B. Charlier, N. Charon, and A. Trouvé, The fshape framework for the variability analysis of functional shapes, Foundations of Computational Mathematics, pp.1-71, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00981805

N. Charon and A. Trouvé, The varifold representation of nonoriented shapes for diffeomorphic registration, SIAM Journal on Imaging Sciences, vol.6, issue.4, pp.2547-2580, 2013.

J. B. Colby, L. Soderberg, C. Lebel, I. D. Dinov, P. M. Thompson et al., Along-tract statistics allow for enhanced tractography analysis, Neuroimage, vol.59, issue.4, pp.3227-3242, 2012.

I. Corouge, S. Gouttard, and G. Gerig, Towards a shape model of white matter fiber bundles using diffusion tensor MRI, pp.344-347, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00772619

P. Gori, O. Colliot, L. Marrakchi-kacem, Y. Worbe, F. D. Fallani et al., A prototype representation to approximate white matter bundles with weighted currents, pp.289-296, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010702

P. Hagmann, L. Jonasson, P. Maeder, J. P. Thiran, V. J. Wedeen et al., Understanding diffusion mr imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond 1, Radiographics, vol.26, issue.1, pp.205-223, 2006.

K. Kumar and C. Desrosiers, A sparse coding approach for the efficient representation and segmentation of white matter fibers, pp.915-919, 2016.

K. Kumar, C. Desrosiers, and K. Siddiqi, Brain fiber clustering using non-negative kernelized matching pursuit, Machine Learning in Medical Imaging, vol.9352, pp.144-152, 2015.

K. Kumar, C. Desrosiers, K. Siddiqi, O. Colliot, and M. Toews, Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis, NeuroImage, vol.158, pp.242-259, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01562449

M. Maddah, W. E. Grimson, S. K. Warfield, and W. M. Wells, A unified framework for clustering and quantitative analysis of white matter fiber tracts, Medical image analysis, vol.12, issue.2, pp.191-202, 2008.

B. Moberts, A. Vilanova, and J. J. Van-wijk, Evaluation of fiber clustering methods for diffusion tensor imaging, VIS 2005, pp.65-72, 2005.

L. J. O'donnell, C. F. Westin, and A. J. Golby, Tract-based morphometry for white matter group analysis, Neuroimage, vol.45, issue.3, pp.832-844, 2009.

V. Siless, S. Medina, G. Varoquaux, and B. Thirion, A comparison of metrics and algorithms for fiber clustering, pp.190-193, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858115

D. C. Van-essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub et al., The wu-minn human connectome project: an overview, Neuroimage, vol.80, pp.62-79, 2013.

Q. Wang, P. T. Yap, G. Wu, and D. Shen, Application of neuroanatomical features to tractography clustering, Human brain mapping, vol.34, issue.9, pp.2089-2102, 2013.

D. Wassermann, L. Bloy, E. Kanterakis, R. Verma, and R. Deriche, Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers, NeuroImage, vol.51, issue.1, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00407828

J. D. Yeatman, R. F. Dougherty, N. J. Myall, B. A. Wandell, and H. M. Feldman, Tract profiles of white matter properties: automating fiber-tract quantification, PloS one, vol.7, issue.11, p.49790, 2012.

F. C. Yeh and W. Y. Tseng, Ntu-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction, Neuroimage, vol.58, issue.1, pp.91-99, 2011.