Skip to Main content Skip to Navigation
Conference papers

Cross-Entropy Optimized Cognitive Radio Policies

Abstract : In this paper we consider cognitive processes and their impact on the performance of cognitive radio networks (CRN). We model the cognition cycle, during which cognitive radio (CR) sequentially senses and estimates the environment state, makes decisions in order to optimize certain objectives and then acts. Model-based analysis of CRN is used to solve control and decision making tasks, which actually gives the radio its “cognitive” ability. Particularly, we design an efficient strategy for accessing the vacant spectrum bands and managing the transmission-sampling trade-off. In order to cope with the high complexity of this problem the policy search uses the stochastic optimization method of cross-entropy. The developed model represents CRN ability to intelligently react to the network’s state changes and gives a good understanding of the cross-entropy optimized policies.
Complete list of metadata
Contributor : Hal Ifip Connect in order to contact the contributor
Submitted on : Thursday, September 14, 2017 - 4:48:17 PM
Last modification on : Thursday, January 6, 2022 - 2:50:02 PM
Long-term archiving on: : Friday, December 15, 2017 - 9:34:41 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License



Boris Oklander, Moshe Sidi. Cross-Entropy Optimized Cognitive Radio Policies. International IFIP TC 6 Workshops PE-CRN, NC-Pro, WCNS, and SUNSET 2011 Held at NETWORKING 2011 (NETWORKING), May 2011, Valencia, Spain. pp.13-21, ⟨10.1007/978-3-642-23041-7_2⟩. ⟨hal-01587842⟩



Record views


Files downloads