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ABSTRACT 

 

In this paper the statistical subspace damage localization (SSDL) method is 

employed in localizing the damage in a real structure, namely the Yellow frame. The 

SSDL method is developed for real testing conditions and tested in two damage 

configurations. It was demonstrated that the SSDL method can localize the damage 

robustly in the Yellow frame for simple and multiple distinct damage scenarios using 

the analytical modal parameters. The method is described and its effectiveness is 

demonstrated. 

 

 

INTRODUCTION 

 

With the advent of new technologies, instrumentation of structures is becoming 

widespread. The data acquired from the instrumented structures can provide beneficial 

information on their structural conditions. However, efficient techniques and methods 

are necessary in processing this data in order to assess the functionality of the structure. 

It is about five decades that vibration based health monitoring of structures is 

utilized to evaluate the conditions of the structures. At the beginning, it was basically 

focused over the offshore oil industries and aerospace engineering problems and now it 

is widespread throughout the civil and mechanical engineering communities as well. In 

this context, the damage can be identified as the change in: the boundary conditions of 

the structure, the geometrical/material properties of the composing elements and or the 

connectivity of these elements. 

Damage identification methods are the main component of structural health 

monitoring which process the data in order to detect damages in the structure. Damage 

detection of the structures can be categorized into 4 groups based on their level of 

identification: I) identifying the damage existence, II) identifying the geometrical 

location of the damage, III) quantification of the severity of damage and IV) evaluation 

of the remaining service life of the structure. Most of the literature is concentrated on 

the level 1 to 3 of the detection on the controlled laboratory structures and some on-field 

tests.

Several extensive review papers can be found in literature on the topic of damage 

detection e.g. ([1] and [2]). Among the damage identification methods, the statistical 



 

subspace damage detection method has a strong theoretical background which showed 

to be robust in practice for detecting the damage in S101 bridge [3]. Several studies 

were also carried out on this technique for detecting the damage in [4]–[7]. In this paper 

the statistical subspace damage localization (SSDL) approach [8], [9] is employed in 

localizing the damage in a real structure, namely the Yellow frame. This method uses 

vibration measurements of the structure in a (healthy) reference state and in the damaged 

state, as well as a finite element (FE) model in the reference state. Damage is localized 

through statistical tests on the parameters of the model, avoiding the FE updating 

problem. Several methodologies and theories are developed and demonstrated in order 

to enable the practical implementation of this technique, which are shown in this paper. 

First, the SSDL technique will be reviewed and then the methods and theories will 

be proposed. At the end the results of these method on the Yellow frame will be shown. 

Following that, the conclusions and discussions are presented. 

 

STATISTICAL SUBSPACE DAMAGE LOCALIZATION TECHNIQUE 

 

In this section, the theoretical background of the statistical subspace damage 

localization technique is introduced, mainly based on references [8], [9].This technique 

can detect the damage in a structure by creating a subspace from measurement data in a 

reference (healthy) state. This subspace is based on the modes of the structure but 

without actual computation of them. This subspace is employed in a statistical 

comparison along with the data measured from the possibly damaged structure in 

assessing the condition of the structure. In this statistical comparison, sensitivities from 

an analytical model of the structure in the reference state are used, without computation 

of the modes from the test data. 

 

Output-Only Covariance Based Subspace System Identification 

 

The discrete-time state-space representation of the dynamic equilibrium equation of 

a model can be written by performing sampling with time step τ  in step k as 
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in which 
nx∈R  is representing the state of the system and the measured output is 

represented by ry∈R . Parameter n is the system order and r is the number of sensors. 
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k
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Matrix 1,p q+H  contains information from the dynamic properties of the system and, 

hence, any change in the system will be reflected in a change in 1,p q+H . A simple way 

of monitoring those changes is to compare 1,p q+H  to its value in the reference state or 

even simply to compute the cross product of it and its left null-space at the reference 

state 0S . Then, if there is no change in the system 

0 1, 0T

p qS + =H  (3)

and if there is a change in the system 
0 1, 0T

p qS + ≠H . Due to the stochastic nature of data, 

such a small change from zero is additionally corrupted by noise modeled as a random 

normally distributed variable, namely the residual function ζ , defined as 

0 1,
ˆvec( )T

p qN Sζ += H  (4)

where N represents the number of samples used in the computation of 1,
ˆ

p q+H  estimated 

from 1
1

N T

i k k k iN
R y y= −= Σ  . By defining the system parameter θ  as the current physical 

properties of the structure such as the stiffness of each element, and 0θ  as the physical 

properties of the reference structure (undamaged), we have 

0 Nθ θ δθ= +  (5)

where 
0( )N θδθ θ−=  is defined as the (unknown) normalized parameter change 

vector. Therefore, by defining two hypotheses based on the condition of the structure as 
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the defined residual can be proved to be asymptotically normally distributed (for large 

N) with 
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in which J represents the asymptotic sensitivity of the residual with respect to the system 

parameterization, and Σ  is the covariance matrix of the residual. 

 

Parametric Hypothesis Test 

 

In order to decide between hypotheses (6), a generalized likelihood ratio (GLR) test 

is employed [8] which results in the following χ2-value, representing a damage index: 

( )12
1

1 1T T TJ J J Jχ ζ ζ
−− − −= Σ Σ Σ  (8)

If this value exceeds a threshold it indicates the existence of damage in the system. 

In order to locate the damage two procedures, i.e. MinMax and sensitivity based 

approaches, can be employed. While in the sensitivity based approach, (8) is used by 



 

simply defining 
kpJ J=  where 

kpJ  is a vector of Jacobians corresponding to the 

parameter kp , in the MinMax approach a robust χ2-value is defined as 

* *2 * 1* ( ) T

k k k kp Fχ ζ ζ−=  (9)

where 
*

kF  is a part of a Fisher-information-matrix for parameter kp  while removing 

(projecting out) the effect of other parameters [9]. Similarly, the robust residual 
*

kζ  is 

defined. The sensitivity approach should be less effective than the MinMax approach in 

case of a highly dependent parameterization. Herein, these two approaches are 

employed in localizing the damage for the Yellow frame. 
 

 

JACOBIAN COMPUTATION 

 

The residual defined in the SSDL method is derived from operations on the 

measured data and has a statistical background while the FE model is directly connected 

to the physical behaviour of the structure. A relation linking the data-based residual to 

the physical model is needed, which is the sensitivity of the residual with respect to the 

physical parameterization. This link is made by the derivative chain in (10). This will 

let us benefit from a physical model of the structure along with the measured data to 

localize the damage. Assume for simplicity that each element of the structure is uniquely 

related to one physical parameter kp . The chain rule is employed in connecting the 

residual function (7) to the physical parameters kp  as 

 ( , ) ( , ) ( , , )

( , ) ( , , )( ) ( , )
k

f

k f pJ p J J J Jλ ϕ µ ψ ξ
µ ψ ξλ ϕ ℘

℘=  (10) 

in which ( , )λ ϕ  and ( , )µ ψ  represent, in order, the discrete and continuous time 

eigenstructure. The modal parameters, i.e. natural frequencies, mode shapes and 

damping values, are denoted by ( , , )f ξ ℘ . ( , )J λ ϕ  is the sensitivity of the residual to 

the eigenstructure ( , )λ ϕ  and J•
�

 is the consistent Jacobian of parameters •  with respect 

to � . 

For the computation of ( )kJ p , there should be a decision made on the use of the 

estimated eigenstructure from the measured data versus the modal parameters from the 

analytical model, on each term in the computation of Jacobians. The parameters 

estimated from the measured data are assumed to be more precise when the 

identification is well performed. In general, the model updating on the analytical model 

is not necessary and not needed in the SSDL procedure unless the modal parameters are 

very different from the identified ones and the model is not a good representative of the 

dynamic behaviour of the structure. The important accuracy needed for the damage 

localization is in the sensitivity values of modal parameters with respect to physical 

parameters. Herein, two options are described and their performance will be 

investigated in the case study. 

Configuration 1: All terms in (10) are evaluated from the analytical model. In this 

way, all the parameters are consistent and the Jacobian is purely computed from the 

analytical model. The modal parameters of the analytical model are used for the 



 

computation of ( , )J λ ϕ , and only the Hankel matrix 
1,p q+H  and 

0S  are computed from 

the measured data. 

Configuration 2: The first, second and third terms of the Jacobian are evaluated 

from the eigenstructure estimated from the measured data and the last term is evaluated 

from the modal parameters of the analytical model as in [8]. It should be noted that the 

modal parameters of the analytical model and the eigenstructure of the measured data 

need to be identified and adjusted in terms of scaling and order. Hence, one system 

identification is needed in the reference state prior to the localization of damage. 

After the computation of Jacobians the vectors corresponding to each elements need 

to be clustered if they are close, using the Hierarchical Fisher-information-matrix-based 

clustering (HFC) approach [10]. This clustering is based on the the statistical properties 

of the data as well as the modal behaviour of the elements that in turn is related to their 

geometrical and physical closeness and modal direction in the considered mode shapes. 

 

 
SCALING OF MODE SHAPES 

 

By using the second configuration described in previous subsection, there is a need 

in scaling the mode shapes obtained from the analytical model, i.e. ℘, and measured 

data, i.e.  and ϕ ψ . This scaling can be performed in typical ways such as modal mass 

scaling or unit maximum member. However, usually the mass matrix of the analytical 

model is complicated to truncate and the mode shapes are obtained from limited number 

of degrees of freedoms on which a sensor is located. Therefore, the general scaling of 

these vectors is performed as follows. Since the scaling of the mode shapes is not 

matching, 

 j jα ϕ℘ =  (11) 

where α  is a constant scalar. Thus, the adjusted mode shapes ℘ɶ , can be evaluated as 
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Coupled Mode Shapes Scaling 

 

Coupled mode shapes happen mostly in symmetric or nearly symmetric structures 

which have sets of two close eigenvalues. In these cases, the identified mode shapes are 

mixed and result in a linear combination of the analytical mode shapes. In order to solve 

this issue, the scaling needs to be done by solving a double linear equation. Let 1℘  and 

2℘  be the two coupled mode shapes corresponding to the analytical mode shapes 1ϕ  

and 2ϕ , respectively. The linear combination is written as 
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Therefore, we have †

1,2 1,2C = Φ Γ  and then the scaled and decoupled mode shapes 

1
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2
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ɶ
ɶ

ɶ
 can be evaluated as 

 †

1,2 1,2 1,2 1,2Γ = Φ Γ Γɶ . (14) 

 

 

CASE STUDY: THE YELLOW FRAME 

 

The Yellow frame is a modular 4 story, scaled (1/3) steel frame established in 2016 

at the University of British Columbia (UBC), shown in Figure 1. Several damage 

scenarios are designed and tested by removal of braces of the structure to test the SSDL 

method. This structure is 3.6 m high and is composed of 2 spans in each direction with 

the total length of 2.5 m. Each floor of the structure is carrying dead loads applied to the 

structure by using 4 steel plates distributed on each level. Based on Figure 1.c, the 

considered damage scenarios are defined as Table 1.  

The FE model of this structure is built and the sensitivity analysis of the mode shapes 

and natural frequencies with respect to each brace is computed using a finite difference 

approach. Subsequently, using the proposed scaling/decoupling approach, the coupled 

mode shapes can be perfectly decoupled; this is demonstrated in the following figure 

for mode shapes 1 and 2 which are among the coupled mode shapes. 

 

 

(a) 

 
(b) 

(c) 

 

 

Figure 1. (a) The Yellow frame structure, (b) the 

schematic plan of the structure showing the location 

of sensors, (c) the numbering of the braces of the 

structure 
 

 



 

TABLE I. DAMAGE SCENARIOS OF THE YELLOW FRAME 
Scenario 

number 

Removed braces (number 

of braces removed) 

S1 2 (II), 4 (II), 18 (II), 20 (II) 

S2 21 (II), 23 (II) 

 

  
Figure 2. Mode shapes decoupling and scaling; (left: 1st, right: 2nd mode shape) 

 

The sensitivities are used in composing the Jacobians either from configuration 1 or 

2. Using the HFC approach the elements are clustered based on the Jacobian columns. 

Finally the χ2-test is computed for each element (brace) using the sensitivity and 

MinMax approaches as illustrated in Figure 3. From these results it can be seen that the 

damage localization works best with Jacobian configuration 1 using the MinMax 

approach. With this setting, the test reacts well on the damaged elements in both 

scenarios S1 and S2, localizing the damage correctly. For the multiple distinct damage 

scenario S1, the MinMax approach using Jacobian configuration 1 seems to be the only 

robust damage localization solution. For the simpler case, where damage occurs only at 

a pair of neighboring elements, damage can also be localized by MinMax approach in 

configuration 2, whereas the sensitivity approach only works in configuration 1.  

 

 
     Scenario S1 with configuration 1 Scenario S1 with configuration 2 

 
Scenario S2 with configuration 1 Scenario S2 with configuration 2 

Figure 3. SSDL method from sensitivity based and MinMax approaches for two configuration schemes 

of the Jacobian computation 



 

DISCUSSION AND CONCLUSIONS 

 

In this paper, the experimental data measured from the Yellow frame test was 

employed in validating the proposed methods allowing the SSDL approach to localize 

the damage in practice. It was shown that the SSDL method can localize the damage in 

this structure effectively for two damage scenarios. 

Two configurations of the Jacobian matrix were investigated. It was illustrated that 

using the modes from the analytical model in composing the Jacobian matrix results in 

a more robust damage identification. The reasoning behind this choice relies to the 

following requirement: in order to compose the Jacobians from analytical and real data 

modal parameters, modes need to be matched from data and FE model; In that particular 

application, the number of identified parameters came out to be less than the analytical 

modal parameters (8 versus 10). This resulted in less precision in the tests using 

Jacobians derived from Configuration 2, where the estimates were used. 

The MinMax and sensitivity based approach were used in localizing the damage. 

The MinMax approach requires a pre-clustering of the parameterization to be effective 

and the clustering obtained from HFC appeared to be an appropriate clustering scheme 

for the proposed method. Finally, it was observed that the MinMax test using Jacobians 

derived using Configuration 1 based on the analytical modes is the best choice to 

localize the damage for both simple and multiple distinct damages. 

 

 

REFERENCES 
 

[1] W. Fan and P. Qiao, “Vibration-based Damage Identification Methods: A Review and 

Comparative Study,” Struct. Heal. Monit., vol. 10, no. 1, pp. 83–111, Apr. 2010. 

[2] S. W. Doebling, C. R. Farrar, and M. B. Prime, “A Summary Review of Vibration-Based Damage 

Identification Methods,” Shock Vib. Dig., vol. 30, no. 2, pp. 91–105, 1998. 

[3] M. Döhler, F. Hille, L. Mevel, and W. Rücker, “Structural health monitoring with statistical 

methods during progressive damage test of S101 Bridge,” Eng. Struct., vol. 69, pp. 183–193, Jun. 

2014. 

[4] S. Allahdadian, C. Ventura, P. Andersen, L. Mevel, and M. Döhler, “Investigation on the 

sensitivity of subspace based damage detection technique to damage and noise levels,” in 

IOMAC-International Operational Modal Analysis Conference, 2015. 

[5] S. Allahdadian, C. E. Ventura, P. Andersen, L. Mevel, and M. Döhler, “Sensitivity Evaluation of 

Subspace-Based Damage Detection Method to Different Types of Damage,” Springer, Cham, 

2015, pp. 11–18. 

[6] S. Allahdadian, C. Ventura, P. Andersen, L. Mevel, and M. Döhler, “Subspace based damage 

detection technique: investigation on the effect of number of samples,” in CCEE-11th Canadian 

Conference on Earthquake Engineering, 2015. 

[7] S. Allahdadian, M. Döhler, C. E. Ventura, and L. Mevel, “On the Influence of Sample Length and 

Measurement Noise on the Stochastic Subspace Damage Detection Technique,” Springer, Cham, 

2016, pp. 35–46. 

[8] E. Balmès, M. Basseville, L. Mevel, H. Nasser, and W. Zhou, “Statistical model-based damage 

localization: A combined subspace-based and substructuring approach,” Struct. Control Heal. 

Monit., vol. 15, no. 6, pp. 857–875, 2008. 

[9] M. Döhler, L. Mevel, and Q. Zhang, “Fault detection, isolation and quantification from Gaussian 

residuals with application to structural damage diagnosis,” Annu. Rev. Control, vol. 42, pp. 244–

256, 2016. 

[10] Saeid Allahdadian, “Practical Damage Identification of Structures Using the Statistical Subspace 

Damage Detection Technique,” University of British Columbia, 2017. 


