Extracting Semantic Knowledge from Twitter

Abstract : Twitter is the second largest social network after Facebook and currently 140 millions Tweets are posted on average each day. Tweets are messages with a maximum number of 140 characters and cover all imaginable stories ranging from simple activity updates over news coverage to opinions on arbitrary topics. In this work we argue that Twitter is a valuable data source for e-Participation related projects and describe other domains were Twitter has already been used. We then focus on our own semantic-analysis framework based on our previously introduced Semantic Patterns concept. In order to highlight the benefits of semantic knowledge extraction for Twitter related e-Participation projects, we apply the presented technique to Tweets covering the protests in Egypt starting at January 25th and resulting in the ousting of Hosni Mubarak on February 11th 2011. Based on these results and the lessons learned from previous knowledge extraction tasks, we identify key requirements for extracting semantic knowledge from Twitter.
Type de document :
Communication dans un congrès
Efthimios Tambouris; Ann Macintosh; Hans Bruijn. 3rd Electronic Participation (ePart), Aug 2011, Delft, Netherlands. Springer, Lecture Notes in Computer Science, LNCS-6847, pp.48-59, 2011, Electronic Participation. 〈10.1007/978-3-642-23333-3_5〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01589383
Contributeur : Hal Ifip <>
Soumis le : lundi 18 septembre 2017 - 14:54:44
Dernière modification le : mardi 19 septembre 2017 - 01:09:18

Fichier

978-3-642-23333-3_5_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Peter Teufl, Stefan Kraxberger. Extracting Semantic Knowledge from Twitter. Efthimios Tambouris; Ann Macintosh; Hans Bruijn. 3rd Electronic Participation (ePart), Aug 2011, Delft, Netherlands. Springer, Lecture Notes in Computer Science, LNCS-6847, pp.48-59, 2011, Electronic Participation. 〈10.1007/978-3-642-23333-3_5〉. 〈hal-01589383〉

Partager

Métriques

Consultations de la notice

108

Téléchargements de fichiers

20