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Abstract

The objective of this work is to investigate a Discontinuous Galerkin (DG)

method for compressible Euler equations, based on an isogeometric formula-

tion: the partial di�erential equations governing the 
ow are solved on rational

parametric elements, that preserve exactly the geometry of boundaries de�ned

by Non-Uniform Rational B-Splines (NURBS), while the same rational approx-

imation space is adopted for the solution. We propose a new approach to con-

struct a DG-compliant computational domain based on NURBS boundaries and

examine the resulting modi�cations that occur in the DG method. Some two-

dimensional test-cases with analytical solutions are �nally considered to assess

the accuracy and illustrate the capabilities of the proposed approach. The crit-

ical role of boundary curvature is especially investigated.
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1. Introduction

Computation Fluid Dynamics (CFD) has now a signi�cant impact in several

domains, from transportation industry, chemical process engineering to bio-


uidics. The increase of computational facilities has signi�cantly reduced the

computational costs related to CFD, and thus promoted industrial applications.5

Nevertheless, the time necessary to set up CFD simulations is still signi�cant in

several cases because pre-processing tasks, like mesh generation from Computer-

Aided Design (CAD) data, still rely on time-consuming human actions.

This verdict motivated the emergence of the so-calledisogeometric analy-

sis approach ten years ago, which targeted the seamless integration of Finite-10

Element (FE) methods and CAD representations [1]. It advocates the use of

CAD bases like Non-Uniform Rational B-Splines (NURBS) in variational formu-

lations, not only to describe the geometry, but also to de�ne the approximation

space. This approach is conceptually appealing and has several interesting prop-

erties from technical point of view: it allows to achieve simulations based on15

exact geometries [2] (i.e. identical to the geometry de�ned in the CAD frame-

work); it facilitates the development of fully automated tools from CAD design

to performance analysis for optimization without geometry approximate [3, 4];

it permits to include geometry-preserving mesh re�nement procedures [5], etc.

This approach has been a signi�cant success, as re
ected in the growing number20

of publications related to the topic. However, one can observe that a very large

majority of problems addressed by the isogeometric analysis method concerns

elliptic or parabolic partial di�erential equations, mainly with applications in

structural mechanics. Only a few investigations can be found in CFD [6, 7, 8],

mainly regarding incompressible viscous 
ows in laminar regime. Indeed, most25

CFD methods for convection-dominant problems rely on Finite-Volume (FV) or

Discontinuous Galerkin (DG) formulations, which are more suited to hyperbolic

conservation laws.

Besides, in the CFD community, several recent studies pointed out the fact

that a piecewise linear representation of the geometry may yield convergence30
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and accuracy issues [9, 10], in the context of high-order DG or FV schemes,

which are more and more employed in the context of complex problems (e.g.

for Large Eddy Simulations). As shown by some authors, the use of a high-order

geometry description is bene�cial, not only in terms of solution accuracy, but

also in terms of computational e�ciency, because it avoids performing excessive35

mesh re�nement to describe curved boundaries [11].

Accounting for curvilinear boundaries requires (i ) to construct a curvilinear

mesh ; (ii ) to adapt discretization methods. Regarding mesh generation, some

works are currently in progress to extend classical meshing techniques to pro-

duce curvilinear elements in the vicinity of boundaries [12, 13, 14, 15]. However,40

they are often restricted to polynomial representations, thus CAD geometry is

not exactly preserved. Alternatively, the CAD community has been very active

for the last years to propose new algorithms to construct curvilinear grids from

CAD boundaries [16, 17, 18, 19, 20, 21]. Nevertheless, the complexity of the

underlying representations may be an obstacle for practical implementations.45

Concerning the adaption of PDE solvers to curvilinear geometries, the isopara-

metric approach has existed for a long time [22], but its basic application yields

only an approximate of the CAD geometry, based on polynomials. As results,

points at the boundary of the grid do not lie exactly on the CAD geometry,

normals and derivatives are not preserved. More advanced approaches have50

been proposed recently, to fully integrate NURBS geometries in DG solvers,

independently from the approximation space [11, 10, 23]. The demonstrated

results are convincing, in terms of accuracy and convergence, but the proposed

methodology su�ers from the complexity of the underlying mappings used for

spatial integration.55

Therefore, this work aims at proposing a DG method for CFD computa-

tions, that relies on a fully isogeometric formulation, i.e. the PDEs governing

the 
ow are solved on rational parametric elements, that preserve exactly the

CAD geometry at the boundaries, while the approximation space is de�ned

thanks to the same rational bases originating from CAD. Obviously, NURBS60

basis functions classically used in CAD cannot be employed in a straightfor-
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ward way as test functions for a DG formulation, because they do not naturally

exhibit a common support enabling discontinuities in the solution. Therefore,

the �rst part of the current work will explain how to generate a set of rational

elements that both preserve the CAD geometry at the boundary and are de�ned65

on basis functions suitable to DG methods. We also envisage the case where

the geometry of the problem is not de�ned using a CAD environment. Then,

we will describe how to modify a classical DG formulation to account for the

new integration supports, with the concern of introducing as few modi�cations

as possible. Indeed, an objective of this work is to provide a computational70

framework as simple as possible, that permits to account for CAD boundaries

without approximation, and maintains the implementation complexity reason-

able. Finally, a set of two-dimensional test-cases commonly used to validate

CFD methods will be studied, in order to assess the numerical properties of the

proposed approach. In particular the critical role of the boundary curvature is75

investigated. Advantages and limitations of the proposed methodology will be

discussed in conclusion.

2. NURBS representations

NURBS curves (and surfaces) are now considered as standard to de�ne ge-

ometries in CAD [24]. In particular, they allow to represent exactly a broad80

class of geometric curves like conic sections. Therefore, the use of such a rep-

resentation for the construction of the computational grid would be of great

interest in CFD, at least to avoid introducing geometrical errors in the solv-

ing procedure, and more generally to improve the integration of CFD in design

procedures.85

In the present study, we aim at using a unique representation for both the

geometry and the approximation space, in the spirit of the isogeometric analysis

methods. In this perspective, a necessary task consists in generating a curvi-

linear grid based on NURBS boundaries, as well as an approximation space

suitable to DG method. In this section, the de�nition and relevant properties of90
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NURBS functions are �rst provided, and di�erent approaches to construct the

curvilinear grid and approximation space are then proposed.

2.1. NURBS functions

The one-dimensional case is presented �rst, the extension to multi-dimensional

problems being exposed further. A NURBS basis is de�ned using the so-

called knot vector � = ( � 1; : : : ; � l ) 2 Rl , which consists of nondecreasingl real

numbers. This knot vector de�nes a discretization of the parametric domain

b
 = [ � 1; � l ]. Open knot vectors, i.e., knot vectors with �rst and last knots of

multiplicity p+1, are usually used for a curve of degreep to impose interpolation

and tangency conditions at both extremities [25]. Therefore� 1 = : : : = � p+1 and

� n +1 = : : : = � n + p+1 . NURBS functions [26] are rational extensions of B-Spline

functions [25] (N p
i ) i =1 ;��� ;n that are de�ned recursively as:

N 0
i (� ) =

8
><

>:

1 if � i � � < � i +1

0 otherwise
(1)

N p
i (� ) =

� � � i

� i + p � � i
N p� 1

i (� ) +
� i + p+1 � �

� i + p+1 � � i +1
N p� 1

i +1 (� ): (2)

Note that the quotient 0/0 is assumed to be zero. According to this de�nition,

B-Spline functions of degree 0 and 1 coincide with classical piecewise constant

and linear FE basis functions. However, B-Spline functions of higher degree

di�er from classical Lagrange polynomials. We underline that this hierarchi-

cal construction is practically convenient and promotes the use of p-adaptive

strategies. The degree of the functionsp, the number of knots l and functions

n are related by the relation l = n + p + 1. NURBS functions of degreep are

then de�ned by:

Rp
i (� ) =

wi N
p
i (� )

P n
j =1 wj N p

j (� )
; (3)

where wi 2 R is the weight associated to thei th function. Therefore, NURBS

functions with uniform weights are actually B-Spline (and polynomial) func-95

tions. The use of non-uniform weights allows to generate rational functions to

represent conic sections.
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The transformation of the parametric domain b
 to the physical domain 


can now be introduced:

F : b
 ! 
 ; � 7! x(� ) =
nX

i =1

Rp
i (� )X i : (4)

The transformation associates acontrol point X i to each basis function and de-

�nes a NURBS curve, that lies in a space of dimensionN . For general geometric

modeling purpose,N is usually higher than one (for instance, the curve may100

lie in R2 or R3). But in the perspective of using NURBS domains to describe

the computational domain, we will consider the simpler case where the NURBS

domain lies in a space of dimension equal to the number of parameters. Note

that NURBS curves can be interpreted as the projection of a B-Spline curve

that lies in a space of dimensionN + 1, the additional coordinate being de�ned105

by the weights associated to the control points [26]. To summarize, this rep-

resentation allows to describe the domain 
 as a NURBSpatch, de�ned by its

control points, the associated weights, the knot vector and the degree of the

basis.

An important property of the NURBS representation is the capability to

insert a new knot, and thus a new basis function, without altering the geome-

try [25]. It can be considered as a localh-re�nement procedure [2]. Any NURBS

curve de�ned by the knot vector � = ( � 1; : : : ; � l ) 2 Rl , n basis functions and

control points, as described above, can be identically represented using the knot

vector (� 1; : : : ; � q; ��; � q+1 : : : ; � l ) 2 Rl +1 , that includes an additional knot �� in-

serted between� q and � q+1 . If we consider �rst the case of a B-Spline curve,

the new representation can be written as:

x(� ) =
nX

i =1

N p
i (� )X i =

n +1X

i =1

N p
i (� ) �X i ; (5)

with a new set of control points de�ned as:

�X i = (1 � � i )X i � 1 + � i X i � i =

8
>>><

>>>:

1 if i � q � p
�� � � i

� i + p � � i
if q � p + 1 � i � q

0 if i � q + 1

(6)
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The extension to NURBS curves relies on the projection approach mentioned110

above [26]. It is important to precise a particular case: if a new knot is inserted

at an existing knot, the regularity of the curve is decreased. More generally,

the curve at the knot � q has the regularity Cp� r , where r is the multiplicity

of the knot q [25]. Therefore, if one insertsp knots at an existing knot, the

curve is preserved but divided in two independent parts. This property will be115

used in a forthcoming section to de�ne an approximation space suitable to DG

formulation.

2.2. Multi-dimensional case

NURBS surfaces and volumes can be generated from the one-dimensional

case by using a tensorial representation. For the sake of clarity, we consider a

two-dimensional example with identical degrees in both directions:

x(�; � ) =
n 1X

i 1 =1

n 2X

i 2 =1

Rp
i 1 i 2

(�; � )X i 1 i 2 =
n 1 � n 2X

i =1

Ri (�; � )X i ; (7)

Rp
i 1 i 2

(�; � ) =
wi 1 i 2 N p

i 1
(� ) N p

i 2
(� )

P n 1
j 1 =1

P n 2
j 2 =1 wj 1 j 2 N p

j 1
(� )N p

j 2
(� )

; (8)

where x = ( x; y) are the cartesian coordinates and (X i 1 i 2 ) i 1 =1 ;��� ;n 1 i 2 =1 ;��� ;n 2 is

the lattice of control points. Ri (�; � ) = Rp
i 1 i 2

(�; � ) represents the two-parameter120

basis function of index i = i 1 � i 2. This construction is illustrated in Fig. (1),

for a cubic patch (p = 3) with a 4 � 4 control points lattice ( n1 = n2 = 4), in

the particular case � 1 = � 2 = � 3 = � 4 = 0 and � 5 = � 6 = � 7 = � 8 = 1 (same knot

vector for � ). Note that this study is restricted to two-dimensional problems,

but the proposed methodology can be extended to three dimensional cases. In125

particular, the procedure described above concerning knot insertion for curves

can be easily extended to surfaces and volumes, by applying the procedure to

the di�erent parameters independently. This tensorial extension is certainly the

easiest way to generate surfaces and volumes, but other techniques could be

envisaged, for instance based on rational triangles by using barycentric coordi-130

nates. Therefore, the proposed methodology is not restricted to "structured"
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representations based on tensorial products, but "unstructured" representations

could be envisaged as well, as recently exposed in [23].

Figure 1: NURBS representation

2.3. Construction of the grid and DG-compliant approximation space

We consider an arbitrary physical domain 
 � R2 with the boundary @
.135

According to the isogeometric paradigm, we adopt a NURBS representation

for the whole physical domain. For the sake of simplicity, we assume in this

preliminary work that the domain can be represented by only one patch, as

illustrated in Fig. (1). For problems involving a more complex geometry, a

multi-patch representation should be adopted. This point is discussed more in140

depth in concluding section.

Two di�erent cases should now be addressed regarding the construction of

the curvilinear grid: �rstly, we will make the assumption that the boundary is

de�ned as a set of NURBS curves. In a second time, for the sake of completeness,

we will consider the alternate case, for which boundaries are not de�ned in a145

CAD environment.

2.3.1. CAD-based boundary

We suppose here that the boundary of the physical domain is de�ned as a

set of four compatible NURBS curves, i.e. opposite curves have the same de-

gree and the same number of control points. If not, basic CAD procedures like
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degree elevationand knot insertion should be applied �rst [26]. Thus, one only

has to determine the inner control point coordinates to de�ne a NURBS patch

that matches the physical domain exactly. This task can be achieved by using

the so-calleddiscrete Coons patchconstruction [27]. It consists in de�ning in-

ner control point lattice ( X i 1 i 2 ) i 1 =2 ;��� ;n 1 � 1 i 2 =2 ;��� ;n 2 � 1, and associated weights,

from boundary control points according to the following expression:

X i 1 i 2 =(1 �
i 1 � 1
n1 � 1

)X 1i 2 +
i 1 � 1
n1 � 1

X n 1 i 2

+ (1 �
i 2 � 1
n2 � 1

)X i 1 1 +
i 2 � 1
n2 � 1

X i 1 n 1

�
�

1 � i 1 � 1
n 1 � 1

i 1 � 1
n 1 � 1

�
0

@
X 11 X 1n 2

X n 1 1 X n 1 n 2

1

A

0

@
1 � i 2 � 1

n 2 � 1

i 2 � 1
n 2 � 1

1

A :

(9)

As shown in [17], this construction does not ensure that the transformationF is

injective. However, satisfactory results are obtained in practice, provided that

the boundary of the domain does not exhibit too high curvature areas. Note150

that more sophisticated construction methods can be employed [18], for which

a su�cient condition exists, that prevents overlap.

The construction proposed above allows to de�ne a NURBS patch, that

exactly matches the boundary of physical domain. However, the underlying

NURBS functions are not suitable to DG method, since it relies on piecewise155

rational functions de�ned over the whole patch. Therefore, the patch has to be

transformed into a set of elements, and associated basis functions, which can

exhibit discontinuities at the interfaces between elements, without altering the

geometry. This task can be achieved thanks to theknot insertion procedure,

described in section 2.1. Indeed, as explained above, ifp knots are inserted160

at existing inner knots, the original NURBS patch is divided to a set of (n1 �

p) � (n2 � p) patches, each of them being actually arational B�ezier patch of

degreep. The geometry of the physical domain is unchanged, but each patch is

now de�ned according to its own basis of size (p + 1) � (p + 1), which enables

the generation of discontinuities at the interfaces. Therefore, we will consider165

these rational B�ezier patches as elements in a DG method. To summarize, the
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approach to generate a curvilinear grid and the associated approximation space,

from a set of four NURBS curves is the following:

1. Insert new knots and elevate basis degree (if necessary) to obtain a set of

compatible boundary curves ;170

2. Apply discrete Coons patch construction procedure described by Eq. (9)

to de�ne the physical domain as a single NURBS patch ;

3. Insert p knots at each existing inner knot to generate (n1 � p) � (n2 � p)

independent B�ezier patches.

The proposed procedure is illustrated in Fig. (2) for a one-dimensional case.175

Three NURBS functions of degreep = 2 are plotted in Fig. (2a), each of them re-

lying on a support composed ofp+1 = 3 knot intervals. The knot insertion pro-

cedure applied twice for each existing inner knot yields nine quadratic functions,

each of them with a support restricted to one knot interval. Two-dimensional

examples will be provided further, in the section 4 devoted to applications.180

(a) Three NURBS functions.

(b) Nine rational B�ezier functions obtained by multiple knot insertions.

Figure 2: Procedure to transform a single NURBS patch to a set of DG-compliant rational

B�ezier elements.

2.3.2. General case

We examine now the alternate case: if boundary curves cannot be exactly

represented as NURBS curves, approximate representations have to be used. In

10



that case, the exact boundary representation property is lost, but the bene�t of

using a high-order boundary description remains. In the proposed approach, the185

approximation of the boundary is achieved locally, after an initial discretization

of the boundary curves. Thus, it can be considered as an extension of classical

piecewise linear grid generation methods. More precisely, the proposed approach

is composed of the following steps:

1. Sample opposite curves withN1 and N2 points respectively (xq), located190

on the exact boundary ;

2. Approximate each curve delimited by two points xq and xq+1 by a rational

B�ezier curve x(� ) =
P n

i =1 Rp
i (� )X i = R (� )> X ;

3. Construct interior domain by the discrete Coons patch method.

The second step is achieved by solving a set of 2� (N1 + N2 � 2) local linear

least-squares problems:

X = argmin
1
2

Z x q+1

x q

kR (� )> X � x?(� )k2d�; (10)

where x? denotes the coordinates of a point on the exact boundary, betweenxq195

and xq+1 . As result of the third step, one obtains a set of (N1 � 1) � (N2 � 1)

rational B�ezier elements, which are similar to those obtained by the previous

approach but approximate of the exact boundary. Again, a two-dimensional

example is provided in the section 4 devoted to applications.

3. Discontinuous Galerkin method200

We consider the two-dimensional compressible Euler equations, that can be

written in the conservative form as follows:

@W
@t

+ r � ~F = 0 ; (11)

where W are the conservative 
ow variables (�; �u; �v; �e ), with � the density,

~U = ( u; v) the velocity vector and e the total energy per unit of mass. ~F =

(F x (W ); F y (W )) is the vector of the inviscid 
uxes. The pressurep is obtained
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from the perfect gas state equation:

p = � (
 � 1)(e �
1
2

k
�!
U k2) = � (
 � 1)ei (12)

where 
 is the ratio of the speci�c heat coe�cients and ei the internal energy.

We denote U the primitive 
ow variables ( �; u; v; p ). The inviscid 
uxes are

given by:

F x (W ) =

0

B
B
B
B
B
B
@

�u

�u 2 + p

�uv

�u (e+ p
� )

1

C
C
C
C
C
C
A

F y (W ) =

0

B
B
B
B
B
B
@

�v

�vu

�v 2 + p

�v (e+ p
� )

1

C
C
C
C
C
C
A

: (13)

The DG method [28] is derived from a weak formulation of the problem,

in the proposed isogeometric context, obtained by multiplying Eq. (11) by an

arbitrary rational B�ezier function Rk (�; � ) and integrating over the rational

B�ezier patch 
 j :
Z


 j

@W
@t

Rk d
 +
Z


 j

r � ~F (W ) Rk d
 = 0 : (14)

After integration by parts, one obtains classically:
Z


 j

@W
@t

Rk d
 �
Z


 j

~F (W ) � ~r Rk d
 +
Z

@
 j

~F (W ) � ~n Rk d� = 0 : (15)

Since the solution isa priori discontinuous at the interfaces, the normal 
ux is

evaluated by a numerical 
ux function F ?(W + ; W � ; ~n), de�ned according to

the values of the solution that prevail at each side of the interface and the local

unit vector ~n directed outwards. Several 
ux functions are classically used in

DG methods [29, 30]. In this work, the HLLC 
ux is employed [31, 32].205

Finally, the solution on each element 
 j , denoted W j j , is expressed in the

rational B�ezier basis of degreep chosen to describe the geometry of the element:

W j j (�; � ) =
p+1X

i 1 =1

p+1X

i 2 =1

Rp
i 1 i 2

(�; � )W i 1 i 2 =
(p+1) 2
X

i =1

Ri (�; � )W i : (16)
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By substitution and expressing integrals in the parametric domain, one obtains:

(p+1) 2
X

i =1

@W i

@t

Z

b
 j

Ri Rk jJ 
 j db
 =
Z

b
 j

~F (W )� ~r Rk jJ 
 j db
 �
Z

@b
 j

F ?(W + ; W � ; ~n) Rk jJ � j db� :

(17)

jJ 
 j represents the determinant of the Jacobian matrix of the geometric trans-

formation F , de�ned according to Eq. (7):

J 
 =

0

@
@x
@�

@x
@�

@y
@�

@y
@�

1

A =
(p+1) 2
X

i =1

0

@
@Ri
@� (�; � )X i

@Ri
@� (�; � )X i

@Ri
@� (�; � )Yi

@Ri
@� (�; � )Yi

1

A ; (18)

and jJ � j is the lineal counterpart, de�ned thanks to Eq. (4):

jJ � j =

s �
@x
@�

� 2

+
�

@y
@�

� 2

=

vu
u
t

 
p+1X

i =1

@Rpi
@�

(� )X i

! 2

+

 
p+1X

i =1

@Rpi
@�

(� )Yi

! 2

(19)

The gradient of the basis functions in the cartesian frame, that appears in

Eq. (17), are evaluated by using the transposed of the inverse of the Jacobian

matrix:

~r Rk = J �>



0

@
@Rk
@� (�; � )

@Rk
@� (�; � )

1

A (20)

Obviously, one identi�es easily a mass matrix on the left-hand side of Eq. (17),

volumic residuals and interface 
uxes on the right-hand side. The local mass

matrix is inverted once and its inverse is stored, an explicit four-step Runge-

Kutta method being used for time integration.

Remark 1. One should underline that the spatial integrals in Eq. (17) have to210

be evaluated carefully. Indeed, the non-linearities in the 
ow variables and in

the geometrical transformations necessitate high-order quadratures, depending

on the basis degree. For the present work, classical Gauss-Legendre quadrature

rules have been applied, but involving a large number of evaluation points when

required.215

Remark 2. For unsteady problems, the initial 
ow solution has to be expressed

accordingly to the approximation space selected, i.e. in terms of discontinuous

13



rational B�ezier functions, as in Eq. (16). In practice, this task is achieved by

solving a set of local least-squares �tting problems.

Remark 3. Boundary conditions are imposed via the normal 
ux at bound-

ary, which is computed using the numerical 
ux function. For inlet and outlet

boundaries, the exterior state is imposed, whereas for wall boundaries a re
ec-

tive condition is imposed by choosing the following exterior state:

� ext = � int uext = uint � 2(~U � ~n) nx vext = vint � 2(~U � ~n) ny eext = eint :

(21)

Remark 4. The visualization of the solution and the curvilinear grid is not220

straightforward, because most visualization software are limited to piecewise

linear or quadratic solution. In the current work, we use the GLVis tool (http:

//glvis.org ), which permits to visualize NURBS elements and solution �elds.

4. Applications

4.1. Isentropic vortex225

As �rst problem, we consider the transport of an isentropic vortex [28], whose

analytical solution is provided by:

� =
�

1 �

 � 1
16
� 2 � 2e2(1 � r 2 )

� 1

 � 1

;

u = 1 � �e 1� r 2 y � y0

2�
;

v = �e 1� r 2 x � t � x0

2�
;

p = � 
 ;

(22)

with r =
p

(x � t � x0)2 + ( y � y0)2, x0 = 5, y0 = 0 and � = 5. The physical

domain 
 is the square [0; 10]� [0; 10]. The analytical solution is used to de�ne

the initial condition and the exterior state for boundary 
uxes. Error is com-

puted at �nal time T = 2. This problem is used to assess the intrinsic properties

of the proposed scheme, independently from the boundary representation.230
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A �rst accuracy study is conducted on the basis of cartesian nested grids.

In this particular case, uniform NURBS weights are employed, yielding actually

B�ezier elements. Some solutions obtained by using the same number of degrees

of freedom, but di�erent bases, are shown in Fig. (3). More precisely, one can

compare the �elds �u and �v computed with a linear basis (20� 20 elements235

of degree 1), a cubic basis (10� 10 elements of degree 3) and a quartic basis

(8 � 8 elements of degree 4), corresponding to a total of 1600 degrees of freedom

in all cases. The bene�t of using high-order representations is obvious, when

observing the smoothness of the numerical solution. TheL 2(
) norm of the

error for the energy �eld is depicted in Fig. (4a), for sequences of nested grids240

corresponding to bases ranging from linear to quintic (degree 5). An optimal

convergence rate is observed.

Then, some tests are carried out to quantify the impact of changes in the

grid characteristics. More speci�cally, the following con�gurations are consid-

ered: (i) grid with stretching (aspect ratio 10) ; (ii) grid with skewness (angle245

45� ) ; (iii) grid with random perturbations of vertices (uniform distribution of

amplitude h/5) ; (iv) grid with smooth deformation (60� solid rotation with

exponential damping). Note that, for the later case, the geometry of the ele-

ments is no longer linear and only aC0 continuity is observed at the interfaces.

The resulting grids and solutions can be seen in Fig. (5). The evaluation of the250

error, for cubic bases, yields again an optimal convergence rate whatever the

distortions applied, as can be seen in Fig. (4b).

4.2. Flow between cylinders

We now investigate the 
ow between two quarters of cylinders of respective

radius one and four, to quantify the in
uence of curvilinear wall boundaries [28].
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The targeted analytical solution writes:

� = 1 ;

u = � sin(� ) u� ;

v = cos(� ) u� ;

p = 1 +
1

752

�
r 2

2
� 32ln (r ) �

128
r 2

�
;

(23)

where u� = 1
75 (� r + 16

r ), r =
p

x2 + y2 and � = tan � 1( y
x ). The analytical

solution is provided as initial condition and as exterior state for inlet and outlet255


uxes. Re
ective wall conditions are prescribed on the two cylinders. Time

integration is achieved until convergence, based on the monitoring of theL 2(
)

norm of the error for all solution components.

The di�erent steps of the construction of the grid are illustrated in Fig. (6).

The physical domain can be de�ned exactly as a single quadratic NURBS patch,260

whose boundaries and control point lattice can be seen in Fig. (6a). Therefore,

the procedure described in section 2.3.1 is used to construct the grid. The initial

quadratic NURBS patch counts 3� 3 control points, the knot vectors for both

parameters being simply � = (0 ; 0; 0; 1; 1; 1). The insertion of a new knot at

� = 0 :5 for both parameters allows to re�ne the parameterization by adding265

some control points in the patch, as illustrated in Fig. (6b). Two additional

knots are then inserted at � = 0 :5, yielding a set of 2� 2 quadratic rational

B�ezier elements, as shown in Fig. (6c). Each element counts 3� 3 control

points. Finally, the solution is computed using a quintic basis (thanks to the

degree elevation property [2], the quadratic elements can be represented exactly270

using bases of higher degree). The �rst momentum �eld is depicted in Fig. (6d).

The procedure described above is used to generate some sequences of grids,

for bases ranging from linear to quintic. As for the �rst problem, we examine

the evolution of the L 2(
) norm of the error for the energy with respect to the

number of degrees of freedom, to assess the scheme accuracy. Results are plotted275

in Fig. (7a). Optimal convergence rates are obtained again. One can underline

the signi�cant gap between the errors obtained for linear and quadratic bases,
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which is certainly due to the exact boundary de�nition used in the latter case.

In the linear case, the geometry of cylinders is only approximated.

Then, these computations are carried out again, but using straight bound-280

aries instead of curvilinear ones, for bases ranging from quadratic to quintic.

The corresponding grids have been constructed by setting element vertices �rst,

and imposing linear distributions of control points in each element then, with

uniform weights. The evolution of the error for the energy �eld with respect to

the number of degrees of freedom can be seen in Fig. (7b). Surprisingly, all so-285

lutions exhibit a convergence rate close to the value two. One can even observe

that bases of degree four and �ve yield a worse convergence rate than a linear

basis. The reason of the phenomenon can be easily understood by comparing

the solution �elds obtained for a quintic basis, depicted in Fig. (8), using grids

composed of 6� 6 curvilinear and straight elements. In the former case, circular290

iso-value contours are obtained as expected. In contrast, the use of straight

elements leads to an erroneous solution in the elements in the vicinity of the

cylinder, in which a rarefaction wave appears at each vertex. As the degree

of the representation increases in each element, the e�ects of these waves are

ampli�ed. This phenomenon has been also observed in other works [10].295

Therefore, these results demonstrate the satisfactory behavior of the pro-

posed scheme in the case of curvilinear boundaries and underline how critical

the account for curvature is, when high-order schemes are used.

4.3. Ringleb problem

The third test-case considered in this work concerns the Ringleb 
ow prob-300

lem [33]. It deals with a transonic 
ow in a nozzle, that evolves from subsonic to

supersonic conditions, and then back to subsonic state without shock. It is well

known in the community that accounting for curved boundaries is critical for

this test-case, to achieve both a full convergence to steady state and a shock-free


ow solution [33].305

The analytical solution is de�ned parametrically using two parameters. The

parameter k is constant on each streamline, the inner and outer wall boundaries
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corresponding respectively tokmax = 1 :5 andkmin = 0 :7. The second parameter

q represents the velocity magnitude. On each streamline,q varies between

qmin = 0 :5 at inlet and outlet boundaries and k. For each pair (k; q), one

de�nes the sound speeda, the density � , the pressurep and an intermediate

quantity J by:

a =

r

1 �

 � 1

2
q2;

� = a
2


 � 1 ;

p =
1



a
2 



 � 1 ;

J =
1
a

+
1

3a3 +
1

5a5 �
1
2

log
�

1 + a
1 � a

�
:

(24)

The geometry is also de�ned in terms of (k; q) parameters:

x =
1
2�

�
2
k2 �

1
q2

�
�

J
2

;

y = �
1

k�q

r

1 �
� q

k

� 2
:

(25)

The 
ow is isentropic and irrotational, and reaches a supersonic velocity of Mach

number 1.5 at location y = 0 of the inner wall. Contrary to previous problems,

the solution is not known explicitly: for each point ( x; y) of the physical do-

main, one should �rst determine (by a numerical procedure) the corresponding

parameters (k; q) thanks to Eq. (25), and then evaluate the solution �elds using310

Eq. (24).

The geometry of the problem cannot be de�ned in a NURBS-based envi-

ronment. Thus, the general procedure described in section 2.3.2 is employed to

construct the computational grid, as illustrated in Fig. (9). Thanks to Eq. (25),315

some points are set on the boundary, with a regular distribution, as shown in

Fig. (9a). A set of least-squares approximation problems are then solved to �t

the boundary using B�ezier curves (uniform weights are used). This is illustrated

by Fig. (9b), in the case of quintic bases. At this step, control points are known

for all boundaries, which allows to de�ne interior control points by discrete320
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Coons patch construction. The resulting grid and 
ow solution are shown in

Fig. (9c) and (9d) respectively.

As for the previous problem, the exact solution is used as initial condition

and as exterior state for boundary 
uxes. Time integration is achieved until

convergence of all error components. The evolution of the error for the energy325

and the entropy with respect to the number of degrees of freedom, inL 2(
)

norm, are plotted in Fig. (10), for bases ranging from linear to quintic and

for two di�erent boundary con�gurations. Indeed, very di�erent results are

obtained depending on the choice of boundary conditions. If one speci�es the

exact solution as exterior state for all boundary 
uxes, the convergence to a330

steady state is obtained for all grids and bases tested. However, if re
ective

conditions are prescribed at inner and outer walls, convergence di�culties have

been encountered. It has been found that only cases relying on quartic bases

at least, and a su�ciently re�ned grid can converge to a steady state. Only

such converged cases are reported in Fig. (10). As can be seen, accounting for335

walls yields a small increase of entropy error, but a more signi�cant increase of

energy error, mainly through kinetic energy term. These results are actually in

agreement with those obtained by Yano & Darmofal [34], who established that

entropy error should remain below a threshold value of about 10� 5 to obtain

a satisfactory convergence, when wall conditions are employed. On Fig. (11),340

the density �elds computed using wall conditions, for linear and quartic bases,

are compared. The linear grid counts 40� 80 elements whereas the quartic grid

is based on 16� 32 elements, yielding the same number of degrees of freedom

(12800). For the quartic case, a smooth and fully converged solution is found,

but the linear case exhibits an arti�cial shock in formation and 
ow oscillations345

in the vicinity of the inner wall in compression region. In the latter case, a

screenshot at an arbitrary time is shown in Fig. (11a).

Regarding the convergence rates, a close observation of Fig. (10) shows that

convergence rates close to optimal values are obtained for the entropy error,

whereas lower values are observed for the energy error. A possible explanation350

coud be related to the error computation: for energy, an additional error is com-
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mitted because the analytical solution at given (x; y) coordinates is computed

via a numerical search for the corresponding (k; q) parameters. This could be

dommageable for the �nest cases, for which the local error is found very close

to machine accuracy.355

5. Discussion and conclusion

In this work, we have explained how to construct a DG-compliant curvi-

linear grid based on a set of rational B�ezier elements, from boundaries de�ned

by NURBS curves. The proposed method allows both to preserve the CAD

geometry and solve governing equations with a DG method including only a360

few modi�cations. As underlined in the results obtained for di�erent test-cases,

the resolution scheme exhibits a high-order accuracy with quasi-optimal con-

vergence rate, and seems to be robust with respect to mesh distorsions. The

bene�t of accounting for boundary curvature has been demonstrated.

Obviously, as shown by several authors, other approaches could be employed365

successfully to enable high-order de�nitions of the geometry in CFD codes. Nev-

ertheless, we consider that the use of a unique representation for both CAD and

CFD environments is a true advantage, in particular when more complex prob-

lems will be considered, for which geometry and analysis are strongly coupled,

as aerodynamic shape optimization or 
uid-structure interactions.370

The main weakness of the proposed approach concerns the lack of e�cient

and 
exible tools to construct a suitable curvilinear grid, that would allow the

study of more complex problems. In particular, when it is not possible to rep-

resent the physical domain as a single NURBS patch, the use of a multi-patch

construction is targeted (before the generation of elements in each patch as375

proposed by the current work). However, the splitting of the physical domain

into a set of compatible NURBS patch is not straightforward and cannot be

performed easily with existing CAD software. Therefore, for realistic problems,

a more pragmatic way could be adopted, by mixing high-order parametric el-

ements near boundaries with linear elements (possible triangular) elsewhere.380
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Note that this hybrid representation should be bene�cial from computational

point of view also, but at the cost of a complexity overhead in the implementa-

tion.

A second issue concerns the capability to capture more complex 
ow charac-

teristics, like shocks. Since the method is based on a DG formulation, the most385

promising technique seems to be the inner-cell limiting procedure based on a To-

tal Variation Bounded limiter [29, 30]. In the context of a parametric de�nition

of the solution, this can be easily implemented, using projection methods and

exploiting the convexity property of the representation. Actually, this approach

is currently investigated and will be the topic of a future publication.390
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(a) Field �u - linear basis. (b) Field �v - linear basis.

(c) Field �u - cubic basis. (d) Field �v - cubic basis.

(e) Field �u - quartic basis. (f) Field �v - quartic basis.

Figure 3: Solution �elds for di�erent bases but the same number of degrees of freedom, for

vortex case.
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(a) Cartesian grids.
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Figure 4: Accuracy study for vortex case (energy �eld).

(a) Grid with stretching (b) Grid with skewness.

(c) Grid with random perturbations. (d) Grid with smooth deformation.

Figure 5: Field �u for vortex case for di�erent grid distorsions (cubic bases).
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(a) Initial NURBS patch matching the

physical domain.

(b) Re�ned NURBS patch obtained by sin-

gle knot insertion.

(c) Four rational B�ezier elements obtained

by multiple knot insertion. (d) �u �eld (quintic basis).

Figure 6: Illustration of grid construction for cylinder case.
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(a) Curvilinear boundaries.
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(b) Straight boundaries.

Figure 7: Accuracy study for cylinder case (energy �eld).

(a) Curvilinear boundaries. (b) Straight boundaries.

Figure 8: Energy �eld for cylinder case (quintic bases, 6 � 6 elements).
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(a) Positioning of boundary points. (b) Construction of B�ezier boundaries.

(c) Construction of B�ezier patches. (d) Energy solution �eld.

Figure 9: Illustration of grid construction for Ringleb problem.
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(a) Energy error. (b) Entropy error.

Figure 10: Accuracy study for Ringleb case.

(a) Linear boundaries (not converged). (b) Quartic boundaries.

Figure 11: Density �eld for Ringleb case.
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