E. Carson and N. J. Higham, A New Analysis of Iterative Refinement and its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems, 2017.

E. Carson and N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, 2017.

J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee et al., Error bounds from extra-precise iterative refinement, ACM Transactions on Mathematical Software, vol.32, issue.2, pp.325-351, 2006.
DOI : 10.1145/1141885.1141894

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Heimlich, Interval arithmetic in GNU Octave, SWIM 2016: Summer Workshop on Interval Methods, 2016.

N. Higham, Accuracy and Stability of Numerical Algorithms, 2002.
DOI : 10.1137/1.9780898718027

V. Kreinovich and S. Rump, Towards Optimal Use of Multi-Precision Arithmetic: A Remark, Reliable Computing, vol.9, issue.6, pp.365-369, 2006.
DOI : 10.1007/s11155-006-9007-4

J. Muller, N. Brisebarre, F. De-dinechin, C. Jeannerod, V. Lefèvre et al., Handbook of Floating-Point Arithmetic, 2009.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

A. Neumaier, Interval Methods for Systems of Equations, 1990.
DOI : 10.1017/CBO9780511526473

A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval equations, Reliable Computing, 5((+ Erratum: Reliable Computing 6, pp.131-136, 1999.

H. D. Nguyen, . Ecole-normale-supérieure-de-lyon-ens, Y. Lyon, J. Denneulin, B. Méhaut et al., Efficient algorithms for verified scientific computing : Numerical linear algebra using interval arithmetic A methodology of parallelization for continuous verified global optimization, LNCS 2328, pp.803-801, 2002.

J. H. Wilkinson, Rounding Errors in Algebraic Processes, 1963.