Sea Surface Flow Estimation via Ensemble-based Variational Data Assimilation*

Shengze Cai 1, 2 Etienne Mémin 1 Yin Yang 1 Chao Xu 2
1 FLUMINANCE - Fluid Flow Analysis, Description and Control from Image Sequences
IRMAR - Institut de Recherche Mathématique de Rennes, IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Inria Rennes – Bretagne Atlantique
Abstract : In this paper, we propose a data assimilation method for consistently estimating the velocity fields from a whole image sequence depicting the evolution of sea surface temperature transported by oceanic surface flow. The estima-tor is conducted through an ensemble-based variational data assimilation, which is designed by combining the advantages of two approaches: the ensemble Kalman filter and the variational data assimilation. This idea allows us to obtain the optimal initial condition as well as the full system trajectory. In order to extract the velocity fields from fluid images, a surface quasi-geostrophic model representing the generic evolution of the temperature field of the flow, and the optical flow constraint equation derived from the image intensity constancy assumption, are involved in the assimilation context. Numerical experimental evaluation is presented on a synthetic fluid image sequence. The results indicate good performance and efficiency of the proposed estimator.
Type de document :
Rapport
[Research Report] Inria Rennes - Bretagne Atlantique; IRMAR, University of Rennes 1. 2017
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01589637
Contributeur : Etienne Memin <>
Soumis le : lundi 18 septembre 2017 - 18:01:23
Dernière modification le : mardi 19 juin 2018 - 11:12:07

Fichier

EnVar_SST_Cai_20170918.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01589637, version 1

Citation

Shengze Cai, Etienne Mémin, Yin Yang, Chao Xu. Sea Surface Flow Estimation via Ensemble-based Variational Data Assimilation*. [Research Report] Inria Rennes - Bretagne Atlantique; IRMAR, University of Rennes 1. 2017. 〈hal-01589637〉

Partager

Métriques

Consultations de la notice

579

Téléchargements de fichiers

79