Skip to Main content Skip to Navigation
Conference papers

Méthode de Galerkin Discontinue : Cas de l'analyse isogéométrique

Abstract : The objective of Isogeometric Analysis is to address the design and analysis with exactly the same geometric patterns. For this, the Lagrange polynomials usually used in interpolation are replaced by B-Splines functions. In this context, we present in this work a new Discontinuous Galerkin (DG) method applied to the numerical solution of hyperbolic equations. The method is based on the choice of a local Bernstein basis and Gauss-Legendre formulas to approximate the different integrals. We use a Lax-Friedrichs scheme to calculate the numerical flux.
Complete list of metadata

Cited literature [2 references]  Display  Hide  Download
Contributor : Régis Duvigneau Connect in order to contact the contributor
Submitted on : Monday, September 18, 2017 - 2:14:46 PM
Last modification on : Saturday, June 25, 2022 - 11:27:42 PM


Files produced by the author(s)


  • HAL Id : hal-01589293, version 1


Asma Gdhami, Régis Duvigneau, M Moakher. Méthode de Galerkin Discontinue : Cas de l'analyse isogéométrique. TAM-TAM 2017 - Tendances dans les Applications Mathématiques en Tunisie, Algérie et Maroc, May 2017, Hammamet, Tunisie. ⟨hal-01589293⟩



Record views


Files downloads