S. Godunov and E. Romenskii, Elements of continuum mechanics and conservation laws, 2013.
DOI : 10.1007/978-1-4757-5117-8

B. J. Plohr and D. H. Sharp, A conservative Eulerian formulation of the equations for elastic flow, Advances in Applied Mathematics, vol.9, issue.4, pp.481-499, 1988.
DOI : 10.1016/0196-8858(88)90025-5

B. J. Plohr and D. H. Sharp, A conservative formulation for plasticity, Advances in Applied Mathematics, vol.13, issue.4, pp.462-493, 1992.
DOI : 10.1016/0196-8858(92)90022-O

URL : http://doi.org/10.1016/0196-8858(92)90022-o

Y. Gorsse, A. Iollo, T. Milcent, and H. Telib, A simple Cartesian scheme for compressible multimaterials, Journal of Computational Physics, vol.272, pp.772-798, 2014.
DOI : 10.1016/j.jcp.2014.04.057

URL : https://hal.archives-ouvertes.fr/hal-01089287

A. De-brauer, A. Iollo, and T. Milcent, A Cartesian scheme for compressible multimaterial models in 3D, Journal of Computational Physics, vol.313, pp.121-143, 2016.
DOI : 10.1016/j.jcp.2016.02.032

URL : https://hal.archives-ouvertes.fr/hal-01405322

S. Klainerman and A. Majda, Compressible and incompressible fluids, Communications on Pure and Applied Mathematics, vol.33, issue.5, pp.629-651, 1982.
DOI : 10.1002/cpa.3160350503

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Archive for rational mechanics and analysis, pp.61-90, 2001.

R. Danchin, Low Mach number limit for viscous compressible flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.3, pp.459-475, 2005.
DOI : 10.1051/m2an:2005019

F. Miczek, F. K. Röpke, and P. V. Edelmann, New numerical solver for flows at various Mach numbers, Astronomy & Astrophysics, vol.576, p.50, 2015.
DOI : 10.1051/0004-6361/201425059

URL : http://arxiv.org/abs/1409.8289

R. J. Leveque, Numerical methods for conservation laws, 1992.

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 2013.

H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit, Computers & Fluids, vol.28, issue.1, pp.63-86, 1999.
DOI : 10.1016/S0045-7930(98)00017-6

URL : https://hal.archives-ouvertes.fr/hal-00871725

S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, Journal of Computational Physics, vol.229, issue.4, pp.978-1016, 2010.
DOI : 10.1016/j.jcp.2009.09.044

X. Li and C. Gu, An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour, Journal of Computational Physics, vol.227, issue.10, pp.5144-5159, 2008.
DOI : 10.1016/j.jcp.2008.01.037

B. Van-leer, W. Lee, and P. Roe, Characteristic time-stepping or local preconditioning of the Euler equations, 10th Computational Fluid Dynamics Conference, pp.260-282, 1991.

C. Viozat, Implicit upwind schemes for low Mach number compressible flows, Inria, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00073607

W. Barsukow, P. V. Edelmann, C. Klingenberg, F. Miczek, and F. K. Roepke, A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics, Journal of Scientific Computing, vol.33, issue.2
DOI : 10.2514/3.12946

A. J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol.2, issue.1, pp.12-26, 1967.
DOI : 10.1016/0021-9991(67)90037-X

E. Turkel and V. Vatsa, Local preconditioners for steady state and dual time-stepping, Mathematical Modeling and Numerical Analysis, pp.2-39, 2005.

R. Klein, Semi-implicit extension of a godunov-type scheme based on low mach number asymptotics I: One-dimensional flow, Journal of Computational Physics, vol.121, issue.2, pp.213-237, 1995.
DOI : 10.1016/S0021-9991(95)90034-9

P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation, arXiv preprint arXiv:0908, 1929.

F. Cordier, P. Degond, and A. Kumbaro, An Asymptotic-Preserving all-speed scheme for the Euler and Navier???Stokes equations, Journal of Computational Physics, vol.231, issue.17, pp.5685-5704, 2012.
DOI : 10.1016/j.jcp.2012.04.025

URL : https://hal.archives-ouvertes.fr/hal-00614662

S. Noelle, G. Bispen, K. Arun, M. Lukacova-medvidova, and C. Munz, An asymptotic preserving all Mach number scheme for the Euler equations of gas dynamics, SIAM J. Sci. Comput

J. Haack, S. Jin, and J. Liu, Abstract, Communications in Computational Physics, vol.209, issue.04, pp.955-980, 2012.
DOI : 10.1016/S0021-9991(95)90034-9

C. Berthon and R. Turpault, Asymptotic preserving HLL schemes, Numerical methods for partial differential equations, pp.1396-1422, 2011.

C. Chalons, M. Girardin, and S. Kokh, Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms, SIAM Journal on Scientific Computing, vol.35, issue.6, pp.2874-2902, 2013.
DOI : 10.1137/130908671

URL : https://hal.archives-ouvertes.fr/hal-00718022

S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics, vol.54, issue.3, pp.235-276, 1995.
DOI : 10.1007/978-3-0348-8629-1

L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, Journal of Scientific computing, vol.25, issue.12, pp.129-155, 2005.
DOI : 10.1007/bf02728986

URL : http://arxiv.org/pdf/1009.2757

A. Brauer, Simulation de modèles multi-matériaux sur maillage cartésien, 2015.

T. Liu, Hyperbolic conservation laws with relaxation, Communications in Mathematical Physics, vol.18, issue.1, pp.153-175, 1987.
DOI : 10.1007/BF01210707

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws: And well-balanced schemes for sources, 2004.
DOI : 10.1007/b93802

I. Suliciu, On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids, International Journal of Engineering Science, vol.36, issue.9, pp.921-947, 1998.
DOI : 10.1016/S0020-7225(98)00005-6

R. Leveque and M. Pelanti, A Class of Approximate Riemann Solvers and Their Relation to Relaxation Schemes, Journal of Computational Physics, vol.172, issue.2, pp.572-591, 2001.
DOI : 10.1006/jcph.2001.6838

URL : https://hal.archives-ouvertes.fr/hal-01342280

C. Chalons, F. Coquel, and C. Marmignon, Well-Balanced Time Implicit Formulation of Relaxation Schemes for the Euler Equations, SIAM Journal on Scientific Computing, vol.30, issue.1, pp.394-415, 2008.
DOI : 10.1137/070683040

A. Chalabi and Y. Qiu, Relaxation schemes for hyperbolic conservation laws with stiff source terms: Application to reacting Euler equations, Journal of Scientific Computing, vol.15, issue.4, pp.395-416, 2000.
DOI : 10.1023/A:1011189729919

URL : http://www.ams.org/mcom/1999-68-227/S0025-5718-99-01089-3/S0025-5718-99-01089-3.pdf

S. Boscarino and G. Russo, On a Class of Uniformly Accurate IMEX Runge???Kutta Schemes and Applications to Hyperbolic Systems with Relaxation, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.1926-1945, 2009.
DOI : 10.1137/080713562

S. Boscarino and G. Russo, Flux-Explicit IMEX Runge--Kutta Schemes for Hyperbolic to Parabolic Relaxation Problems, SIAM Journal on Numerical Analysis, vol.51, issue.1, pp.163-190, 2013.
DOI : 10.1137/110850803

F. Cavalli, G. Naldi, G. Puppo, and M. Semplice, High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems, SIAM Journal on Numerical Analysis, vol.45, issue.5, pp.2098-2119, 2007.
DOI : 10.1137/060664872

URL : http://arxiv.org/abs/math/0604572

S. Dellacherie, J. Jung, P. Omnes, and P. Raviart, Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system, Mathematical Models and Methods in Applied Sciences, vol.1, issue.13, pp.2525-2615, 2016.
DOI : 10.2514/3.11317

URL : https://hal.archives-ouvertes.fr/hal-00776629

C. Hirsch, Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics, 2007.

G. Benison and E. Rubin, A time-dependent analysis for quasi-one-dimensional, viscous, heat conducting, compressible Laval nozzle flows, Journal of Engineering Mathematics, vol.22, issue.101, pp.39-49, 1971.
DOI : 10.1007/BF01535433

R. Swanson, E. Turkel, and C. Rossow, Convergence acceleration of Runge???Kutta schemes for solving the Navier???Stokes equations, Journal of Computational Physics, vol.224, issue.1, pp.365-388, 2007.
DOI : 10.1016/j.jcp.2007.02.028

A. Jameson and D. Caughey, How many steps are required to solve the Euler equations of steady, compressible flow - In search of a fast solution algorithm, 15th AIAA Computational Fluid Dynamics Conference, p.2673, 2001.
DOI : 10.2514/3.10007