Isogeometric analysis for compressible flows using a Discontinuous Galerkin method

Régis Duvigneau 1
1 Acumes - Analysis and Control of Unsteady Models for Engineering Sciences
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : The objective of this work is to investigate a Discontinuous Galerkin (DG) method for compressible Euler equations, based on an isogeometric formulation: the partial differential equations governing the flow are solved on rational parametric elements, that preserve exactly the geometry of boundaries defined by Non-Uniform Rational B-Splines (NURBS), while the same rational approximation space is adopted for the solution. We propose a new approach to construct a DG-compliant computational domain based on NURBS boundaries and examine the resulting modifications that occur in the DG method. Some two-dimensional test-cases with analytical solutions are finally considered to assess the accuracy and illustrate the capabilities of the proposed approach. The critical role of boundary curvature is especially investigated.
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger
Contributeur : Régis Duvigneau <>
Soumis le : jeudi 16 novembre 2017 - 15:45:02
Dernière modification le : mercredi 14 mars 2018 - 11:08:05


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01589344, version 2


Régis Duvigneau. Isogeometric analysis for compressible flows using a Discontinuous Galerkin method. Pre-print submitted to Computer Methods in Applied Mechanics and Engineering. 2017. 〈hal-01589344v2〉



Consultations de la notice


Téléchargements de fichiers