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A survey on guarded negation

Luc Segoufin, INRIA and ENS-Cachan

We consider a logical framework building on existential positive formulas and then adding guarded nega-
tions and guarded fixpoints, where the guards are atomic formulas containing all free variables. The result-
ing first-order and fixpoint logics turn out to have nice algorithmic properties and nice expressive power. We
survey some of them.

1. INTRODUCTION
First-order logic is widely used in mathematics, philosophy and computer science. It
offers a good trade-off between simplicity and expressive power. In particular it is at
the core of the relational database query language SQL.

However for certain applications it is too expressive. In particular it can describe
the runs of a Turing Machine, making its satisfiability problem (asking whether a
given formula is satisfied by at least one model) undecidable. This implies that first-
order logic cannot be used for the formal methods approach in many areas of computer
science, such as verification where satisfiability is crucial.

Several decidable fragments of first-order logic have been proposed. The most popu-
lar ones being the two-variable fragment [Mortimer 1975], and Modal Logic.

The case of Modal Logic is intriguing as many of its variations and extensions remain
decidable (like adding two-way navigation, fixpoints etc.), while so many extensions of
the two-variable fragment of first-order logic are undecidable [Grädel et al. 1999]. This
led Moshe Vardi to wonder “why is modal logic so robustly decidable?” [Vardi 1996]
and to answer by a combination of several key properties: (i) the tree model property
(if a formula has a model then it has a model that is a tree) and (ii) translability
into tree automata (each formula can be effectively translated into a tree automata
recognizing its tree models). From the decidability of the emptiness problem of tree
automata, these two properties already imply the decidability of the existence of a
(possibly infinite) model. Finite satisfiability follows from a third key property: (iii)
finite model property (if a formula has a model then it has a finite one). The first two
properties are satisfied by all extensions of Modal Logic, in particular its two-way and
fixpoint extensions. However, the finite model property is no longer satisfied by the
fixpoint extension of Modal Logic, and if finite satisfiability is still decidable in this
setting, it requires more complicated arguments [Bojańczyk 2003].

The situation is similar for guarded quantification first-order logic1. It was intro-
duced in [Andréka et al. 1998] as an extension of Modal Logic with good algorithmic
properties and again many of its extensions remain decidable, in particular the one
with guarded fixpoints. As noticed by Erich Grädel [Grädel 2001], the reason is that it
enjoys similar properties as Modal Logic. The tree model property is replaced by the
tree-like model property: any satisfiable formula has a model of bounded tree-width.
The translability into tree automata should now be understood as transforming the
formula into a tree automata recognizing the tree decompositions of those models of
the formula that have bounded tree-width.

It turns out that the story continues. By moving the guards from quantifications to
negations one gets a richer logic, guarded negation first-order logic, that has the tree-
like model property and the translability to automata [Bárány et al. 2015]. This is the
framework that we study in this survey.

1In order to avoid confusion with guarded negation logics, we use the terminology guarded quantifica-
tion first-order logic instead of the usual one: guarded first-order logic.
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We will see that guarded negation first-order logic, together with its extension with
guarded fixpoints, has many nice properties. The first one being invariance under a no-
tion of bisimulation that we survey in Section 3. This property, denoted guarded nega-
tion bisimulation, generalizes modal and guarded quantification bisimulation, yields
the tree-like model property and opens the door to decidability.

Satisfiability for infinite models follows by translability into tree automata as ex-
plained in Section 4. For finite models, this is solved in the first-order case with the
finite model property and for the fixpoint case this is achieved by a reduction to the
modal case.

The nice algorithmic properties of guarded negation logic are further studied in Sec-
tion 5, where the complexity of the model checking problem is studied.

Unlike the modal and the guarded quantification fragments, guarded negation first-
order logic also has nice model theoretical properties. We will see in Section 6 that it
has Craig Interpolation and the Projective Beth Property. These are the key to many
applications, some of them being discussed in section 7.

2. PRELIMINARIES
Guarded negation logics are fragments of first-order logic and least fixpoint logic over
relational schemes. Their models are relational structures. Before defining the logics,
we recall some classical definitions.

Relational structures. A relational schema is a finite set of relation symbols, each
having an associated arity. A relational structure M over a relational schema consists
of a set, the domain of M , together with an interpretation of each relation symbol R of
arity k of the schema as a k-ary relation over the domain denoted R(M). A structure
M is said to be finite if its domain is finite.

Homomorphisms. An homomorphism from a structureM to a structureN (assum-
ing they have the same schema) is a mapping h from the domain of M to the domain
of N such that for any relation symbol R of the schema and any tuple ā that belongs
to the interpretation of R in M , its image h(ā) belongs to the interpretation of R in N .
This is not to be confused with the notion of isomorphism that requires moreover that
the mapping is bijective and that the converse holds: ā belongs to the interpretation
of R in M iff h(ā) belongs to the interpretation of R in N . An homomorphism or an
isomorphism is said to be partial if it is defined only on a subset of the domain of the
structure.

Logic. We assume familiarity with first-order logic, FO, and least-fixpoint logic,
LFP, over relational structures. We use classical syntax and semantics for FO and
LFP. In particular we write φ(x̄) to denote the fact that the free variables of φ are
exactly the variables in x̄. We also write M |= φ(ū) for the fact that the tuple ū of el-
ements of the model M makes the formula φ(x̄) true over M . A sentence is a formula
with no free variable. It is either true or false over a structure and therefore defines
a property of structures. The size of a formula φ is the number of symbols needed to
write down the formula.

This note surveys guarded negation logics. There is a first-order variant, that we
now define. Later we will add fixpoints to it.

Guarded negation first-order logic is a fragment of first-order logic where any
negated subformula must be guarded by an atom containing all its free variables.

Definition 2.1. The formulas of guarded negation first-order logic, denoted GNFO,
are given by the following grammar, where R ranges over relation symbols of the
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(P )∗ is P (x)
(φ ∧ ψ)∗ is φ∗(x) ∧ ψ∗(x)
(¬φ)∗ is ¬φ∗(x)
(〈R〉φ)∗ is ∃y R(x, y) ∧ φ∗(y)
(〈R−1〉φ)∗ is ∃y R(y, x) ∧ φ∗(y)
(Sφ)∗ is ∃y φ∗(y)

Fig. 1. Inductive translation of a modal logic formula φ to an equivalent UNFO-formula φ∗(x)

schema and α(x̄ȳ) is an atomic formula:

ϕ ::= R(x̄) | x = y | ∃x ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | α(x̄ȳ) ∧ ¬ϕ(ȳ) | ¬ϕ(x) | ¬ϕ()

In words, any existential positive first-order formula, i.e. with no negation nor uni-
versal quantification, is a formula of GNFO. The syntax builds on existential positive
first-order formulas by adding the negation of sentences, the negation of formulas with
one free variable and formulas of the form α(x̄ȳ) ∧ ¬ϕ(ȳ), requiring that all the free
variables ȳ of ϕ occur in the atom α(x̄ȳ), called the guard of the negation.

If the formula only negates sentences or formulas with one free variable, then we say
that it has unary negations. We denote by UNFO the set of unary negation first-order
formulas. UNFO is a fragment of GNFO of independent interest. Unary negation can
be seen as a special case of guarded negation, as ¬ϕ(x) is equivalent to x = x ∧ ¬ϕ(x),
where the guard is an equality atom.

Notice that x 6= y is not a formula of GNFO but R(x, y, z) ∧ x 6= y is. Universal
quantifications can only be used via double negations. For example ∀x̄ α(x̄) → ϕ(x̄) is
equivalent to the GNFO formula ¬(∃x̄ α(x̄) ∧ ¬ϕ(x̄)).

Example 2.2. It is is easy to see that modal logic, and many of its extensions, is a
fragment of GNFO, actually of UNFO. To see this consider the global two-way modal
logic2 defined by the grammar

φ ::= P | φ ∧ φ | ¬φ | 〈R〉φ | 〈R−1〉φ | Sφ
where P is a unary relation symbol (also called proposition in this setting), and R
is a binary relation symbol (also called an accessibility relation in this context). Its
semantics can be given via an inductive translation into UNFO as depicted in Figure 1.

Example 2.3. It turns out that GNFO also generalizes the guarded quantification
fragment of first-order logic3, denoted GFO, introduced by [Andréka et al. 1998] as a
generalization of modal logic, requiring a guard on quantifications instead on nega-
tions. The logic GFO is the fragment of FO defined by the following grammar, where,
again, α(x̄ȳz̄) is an atomic formula (possibly an equality statement):

ϕ ::= R(x̄) | x = y | ϕ ∨ ϕ|ϕ ∧ ϕ|¬ϕ | ∃x̄ α(x̄ȳz̄) ∧ ϕ(x̄ȳ) | ∀x̄ α(x̄ȳz̄)→ ϕ(x̄ȳ)

By pushing the guards on the quantifications down to the atoms, it is easy to see
that every GFO sentence is equivalent to a GNFO sentence. For instance the sen-
tence ∃x1x2x3E(x1, x2, x3) ∧ E(x1, y) ∧ ¬E(x2, x3) is equivalent to ∃x1x2x3E(x1, x3) ∧
E(x1, x2, x3)∧¬E(x2, x3). This is only true for sentences, as ¬R(xy) is a formula of GFO
but is not expressible in GNFO. Guarded negation is strictly more expressive than

2Traditionally, the basic modal logic is defined without the backward and global features and can only
navigate by traversing an edge in the forward direction.
3Recall that in order to avoid confusion with guarded negation logics, we refer to GFO as guarded quan-
tification first-order logic, instead of its usual name: guarded first-order logic.
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guarded quantification as witnessed by the following sentence:

q = ∃xy
(
E(x, y) ∧ ¬(∃uvw E(x, u) ∧ E(u, v) ∧ E(v, w) ∧ E(w, y))

)
. (1)

The formula q asks for the existence of an edge whose endpoints cannot be connected
by a path of length 4. It is not equivalent to any GFO sentence as q defines a property
that is not invariant under guarded quantification bisimulation, see Section 3.

GNFO has one important parametrization, denoted the width. Given a GNFO for-
mula, one can push the existential quantifications up until a negation, a disjunction, or
another existential quantification is reached. The maximal length of a block of existen-
tial quantifications in the resulting formula is called the width of the initial formula
(see [Bárány et al. 2015] for a formal definition). We will see that the width of a formula
is related to the tree-width of its models.

Guarded negation fixpoint logic is the extension of the guarded negation first-
order logic with a guarded fixpoint modality. It is a syntactic fragment of least-fixpoint
logic, from which it inherits the semantics.

Definition 2.4. For each relational schema τ , guarded negation fixpoint logic, de-
noted GNFP, is defined by the following grammar (notice that the first line correspond
to the grammar of GNFO):

φ ::= R(x̄) | x = y | φ ∧ φ | φ ∨ φ | ∃xφ | α(x̄ȳ) ∧ ¬φ(x̄) | ¬ϕ(x) | ¬ϕ() |
β(ūw̄) ∧ Z(ū) | µZ,z̄[φ(Ȳ , Z, z̄) ](x̄)

where R is any relational symbol in τ , α(x̄ȳ) and β(ūw̄) are atomic τ -formulas (possibly
equality statements) and, in the last clause of the definition, the fixpoint variable Z
occurs only positively in φ(Ȳ , Z, z̄), the matrix of the fixpoint, i.e. always under an
even number of negations. For any value of Ȳ , the matrix formula can be seen as a
function computing a relation, the valuations of z̄ making it true, from the relation Z.
The fact that Z occurs under an even number of negations ensures that this function
is monotonic, and therefore that it has a least fixpoint, which is the semantics of the
fixpoint formula.

Formulas of GNFP can be naturally thought of as being built up from atomic formulas
using (i) guarded negation first-order formulas and (ii) guarded fixpoint operators. It
is important to note that:

— no first-order parameters (i.e., free variables other than those z̄ bound by the fix-
point operator) are permitted in the matrix of a fixpoint operator,

— free fixpoint variables Ȳ other than Z are still allowed, enabling nesting and alter-
nation of fixpoint definitions;

— fixpoint variables cannot be used as guards, and in fact, all atomic formulas involv-
ing fixpoint variables must be guarded by atomic τ -formulas or equalities.

As for the first-order case, we have a unary fixpoint variant denoted UNFP. It is the
fragment of GNFP restricted to unary negations and unary fixpoints predicates. The
width of a GNFP formula is defined as the width of its first-order parts.

Example 2.5. The fixpoint formula

µZ,x,y[E(x, y) ∨ ∃z (Z(x, z) ∧ E(z, y)) ](u, v)

computing the transitive closure of E is not a formula of GNFP as the matrix formula
does not guard the variables x, z occurring in Z(x, z).

The fixpoint formula

µZ,z[ y = z ∨ ∃y′(Z(y′) ∧ E(y′, z)) ](x)
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computing the connected component of y is also not a formula of GNFP as the matrix
formula has y as a parameter.

However the fixpoint formula

µZ,z[B(z) ∨ ∃y′(Z(y′) ∧ E(y′, z)) ](x)

computing the set of nodes reachable from a node in B is in GNFP.

One could imagine different other syntaxes for guarding the fixpoint matrices in
GNFP. For instance we could require that the whole matrix formula is guarded with
a single atom or with a specific predicate signifying guardedness without expressly
declaring any concrete guard. It turns out that this would not change the expressive
power nor the complexity for satisfiability. However it does affect the succinctness of
the formula and the complexity of the model checking. See the discussion concerning
the syntax in [Bárány et al. 2015].

Example 2.6. Consider the following formula over a binary relation symbol E:

µX,y[ ¬∃z(E(z, y) ∧ ¬X(z)) ]

It is a valid formula of UNFP as the monadic fixpoint variable X occurs within the
scope of two negations. When evaluated on a directed graph, the first stage of the
fixpoint computation contains all nodes y of in-degree 0. At any further stage of the
fixpoint computation we add to X all points whose incoming nodes where all already
in X. Hence if all the backwards paths starting from a given node are finite, this node
will eventually be part of X. Conversely if a node has an infinite backward path, it will
never be part of X.

Hence the GNFP formula:

∃x ¬µX,y[ ¬∃z(E(z, y) ∧ ¬X(z)) ](x) (2)

expresses the fact that the graph contains an infinite backward path. In particular, in
the case of finite structures, it expresses the fact that the graph contains a directed
cycle.

Example 2.7. Greatest fixpoints can be simulated via the usual triple negations. It
can be verified that these negations are legal (this follows from the fact that the ma-
trix formula is guarded). For instance the formula of the previous example computes
exactly the complement of the greatest fixpoint of the matrix formula ∃zE(z, y)∧X(z),
denoted ¬νX,y[ ∃zE(z, y) ∧X(z) ].

Allowing simultaneous fixpoints in GNFP formulas does not increase the expressive
power of the logic (although it can facilitate more succinct definitions).

Example 2.8. Guarded negation fixpoint logic generalizes the extension of the two-
way modal logic of Example 2.2 with monadic fixpoint. It also generalizes the guarded
quantification fragment of fixpoint logic (GFP) [Grädel and Walukiewicz 1999], in the
sense that every sentence of GFP is equivalent to a sentence of GNFP.

Guarded quantification fixpoint logic is the fragment of least-fixpoint logic obtained
by extending guarded quantification first-order logic with least fixpoints: given a for-
mula φ(Ȳ , Z, z̄) that is positive in Z, has no free first-order variables other than z̄ and
Z has arity the number of variables in z̄, the formula µZ,z̄[φ(Ȳ , Z, z̄) ] is also a formula
of GFP. Although the occurrences of fixpoint variables are not required to be guarded,
in the context of a GFP sentence, every occurrence of an atom using a fixpoint rela-
tion is implicitly guarded, namely by the atom guarding the closest quantifier whose
scope includes the occurrence in question). This implies that every sentence of GFP is
equivalent to a sentence of GNFP, via a polynomial time transformation.
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3. INVARIANCE BY BISIMULATION
The key to understand the expressive power of guarded negation logics, and also the
key for its decidability, is the notion of guarded negation bisimulation. Bisimulation is
a notion of similarity between two structures that is weaker than isomorphism. The
desired property, Theorem 3.3 below, is that any two similar structures satisfy the
same sentences of the logic.

This theorem has many important consequences. We describe two of them below.
The first one is a limitation on the expressive power of the logic. A property is said

to be closed under bisimulation if any two similar structures either both satisfy the
property or both falsify the property. It is important to understand that this notion
has two flavors, depending on whether we consider only finite structures or all struc-
tures, finite or infinite. If we consider only finite structures, we say that a property is
closed under finite bisimulation if any two similar finite structures either both satisfy
the property or both falsify the property. Clearly closure under bisimulation implies
closure under finite bisimulation. But the opposite is false. For instance if the prop-
erty requires infinite models (this can be enforced in many ways, see for instance the
paragraph after Theorem 4.3) then any two finite models falsify the property hence
the property is trivially closed under finite bisimulation; however the property can
additionally require another property that is not closed under bisimulation.

The key theorem mentioned above implies that a property that is not closed under
bisimulation is not definable in the logic and a property that is not closed under finite
bisimulation is not definable in the logic over finite models. We then say that the logic
is closed under bisimulation.

The second consequence is the decidability of the satisfiability problem by showing
that any structure is similar to a simple one, here of bounded tree-width, and then
showing that it is decidable whether a formula has a simple model, see Section 4 below.

This is a classical track that has been successfully used for many logics. For in-
stance modal logics, such as those defined in Section 2, define only properties closed
under a notion of similarity known as modal bisimulation. Modal bisimulation has
been extended to a notion of guarded quantification bisimulation that corresponds to
the guarded quantification logics GFO and GFP.

We now introduce the appropriate notion of bisimulation for guarded negation logics,
namely guarded negation bisimulation 4.

Let M be a relational structure. If a tuple of elements ā from the domain of M
belongs to the interpretation of a relation symbol R, then we say that R(ā) is a fact of
M . We say that a tuple of elements of M is guarded if it is a singleton or there is a
fact of M containing all its components. We denote by guarded(M) the set of guarded
tuples of M . For a number k, we say that a tuple is k-guarded if it is guarded by a
fact of M using at most k elements of M . We denote by k-guarded(M) the set of all
k-guarded tuples of M . In particular guarded(M) =

⋃
k k-guarded(M).

Definition 3.1. Let M,N be two structures and k a strictly positive integer. A
guarded negation bisimulation, GN-bisimulation in short, of width k is a non-empty
binary relation Z ⊆ k-guarded(M) × k-guarded(N) such that the following hold for
every pair (ā, b̄) ∈ Z, where ā = a1, . . . , am and b̄ = b1, . . . , bn
— the mapping sending ā to b̄ is a partial isomorphism (and in particular, m = n)
— [Forward clause] For every set X included in the domain of M and of size bounded

by k there is a partial homomorphism h : M → N whose domain is X, such that h is
consistent with the mapping sending ā to b̄ (i.e. h(ai) = bi for all ai in X), and such

4There is a stronger variant of guarded negation bisimulation introduced in [Bárány et al. 2013] that already
characterizes GNFO.
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that for every ā′ ∈ k-guarded(M) consisting of elements in X, the pair (ā′, h(ā′))
belongs to Z.

— [Backward clause] For every set X included in the domain of N and of size
bounded by k there is a partial homomorphism h : N → M whose domain is X,
such that h is consistent with the mapping sending b̄ to ā (i.e. h(bi) = ai for all bi in
X), and such that for every ā′ ∈ k-guarded(N) consisting of elements in X, the pair
(h(ā′), ā′) belongs to Z.

If we only require X to be finite and replace k-guarded(M) and k-guarded(N) by
guarded(M) and guarded(N) in the forward and backward clauses, we then say that
Z is a GN-bisimulation between M and N . In particular a GN-bisimulation is a GN-
bisimulation of width k, for all k.

We write M ≈GN N if there is a GN-bisimulation between M and N and write
M ≈k

GN N if there is a GN-bisimulation of width k.

Discussion. In the definition of guarded negation bisimulation, if the sets X are re-
stricted to guarded tuples, instead of arbitrary finite sets, we then have the definition
of guarded quantification bisimulation that was designed for guarded quantification
logics [Flum et al. 2008].

If we restrict in the definition of guarded negation bisimulation guarded(M) and
guarded(N) to respectively the domain of M and the domain of N (in particular Z ⊆
dom(M) × dom(N)) then we get the notion of unary negation bisimulation [ten Cate
and Segoufin 2013] that is well suited for UNFO and UNFP as we shall see.

The notion of modal bisimulation, designed for two way modal logics, corresponds
to the restriction of unary negation bisimulation, as defined previously, where in the
forward and backward clauses for a pair (a, b) of Z, we only consider the sets X with
two elements, the element a together with one element connected to a in the forward
case, and similarly with b in the backward case.

This means that the existence of a guarded negation bisimulation implies the exis-
tence of a guarded quantification bisimulation which implies the existence of a modal
bisimulation. This is to be expected as we have seen that modal logic is a fragment of
guarded quantification logic which is also a fragment of guarded negation logic.

Example 3.2. Consider again the query q defined in GNFO by the formula (1), ask-
ing for the existence of an edge whose endpoints connot be connected by a path of
length 4. This property is not closed under modal and guarded bisimulation. To see
this consider the graph depicted in the left-hand side of Figure 2. The query is not sat-
isfied by this graph: the top edge has its endpoints connected by a path of length 4 and
any other edge starts or ends with a loop and therefore has its endpoints connected by
a path of length 4. However this graph is guarded quantification bisimilar, and there-
fore also modal bisimilar, to the one depicted in the right-hand side of the figure, which
makes the query true with any top edges. As the right-hand side graph is infinite, this

Fig. 2. Two guarded quantification bisimilar graphs. In the right-hand side infinite graph, the top edges
have no path of length 4 between their endpoints. There is no such edge in the left-hand side graph.

implies that the property defined by q is not expressible in modal or guarded quantifi-

ACM SIGLOG News 7 Vol. 0, No. 0, 0000



Luc Segoufin

cation logics over arbitrary graphs. However the right-hand side graph can be made
finite by identifying top edges that are sufficiently far away in order to make sure that
no loops of length 4 are created, hence still satisfying q. This implies that the property
is also not definable over finite graphs.

The key property mentioned in the discussion above states that the existence of a
guarded negation bisimulation implies indistinguishability by guarded negation fix-
point sentences. More precisely we have the following result:

THEOREM 3.3. [Bárány et al. 2015]

— For every sentence ϕ of GNFP there is a k such that, if M ≈k
GN N then M and N

agree on ϕ.
— If M ≈GN N then M and N satisfy the same sentences of GNFP.

The number k associated to ϕ in Theorem 3.3 turns out to be its width as defined
in Section 2. Hence any two structures that are GN-bisimilar with width k satisfy the
same GNFP sentences of width k. A similar result can be shown for unary negation
fragments:

THEOREM 3.4. [ten Cate and Segoufin 2013]

— For every sentence ϕ of UNFP there is a k such that, if M ≈k
UN N then M and N

agree on ϕ.
— If M ≈UN N then M and N satisfy the same sentences of UNFP.

We now argue that guarded negation bisimulation is the best possible notion of sim-
ilarity under which guarded negation logics are invariant. Indeed, guarded negation
bisimulation invariance can be used to characterize GNFO: any property that is de-
finable in first-order logic and closed under guarded negation bisimulation is actually
definable in GNFO. This result works for both types of closure, closure under finite
guarded negation bisimulation and closure under arbitrary guarded negation bisim-
ulation. Similar results were obtained earlier showing that modal bisimulation char-
acterizes modal logic [van Benthem 1983; Rosen 1997] and that guarded quantifica-
tion bisimulation characterizes guarded quantification first-order logic [Andréka et al.
1998; Otto 2010].

THEOREM 3.5.

— a first-order property is definable in GNFO iff it is closed under GN-bisimulation.
— a first-order property is definable in GNFO over finite structures iff it is closed under

finite GN-bisimulation.

The characterization of GNFO was obtained in [Bárány et al. 2015] for the infinite case
and in [Otto 2013] for the (considerably harder) finite case.

Similar results were obtained for UNFO.

THEOREM 3.6. [ten Cate and Segoufin 2013]

— a first-order property is definable in UNFO iff it is closed under UN-bisimulation.
— a first-order property is definable in UNFO over finite structures iff it is closed under

finite UN-bisimulation.

The results of Theorem 3.5 and Theorem 3.6 can actually be refined further by
showing in each setting, that for each k, a first-order property is closed under GN-
bisimulation of width k iff it is definable by a GNFO sentence of width k (and similarly
for UN-bisimulation and UNFO).
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The situation for fixpoint logics is not yet entirely solved. It is known that the
µ-calculus is the modal bisimulation invariant fragment of monadic second order logic
(MSO) [Janin and Walukiewicz 1996] and that the guarded quantification fixpoint logic
is the guarded quantification bisimulation invariant fragment of guarded second or-
der logic (GSO, where second order quantification is limited to relations containing
guarded tuples) [Grädel et al. 2002]. However those results only hold for infinite struc-
tures. We don’t know yet whether they are true over finite structures. For guarded
negation fixpoint logic, only the unary negation case has been partially answered. It is
known that the sentences of UNFP of width k are precisely the properties expressible
in GSO and invariant under unary negation bisimulations of width k [Benedikt et al.
2015].

4. DECIDABILITY
In this section we consider the satisfiability problem. For this problem the input is
a sentence of the logic and the question is whether this sentence has a model, i.e.
a structure making the sentence true. This problem has two variants depending on
whether we ask for a finite model or an arbitrary one. It is usually easier to decide
whether a sentence has a model while it is harder to decide whether it has a finite
model. In some cases, both the finite and infinite satisfiability are equivalent in the
sense that a sentence has a model iff it has a finite model. We then say that the logic
has the finite model property.

In general the satisfiability problem for first-order logic is undecidable, both in its
finite or infinite variants. However several fragments of first-order logic are decid-
able. This is in particular the case for the frameworks already mentioned in this note:
for instance it is decidable whether a sentence of the µ-calculus, with its two-way ex-
tension, has a model. The problem is ExpTime-complete both for infinite satisfiabil-
ity [Vardi 1998] and for finite satisfiability [Bojańczyk 2003]. For guarded quantifi-
cation first-order logic, GFO, satisfiability is 2EXPTIME-complete [Grädel 2001]. Be-
cause GFO has the finite model property, it does not make any difference whether
we consider finite or infinite satisfiability. Note that the complexity lowers to Exp-
Time-complete if the maximal arity of the relations in the schema is fixed (for instance
graphs). For guarded quantification fixpoint logic, GFP, the satisfiability problem is
ExpTime-complete [Grädel and Walukiewicz 1999]. Finite satisfiability was consider-
ably harder to achieve but turns out to be also decidable within the same complexity
bounds [Bárány and Bojańczyk 2012].

An important consequence of GN-bisimulation, actually GN-bisimulation of width k
for some k, is decidability. It is easy to see that any structure is GN-bisimilar of width k
to a structure of tree-width k. It is not important to know the definition of tree-width
to understand this note. A structure of tree-width 1 is a tree and the smaller the tree-
width is the more the structure resembles a tree. The interested reader is refered
to [Flum et al. 2008] for more details. The important result relating tree-width and
decidability is Courcelle’s Theorem stating that, for any k, it is decidable whether a
sentence of monadic second-order logic has a model of tree-width k [Courcelle 1990].

A GN-bisimulation can be seen as a game between two players. A configuration of
the game consists of a k-guarded tuple ā of structure M and a k-guarded tuple b̄ of
structure N . In a round of the game the first player chooses a set X of size at most
k in either M or N . The second player must respond with a partial homomorphism
h from X to the other structure. Finally the first player chooses a k-guarded tuple ā′
within X and the game resumes with the pair ā′ and h(ā′). It is now easy to verify
that the existence of a GN-bisimulation is equivalent to the fact that the second player
has a strategy for playing this game forever. This strategy can be encoded as a tree
structure where every node corresponds to the current configuration and the edges to
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its children correspond to the answers of the second player to each possible move of
the first player. The resulting tree is infinite as the play goes on forever.

Consider any structure M . There is a trivial GN-bisimulation between M and itself,
hence a trivial strategy for the second player to play forever. As explained above, this
strategy yields an infinite tree structure that can be seen as a tree decomposition of
a new (infinite) structure N , witnessing that N has tree-width k and that M is GN-
bisimilar to a structure of tree-width k. The structure N obtained this way is called
the GN-unraveling of M of width k.

Hence, by invariance under GN-bisimulation, if a sentence ϕ of GNFP has a model
then there is a k such that ϕ has a model of tree-width k. This is known as the tree-like
model property.

THEOREM 4.1. [Bárány et al. 2015] GNFP has the tree-like model property.

Theorem 4.1 can be used to decide whether a sentence of GNFP has a model. For this,
one constructs from a sentence ϕ of GNFP a MSO formula recognizing the unraveling-
sof the models of ϕ of width k, where k is the width of ϕ (the width is computable from
ϕ). This implies decidability using Courcelle’s Theorem. However this strategy does
not give a good complexity bound. In order to obtain the optimal complexity bound
given below one needs to directly compute a small automaton working on the tree
decompositions of the structures of width k, and this requires more work.

THEOREM 4.2. [Bárány et al. 2015] It is 2EXPTIME-complete to decide whether a
sentence of GNFP is satisfiable.

Note that if the upper bound applies to GNFP the lower bound already holds for
UNFO [ten Cate and Segoufin 2013] and already in the case of graphs.

What about finite satisfiability? How can we decide whether a sentence has a finite
model? We cannot use anymore the tree-like model property for finite satisfiability as
the unravelings are inherently infinite.

Like for modal and guarded quantification logics, the situation is then different de-
pending on whether we consider the first-order case or the fixpoint case. The simplest
of the two is the case of GNFO. In this case one can show that the logic has the finite
model property: if a sentence has a model it has a finite one. Hence finite satisfiability
is equivalent to satisfiability and Theorem 4.2 applies. More precisely we can show
that GNFO sentences have a small model property:

THEOREM 4.3. [Bárány et al. 2015] Every satisfiable sentence ϕ of GNFO has a
finite model of size double exponential in the size of ϕ.

The finite model property does not hold for GNFP. To see this recall the formula (2)
of Example 2.6 expressing the fact that a graph has an infinite backward path:
∃x ¬µX,y[ ¬∃z(E(z, y) ∧ ¬X(z)) ](x).

Consider now the following GNFP formula:

∃x ¬∃y E(x, y) ∨ ∃x¬µX,y[ ¬∃z(E(z, y) ∧ ¬X(z))](x)

expressing the property that either there exists a maximal element or there is an in-
finite backward path. This formula is obviously false in the infinite structure (N, suc).
However it holds on any finite structure as if a finite structure has no maximal ele-
ments, it must contain a cycle, and hence an infinite backward path. The negation of
this sentence is satisfiable, by (N, suc), but has no finite model.

The decidability for finite satisfiability turns out to be considerably more difficult. It
has been achieved by reducing the finite satisfiability problem for GNFP to the finite
satisfiability problem for GFP. The latter reduces to the finite satisfiability problem
for the two-way µ-calculus [Bárány and Bojańczyk 2012], whose finite satisfiability

ACM SIGLOG News 10 Vol. 0, No. 0, 0000



A survey on guarded negation

was obtained in [Bojańczyk 2003]. Altogether it can be achieved within the same com-
plexity bounds as for the infinite case.

THEOREM 4.4. [Bárány et al. 2015] It is 2EXPTIME-complete to decide whether a
sentence of GNFP has a a finite model.

5. MODEL CHECKING
In this section we study the model checking problem for guarded negation logics. In
the model checking problem, the input consists of a sentence and a structure and the
goal is to decide whether the structure satisfies the sentence.

In the case of modal logics and guarded quantification logics, the model checking for
GFO is PTime-complete and the one of GFP is the same as for the µ-calculus and lies
between PTime and NP ∩ coNP [Berwanger and Grädel 2001]. It is actually a famous
open problem to know whether there exists a polynomial time algorithm for the model
checking problem of µ-calculus. Equivalently this amounts to find a polynomial time
algorithm for solving parity games (see [Flum et al. 2008]).

Before stating the results for guarded negation logics we briefly review the complex-
ity classes involved.

The first class we use is denoted PNP, also known as ∆p
2. It consists of all problems

that are computable by a Turing machine running in time polynomial in the size of
its input, where the Turing machine, at any point during its computation, can ask
yes/no queries to an NP oracle, and take the answers of the oracle into account in
subsequent steps of the computation (including subsequent queries to the NP oracle).
Analogously, one can define the classes NPNP and coNPNP, which are also known as
Σp

2 and Πp
2, respectively. An example of a PNP-complete problem is LEX(SAT), which

takes as input a Boolean formula φ(x1, . . . xn) and asks what is the value of xn in the
lexicographically maximal solution (where xn is treated as the least significant bit in
the ordering) [Wagner 1987].

Inside PNP lies a hierarchy of classes PNP[O(logi n)] with i ≥ 1. They are defined in
the same way as PNP, except that the number of yes/no queries that can be asked to
the NP oracle is bounded by O(logi(n)), where n is the size of the input. An example of
complete problem for PNP[O(logi n)] is the problem LEXi(SAT) testing, given a Boolean
formula φ(x1, . . . , xn) and a number k ≤ logi(n), whether the value of xk is 1 in the
lexicographically maximal solution [ten Cate and Segoufin 2013].

We are now ready to state the model checking results for guarded negation logics.

THEOREM 5.1. [Bárány et al. 2015] The model checking problem for GNFO is
PNP[O(log2 n)]-complete under polynomial time reductions. For GNFP it is in NPNP ∩
coNPNP and hard for PNP.

The hardness results already hold for unary negated formulas.
The model checking problem for GNFO provides one of the few natural complete

problems for the complexity class PNP[O(log2 n)].
For UNFP, the gap between the upper bound and the lower bound reflects the sim-

ilar open problem for GFP and the µ-calculus where the model checking problem lies
between PTime and NP ∩ coNP [Berwanger and Grädel 2001].

The result for GNFP is sensitive to the syntax. Various ways of guarding the fixpoint
leads to different complexities. For instance it becomes ExpTime-complete if we use a
syntactic clause “guard” whose semantics contains all guarded tuples [Bárány et al.
2015].
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6. MODEL THEORY
A nice thing with guarded negation first-order logic is that it also behaves well in
terms of model theoretic properties. In particular it has Craig-Interpolation, and there-
fore the Projective Beth Property. For the guarded quantification logic GFO, only Beth
Property holds [Hoogland et al. 1999]. Both Craig-Interpolation and Projective Beth
Property fail for GFO [Bárány et al. 2013].

Given two formulas ϕ and ψ, we write ϕ |= ψ if any model of ϕ is also a model of ψ,
in other words, if ϕ ∧ ¬ψ is not satisfiable. A logic has Craig-Interpolation if whenever
two formulas ϕ and ψ of the logic are such that ϕ |= ψ, then there is a third formula θ
of the logic, using only the relation symbols occurring in both ϕ and ψ such that ϕ |= θ
and θ |= ψ.

In particular, consider a formula ϕ(R) expressing a property of a relation R and
such that ∃R ϕ(R) |= ∀R ϕ(R). We then say that ϕ is R-invariant (the result does
not depend on the actual value of R). Let ϕ(S) be the formula constructed from ϕ(R)
replacing the symbols R by a fresh new symbol S. It follows from ∃R ϕ(R) |= ∀R ϕ(R)
that ϕ(R) |= ϕ(S). As R and S do not appear in both sides, Craig-Interpolation implies
in this case that there exists a formula θ, which does not mentionR nor S and such that
θ is equivalent to ∃R ϕ(R). In the literature we then say that R-invariant properties
are expressible without R.

Another consequence of Craig-Interpolation is the Projective Beth Property.
Let σ, τ be two relational schemes such that σ ⊂ τ and R is a relation symbol in

τ \ σ. 5 Let ϕ be a formula over the schema τ . We say that ϕ implicitly defines R if for
any structure M over σ and any two τ -expansions6 M1 and M2 of M such that M1 |= ϕ
and M2 |= ϕ then we have R(M1) = R(M2). In other words the formula ϕ defines a
partial function associating to a model M over σ an instantiation for R, namely R(M1)
for an arbitrary τ -expansion of M , the definition ensuring that it does not depend
on the choice of M1. The mapping is partial because M may not have a τ -expansion
satisfying ϕ.

Example 6.1. Consider the schema σ = {E} where E is binary whose models are
directed graphs. Consider the extension τ of σ by four unary predicates R,P0, P1, and
P2.

The following formula says that nodes in R must be on a cycle of length 4.

∀x R(x)→ ∃u, v, w E(x, u) ∧ E(u, v) ∧ E(v, w) ∧ E(w, x)

It does not implicitly define R as these nodes may or may not be in R. However, in
conjunction with the following formula, implying that when a node is not in R then it
cannot be on a cycle of length 4,

∀x ¬R(x)→ P0(x) ∧ ¬P1(x) ∧ ¬P2(x)

∀x, y Pi(x) ∧ E(x, y)→ Pi+1 mod 3(y)

the resulting formula implicitly defines R as the nodes lying on a cycle of length 4.
Note that all formulas are in UNFO as all negations are unary. Note that the mapping
is partial as in some graphs, it is not possible to assign colors such that the whole
formula is true. But when this is possible, R contains all nodes in a cycle of length 4.

5Beth Property requires τ = σ ∪ {R}. The Projective Beth Property is a generalization of Beth Property
where τ (and therefore the formula) may contain more relations
6A τ -expansion of M is a structure over the same domain as M , with the same interpretation of relation
symbols in σ. Hence the τ -expansions of M only differ by their interpretations of the relation symbols in
τ \ σ
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A logic has the Projective Beth Property if every relation implicitly definable in the
logic by a formula ϕ over the schema τ has an explicit definition in the logic, i.e. there
is a formula φ(x̄) over the schema σ (in particular φ does not use the symbol R) such
that ϕ |= ∀x̄ R(x̄)↔ φ(x̄).

Example 6.2. For instance the formula of Example 6.1 implicitly defining the nodes
sitting on a cycle of length 4 in a graph can be explicitly defined by the formula

∃u, v, w E(x, u) ∧ E(u, v) ∧ E(v, w) ∧ E(w, x).

THEOREM 6.3. GNFO has Craig-Interpolation and therefore also the Projective
Beth Property.

Theorem 6.3 was first proved in [Bárány et al. 2013]. A constructive proof was then
given in [Benedikt et al. 2016]. Actually GNFO even has Lyndon Interpolation (the
interpolant θ also preserves the positivity of the relations symbols) [Benedikt et al.
2016].

When both sides of ϕ |= ψ have only unary negations, the interpolant can be chosen
in UNFO [ten Cate and Segoufin 2013]. One can further assume that the interpolant
uses the same number of variables as ϕ and ψ [ten Cate and Segoufin 2015].

There are very few results of this kind for fixpoint logics. However Craig Interpola-
tion does hold for unary negation fixpoint logic, UNFP, but fails for guarded negation
fixpoint logic, GNFP [Benedikt et al. 2015].

7. APPLICATIONS
Databases. There are numerous applications in databases. A view of a database is a
new database providing a subset of its information possibly restructured in a different
way. A view is usually specified using queries, each query defining a new relation of
the view. Views have many applications, a notable one being privacy, when some users
may not be entitled to see all of the database. In this context it may be useful to known
whether a view specification leaks some important confidential information. The prob-
lem of view determinacy models this by asking whether a view specification contains
enough information for answering a given target query [Nash et al. 2010]. This prob-
lem is known to be already undecidable for views specified by means of conjunctive
queries and a conjunctive target query [Gogacz and Marcinkowski 2016]. However for
view specifications defined by answer-guarded7 GNFO queries and the target query
is also answer-guarded the problem becomes decidable. It is a consequence of the
Projective Beth Property of GNFO that if a view determines a query then a rewrit-
ing of the query can be found in GNFO. Decidability follows from the decidability
of GNFO [Bárány et al. 2013].

Database systems are constantly facing incomplete or inconsistent data. In this case,
computing the answers to a query requires some reasoning and therefore a decidable
logic. Several decidable scenarios with integrity constraints specified using guarded
negation rules where considered in [Bárány et al. 2013; Bourhis et al. 2016; Bourhis
et al. 2014]. See also [Bárány et al. 2013; Bienvenu et al. 2014].

Trees. When restricted to unranked ordered tree structures (also known as XML
trees), UNFO has the same expressive power as Core-XPath, the navigational frag-
ment of XPath [ten Cate and Segoufin 2013]. This equivalence of expressive power
holds when Core-XPath is viewed as a language of sentences (existence of a path) and
then it corresponds to UNFO sentences. The equivalence also holds when Core-XPath
is viewed as a language defining properties of a node (existence of a path starting

7A query is answer guarded if it is of the form α(x̄) ∧ ϕ(x̄) where α is an atom.
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from this node) and then it corresponds to UNFO formulas with one free variable.
In this case it also has the same expressive power as FO2 [Marx and de Rijke 2005].
The equivalence also holds when Core-XPath is viewed as a language defining pairs of
nodes (with a certain path linking them) and then it corresponds to UNFO formulas
with two free variables. In this setting UNFP sentences define precisely the regular
tree languages.

Boundedness. In some cases it is useful to know whether a property expressed
using a fixpoint formula does require a fixpoint. In other words whether the fixpoint
computation can be replaced by a first-order formula. This is known as the bounded-
ness problem. This problem is decidable for a fragment of guarded negation fixpoint:
guarded negation Datalog [Bárány et al. 2012].

8. CONCLUSION
We have seen that guarded negation logics have nice algorithmic properties and nice
expressive power.

There exists several decidable extensions of what we presented in this paper. For in-
stance atomic guards can be replaced by “clique guards” [Bárány et al. 2015]. However
a little bit of unguarded negation, like adding just inequality, kills decidability [Bárány
et al. 2015]. In the fixpoint case it is possible to relax the requirement forbidding the
existence of parameters. Satisfiability of an infinite model is then decidable, the finite
case being open [Benedikt et al. 2016].
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Vince Bárány, Michael Benedikt, and Pierre Bourhis. 2013. Access patterns and integrity constraints revis-

ited. In Intl. Conf. on Database Theory (ICDT).
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