterprises may have specified to ensure that sensitive data
is not released.

As stated earlier, we do not consider the generation of actual query plans in
this paper. Generating a query plan may require the help of a trusted third-party
in order to do the required join operations without violating the authorizations
and deny rules. The query plan generation also involves performance consid-
erations, which, in a multi-cloud environment would require consideration of



location of data. The implementation of authorization checks may need to be
done at all the parties that contribute data to the query before the query ex-
ecution can begin. The query execution itself must decide what operations are
done where in order to avoid any unauthorized leakage of information.

It may be possible to formulate the query authorization problem formally
with first-order logic so as to use traditional SAT based techniques; however, the
feasibility and complexity of this approach remain to be investigated.

References

1. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati.
Controlled Information Sharing in Collaborative Distributed Query Processing. In
Proc. of ICDCS 2008. Beijing, China, Jun 2008.

2. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati.
Assessing query privileges via safe and efficient permission composition. In Proc.
of ACM Conference on Computer and Communications Security 2008. Alexandria,
VA, U.S.A. Oct. 2008.

3. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani,
U. Srivastava, D. Thomas, Y. Xu. Two can keep a secret: A distributed architecture
for secure database services. In Proc. of CIDR 2005. Asilomar, CA, USA, Jan 2005.

4. V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P.
Samarati. Keep a few: Outsourcing data while maintaining confidentiality. In Proc.
of ESORICS 2009. Saint Malo, France, Sept. 2009.

5. D. Kossmann. The state of the art in distributed query processing. ACM CSUR,
32(4):422-469, Dec. 2000.

6. M. Gouda, A. Liu. Firewall Design: Consistency, Completeness, and Compactness.
In Proc. of ICDCS 2004, Tokyo, Japan, 2004.

7. R. Sion. Query execution assurance for outsourced databases. In Proc. of VLDB
2005. Trondheim, Norway, 2005.

8. P. Bernstein, N. Goodman, E. Wong, C. Reeve, J. J.B. Rothnie. Query processing in
a system for distributed databases (SDD-1). ACM TODS, 6(4):602-625, Dec. 1981.

9. A. Cali, D. Martinenghi. Querying data under access limitations. In Proc. of ICDE
2008, Cancun, April 2008.

10. Common Information Model. http://dmtf.org/standards/cim
11. R. Agrawal, D. Asonov, M. Kantarcioglu, Y. Li. Sovereign joins. In Proc. of ICDE

2006, Atlanta, April 2006.
12. D. Florescu, A. Y. Levy, I. Manolescu, D. Suciu. Query optimization in the presence

of limited access patterns. In Proc. of SIGMOD 1999, Philadelphia, PA, June 1999.
13. A. V. Aho, C. Beeri, J. D. Ullman. The theory of joins in relational databases.

ACM TODS, 4(3):297-314, 1979.
14. C. Li. Computing complete answers to queries in the presence of limited access

patterns. VLDB Journal, 12(3), 2003.


