Visual Servoing from Deep Neural Networks

Quentin Bateux 1 Eric Marchand 1 Jürgen Leitner 2 François Chaumette 1 Peter Corke 2
1 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA_D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing control scheme. The method converges robustly even in difficult real-world settings with strong lighting variations and occlusions. A positioning error of less than one millimeter is obtained in experiments with a 6 DOF robot.
Type de document :
Communication dans un congrès
RSS 2017 - Robotics : Science and Systems, Workshop New Frontiers for Deep Learning in Robotics, Jul 2017, Boston, United States. pp.1-6, 2017, 〈http://juxi.net/workshop/deep-learning-rss-2017/〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01589887
Contributeur : Eric Marchand <>
Soumis le : jeudi 7 décembre 2017 - 11:36:32
Dernière modification le : vendredi 12 janvier 2018 - 01:49:47

Identifiants

  • HAL Id : hal-01589887, version 1

Citation

Quentin Bateux, Eric Marchand, Jürgen Leitner, François Chaumette, Peter Corke. Visual Servoing from Deep Neural Networks. RSS 2017 - Robotics : Science and Systems, Workshop New Frontiers for Deep Learning in Robotics, Jul 2017, Boston, United States. pp.1-6, 2017, 〈http://juxi.net/workshop/deep-learning-rss-2017/〉. 〈hal-01589887〉

Partager

Métriques

Consultations de la notice

82

Téléchargements de fichiers

27