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Abstract: We extend our examination of decentralized discrete-event systems architectures
that use exclusive or (XOR) as the fusion rule to reach control decisions. A characterization of
XOR inference-observable languages is provided. Additionally, XOR observability is defined for
languages that are not inference observable but are distributed observable.

1. INTRODUCTION

Decentralized decision-making architectures for discrete-
event systems are characterized by decentralized agents
that take local decisions, based on their own partial
observations, and reach a global decision by fusing the
local decisions using logical operators, such as conjunction
and disjunction (Rudie and Wonham, 1992; Prosser et
al., 1997; Yoo and Lafortune, 2002) and, sometimes, a
combination of the two (Chakib and Khoumsi, 2011).

We previously introduced the idea of incorporating XOR
as a fusion rule for decentralized discrete-event sys-
tems (Ricker and Marchand, 2013). The problem of finding
a correct control solution was reduced to that of solving
XORSAT (Biere et al., 2009), although this only provided
a necessary condition for the existence of an XOR solution.
Notably, the decentralized architecture of Qiu et al. (2008)
also uses XOR as a fusion rule, but to respect parity,
they insist that exactly one controller takes the correct
control decision. In general, our approach requires no such
restriction.

We extend our results of Ricker and Marchand (2013)
by providing language-based characterizations for when a
parity-based architecture exists. In particular, we examine
XOR as a fusion rule for

• languages that are inference observable (Kumar and
Takai, 2007); and,
• languages that are distributed observable (Ricker and

Rudie, 2000) but not inference observable.

2. BACKGROUND

We assume the framework for supervisory control of
discrete-event systems as introduced in Ramadge and
Wonham (1987). Accordingly, we model a discrete-event
system as a finite-state automaton

ML = (Q,Σ, TL, q0),

where Q is a finite set of states, Σ is a finite alphabet
of events, TL ⊆ Q × Σ × Q is a transition relation,

and q0 ∈ Q is the initial state. In addition, Σ is the
disjoint union of two types of events: (i) observable and
unobservable events Σ = Σo ] Σuo; and (ii) controllable
and uncontrollable events Σ = Σc ] Σuc. The transition
relation is easily extended to Σ∗ and we say L := {s ∈
Σ∗ | ∃q ∈ Q s.t. q0

s7−→ q ∈ TL}. For L ⊆ Σ∗, we have
L := {v ∈ Σ∗ | ∃w ∈ Σ∗, u ∈ L such that u = vw}.
Then L is prefix-closed if L = L. We assume prefix-closed
languages for the remainder of this paper.

Given a description of the behavior of the uncontrolled
system as L, the regular language generated by ML, which
describes the behavior of the uncontrolled system, and
a specification language K ⊆ L, generated by MK , the
object of the control problem is to prevent sequences
in L \ K from occurring. In a decentralized framework,
where there is a set of n > 1 controllers, denoted by
I = {1, . . . , n}, this amounts to the existence of at least
one decentralized controller, based only on its observation
of L, to be able to definitively identify when a sequence in
L \K is about to occur (Rudie and Wonham, 1992), i.e.,
issues a “disable” command for the controllable event that
takes the system from K into L \K.

Each decentralized controller i ∈ I has a set of events that
it observes, Σo,i ⊆ Σo, and a set of events it controls,
Σc,i ⊆ Σc. We let Ic(σ) = {i ∈ I | σ ∈ Σc,i}. The
natural projection πi : Σ∗ → Σ∗o,i defines the observations
of an agent i ∈ I by removing all occurrences of events in
Σ \ Σo,i from a sequence s ∈ Σ∗. Furthermore, we will
refer to the natural projection w.r.t. Σo by π, namely,
π : Σ∗ → Σ∗o. The inverse projection π−1

i : Σ∗o,i → 2Σ∗

captures all the sequences s′ ∈ Σ∗ that produce the same
natural projection for agent i as s does. We will use the
notation [[s]]i whenever we refer to π−1

i πi(s) ∩ L.

Our goal is to define, for each controller i ∈ I, a local
decision function hi over its partial observation of L such
that the fusion of the local decisions, using a fusion rule
such as ∨ or ∧, reaches the correct global control, as
indicated by the specification. There are two decentralized



architectures to consider: (i) enable by default (EBD),
where uncertainty on the part of a decentralized controller
means the local decision is “enable”, represented by 0,
and uses ∨ as a fusion rule (Rudie and Wonham, 1992);
(ii) disable by default (DBD), where uncertainty on the
part of a decentralized controller means the local decision
is “disable”, represented by 1, and uses ∧ as the fusion
rule (Yoo and Lafortune, 2002).

Definition 1. Given regular languages L, K where K ⊆
L ⊂ Σ∗, n local decision functions hi : Σ∗o,i → {0, 1}Σ (for

i ∈ I) and the global decision function H : Σo → {0, 1}Σ,
such that H(π(t))(σ) = �i∈Ihi(πi(t)) for t ∈ L and σ ∈ Σ,
where � is a placeholder for the fusion rule. Then H
forms a valid global decision function w.r.t. fusion rule
� whenever

(∀t ∈ K)(∀σ ∈ Σ)tσ ∈ K ⇒ H(π(t))(σ) = 0 and
(∀t ∈ K)(∀σ ∈ Σuc)H(π(t))(σ) = 0,
(∀t ∈ K)(∀σ ∈ Σc)tσ ∈ L \K ⇒ H(π(t))(σ) = 1.

We can find such functions if prefix-closed K is (i) control-
lable; and (ii) inference observable (Rudie and Wonham,
1992; Kumar and Takai, 2007).

The language generated by ML under the control of the
global decision function H w.r.t. a given fusion rule is
denoted by L(H/ML), and is the largest language such
that L(H/ML) ⊆ L(ML) where

• ε ∈ L(H/ML); and
• (∀t ∈ L(H/ML))(∀σ ∈ Σ)

tσ ∈ L ∧ H(π(t))(σ) = 0⇔ tσ ∈ L(H/ML).

Definition 2. (Ramadge and Wonham (1987)) A language
K ⊆ L is controllable w.r.t. L and Σuc if KΣuc∩L ⊆ K.

The definitions below are simply a rewriting of those
in Kumar and Takai (2007) and classified by their decision-
making architecture. 1

Definition 3. A language K ⊆ L is EBD inference
observable w.r.t. L, πi and Σc,i (for i ∈ I) with fusion
rule ∨ if either

(∀t ∈ K)(∀σ ∈ Σ) tσ ∈ L \K ⇒ (1)
(∃m ∈ N)(∀i0 ∈ Ic(σ)) [[t]]i0σ ∩K 6= ∅ ⇒

(∀i1 ∈ Ic(σ) \ {i0})(∀t1σ ∈ [[t]]i0σ ∩K)[[t1]]i1σ ∩ L \K 6= ∅ ⇒
(∀i2 ∈ Ic(σ) \ {i1})(∀t2σ ∈ [[t1]]i1σ ∩ L \K)[[t2]]i2σ ∩K 6= ∅ ⇒

. . .
(∀im−1 ∈ Ic(σ) \ {im−2})(∀tm−1σ ∈ [[tm−2]]im−2

σ ∩K)

[[tm−1]]im−1
σ ∩ L \K 6= ∅ ⇒

(∃i′m−1 ∈ Ic(σ) \ {im−2})(∀tmσ ∈ [[tm−1]]i′
m−1

σ ∩ L \K)

(∃im ∈ Ic(σ) \ {im−1}) [[tm]]imσ ∩K = ∅.
or

(∀t ∈ K)(∀σ ∈ Σ) tσ ∈ K ⇒ (2)
(∃m ∈ N)(∀i0 ∈ Ic(σ)) [[t]]i0σ ∩ L \K 6= ∅ ⇒

(∀i1 ∈ Ic(σ) \ {i0})(∀t1σ ∈ [[t]]i0σ ∩ L \K) [[t1]]i1σ ∩K 6= ∅ ⇒
(∀i2 ∈ Ic(σ) \ {i1})(∀t2σ ∈ [[t1]]i1σ ∩K)[[t2]]i2σ ∩ L \K 6= ∅ ⇒

. . .
(∀im−1 ∈ Ic(σ) \ {im−2})(∀tm−1σ ∈ [[tm−2]]im−2

σ ∩K)

[[tm−1]]im−1
σ ∩ L \K 6= ∅ ⇒

(∃i′m−1 ∈ Ic(σ) \ {im−2)(∀tmσ ∈ [[tm−1]]i′
m−1

σ ∩ L \K)

(∃im ∈ Ic(σ) \ {im−1) [[tm]]imσ ∩K = ∅.

1 In the sequel, we use the color red to distinguish sequences t ∈ K
such that tσ ∈ L \K.

Decentralized controllers use the EBD architecture if the
inferencing (eventually) leads to (at least) one of the
controllers in Ic(σ) having no ambiguity about particular
subsets of disablement decisions for σ.

Definition 4. A language K ⊆ L is DBD inference
observable w.r.t. L, πi and Σc,i (for i ∈ I) with fusion
rule ∧ if either

(∀t ∈ K)(∀σ ∈ Σ) tσ ∈ L \K ⇒ (3)
(∃m ∈ N)(∀i0 ∈ Ic(σ)) [[t]]i0σ ∩K 6= ∅ ⇒

(∀i1 ∈ Ic(σ) \ {i0})(∀t1σ ∈ [[t]]i0σ ∩K)[[t1]]i1σ ∩ L \K 6= ∅ ⇒
(∀i2 ∈ Ic(σ) \ {i1})(∀t2σ ∈ [[t1]]i1σ ∩ L \K) [[t2]]i2σ ∩K 6= ∅ ⇒

. . .
(∀im−1 ∈ Ic(σ) \ {im−2})(∀tm−1σ ∈ [[tm−2]]im−2

σ ∩ L \K)

[[tm−1]]im−1
σ ∩K 6= ∅ ⇒

(∃i′m−1 ∈ Ic(σ) \ {im−2})(∀tmσ ∈ [[tm−1]]i′
m−1

σ ∩K)

(∃im ∈ Ic(σ) \ {im−1}) [[tm]]imσ ∩ L \K = ∅.
or

(∀t ∈ K)(∀σ ∈ Σ) tσ ∈ K ⇒ (4)
(∃m ∈ N)(∀i0 ∈ Ic(σ)) [[t]]i0σ ∩ L \K 6= ∅ ⇒

(∀i1 ∈ Ic(σ) \ {i0})(∀t1σ ∈ [[t]]i0σ ∩ L \K) [[t1]]i1σ ∩K 6= ∅ ⇒
(∀i2 ∈ Ic(σ) \ {i1})(∀t2σ ∈ [[t1]]i1σ ∩K) [[t2]]i2σ ∩ L \K 6= ∅ ⇒

. . .
(∀im−1 ∈ Ic(σ) \ {im−2})(∀tm−1σ ∈ [[tm−2]]im−2

σ ∩ L \K)

[[tm−1]]im−1
σ ∩K 6= ∅ ⇒

(∃i′m−1 ∈ Ic(σ) \ {im−2})(∀tmσ ∈ [[tm−1]]i′
m−1

σ ∩K)

(∃im ∈ Ic(σ) \ {im−1}) [[tm]]imσ ∩ L \K = ∅.

Decentralized controllers use the DBD architecture if the
inferencing (eventually) leads to (at least) one of the
controllers in Ic(σ) having no ambiguity about particular
subsets of enablement decisions for σ. When relevant, we
will distinguish EBD from DBD inference-observability,
otherwise we will simply refer to K as being inference
observable.

It will be useful to discuss inferencing performed for a
specific sequence tσ ∈ L.

Definition 5. An inferencing chain for sequence tσ ∈
L is of two types and is characterized by the follow-
ing progression of estimates for some sequence of indices
(im)m∈N, where i0, . . . , im ∈ I, as follows.

(a) EBD inferencing chains:

[[tm ∈ [[. . . [[t2 ∈ [[t1 ∈ [[t]]i0σ ∩K]]i1σ ∩ L \K]]i2σ . . .]]im−1
σ ∩ L \K]]imσ ∩K = ∅;

[[tm ∈ [[. . . [[t2 ∈ [[t1 ∈ [[t]]i0σ ∩ L \K]]i1σ ∩K]]i2σ . . .]]im−1
σ ∩ L \K]]imσ ∩K = ∅;

(b) DBD inferencing chains

[[tm ∈ [[. . . [[t2 ∈ [[t1 ∈ [[t]]i0σ ∩K]]i1σ ∩ L \K]]i2σ . . .]]im−1
σ ∩K]]imσ ∩ L \K = ∅;

[[tm ∈ [[. . . [[t2 ∈ [[t1 ∈ [[t]]i0σ ∩ L \K]]i1σ ∩K]]i2σ . . .]]im−1
σ ∩K]]imσ ∩ L \K = ∅.

For brevity, and when clear from the context, we will
denote the result of the complete inferencing chain for t ∈
K and σ ∈ Σc w.r.t. im ∈ Ic(σ) by [[t]]imσ. Occasionally,
we will refer to the kth link in an inferencing chain for tσ
as [[tk]]ikσ, for ik ∈ (im)m∈N and k ≤ m.

Finally, we revisit a decentralized language family from
Ricker and Rudie (2000).

Definition 6. A language K ⊆ L is distributed observ-
able w.r.t. L, πi and Σc,i (for i ∈ I) if

(∀t ∈ K)(∀σ ∈ Σc)tσ ∈ L \K ⇒ ∩i∈Ic(σ)[[t]]iσ ∩K = ∅.



As noted in Ricker and Marchand (2013), the family of
distributed-observable languages lies between the family
of inference-observable languages and the family of ob-
servable languages (i.e., n = 1).
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Fig. 1. Ex. 1 (from Yoo and Lafortune (2004)): Σo,1 =
{a1, a2},Σo,2 = {b1, b2}; Ic(σ) = {1, 2}.

Example 1. Fig. 1 features an inference-observable lan-
guage K (only those sequences composed of entirely solid-
line transitions) w.r.t. L (all sequences).

As all the inference chains for tσ ∈ K are EBD inference
chains, as shown in Table 1, K is EBD-inference observ-
able. It is also the case that all the inference chains for
tσ ∈ L \ K are also EBD inference chains. Thus, we can
use ∨ as the overall fusion rule for all the control decisions.
�

Table 1. Links of inferencing chains for enable-
ment decisions of Ex. 1.

[[a1]]1σ = {a1σ, a1b2σ} [[a1]]2σ = {a1σ, σ}
[[a1b2]]2σ = {a1b2σ} [[ε]]1σ = {σ, b1σ}

[[b1]]2σ = {b1σ, b1a2σ}
[[b1a2]]1σ = {b1a2σ}

[[b1]]1σ = {b1σ, σ} [[b1]]2σ = {b1σ, b1a2σ}
[[ε]]2σ = {σ, a1σ} [[b1a2]]1σ = {b1a2σ}

[[a1]]1σ = {a1, a1b2σ}
[[a1b2]]2σ = {a1b2σ}

3. XOR INFERENCE-OBSERVABILITY

We are interested in examining a new property XOR
inference-observability for an arbitrary number of decision-
makers in Ic(σ). Due to space constraints, we present
analysis only for a pair of controllers i, j ∈ Ic(σ), and
assume that all other controllers simply issue 0 as their
local decision. For reference, we include the truth table for
XOR for n = 2 in Table 2.

Table 2. Truth tables for XOR (⊕) for n = 2.

p q p ⊕ q

0 0 0
0 1 1
1 0 1
1 1 0

We want to solve the following problem:

Problem 1. Given ML, MK that recognize prefix-closed L,
K (such that K ⊆ L), a set of decentralized agents I =
{1, . . . , n}, n sets of observable events Σo,1, . . . ,Σo,n, and
n sets of controllable events Σc,1, . . . ,Σc,n. Find n local
decision functions h1, . . . , hn, where hi : Σ∗o,i → {0, 1}Σ,
that form a valid global decision function H w.r.t. fusion
rule ⊕ such that L(H/ML) = K, where 0 corresponds to
enable and 1 corresponds to disable.

In Ricker and Marchand (2013) we noted a necessary
condition for solving Problem 1: we cast the control
problem as an instance of XOR-SAT (Biere et al., 2009)
and if the resulting system of linear equations yielded a
solution to XOR-SAT, we had a solution to Problem 1.
Here, we introduce a language-based characterization of a
necessary and sufficient condition to solve Problem 1.

When K is inference observable, we characterize when ⊕
can be used as the fusion rule.

Definition 7. An inference-observable language K ⊆ L is
XOR inference-observable w.r.t. L, πi and Σc,i (for
i ∈ I) if either

(∀t ∈ K)(∀σ ∈ Σc)tσ ∈ L \K ⇒ (∃m,m′ ∈ N)

(∃im, jm′ ∈ Ic(σ)) [[tm]]imσ ∩ [[tm′ ]]jm′σ \ {tσ} = ∅,
or

(∀t ∈ K)(∀σ ∈ Σc)tσ ∈ K ⇒ (∃m,m′ ∈ N)

(∃im, jm′ ∈ Ic(σ)) [[tm]]imσ ∩ [[tm′ ]]jm′σ \ {tσ} = ∅,
where [[tm]]imσ and [[tm′ ]]jm′σ are the last links in these two

inference chains for t.

There is a special case when m = m′ = 0. This is because
tσ ∈ [[tm]]imσ and tσ ∈ [[tm′ ]]jm′ , since tm = tm′ = t.

Thus, the intersection will not be empty; however, it is still
possible to assign local control decisions to meet parity
for ⊕. In this case, one controller can (arbitrarily) be
assigned the disablement command, while the other takes
the opposite decision. For this reason we remove tσ from
the intersection of the two inference chains.

Revisiting Example 1

We previously illustrated that K is inference observable
and here we verify that K is XOR inference-observable.
Here we apply Definition 7 to the enablement decisions
w.r.t. σ. After consulting Table 1, we note the last links in
the inference chains for aσ (where i0 = 1, m = 1 and
j0 = 2, m′ = 3). Specifically, [[a]]imσ = {a1b2σ} and

[[a]]jm′σ = {b1a2σ}, which have an empty intersection.

This is also the situation for the inference chains for bσ
(where i0 = 1, m = 3 and j0 = 2, m′ = 1). The
intersection of these links is likewise empty: [[b]]imσ =

{a1b2σ} and [[b]]jm′σ = {b1a2σ}. Thus, we conclude thatK

is XOR inference-observable. A possible solution is shown
in Table 3. �

Table 3. Possible XOR solution for Ex. 1

h1(·)(σ) h2(·)(σ) ⊕ H(·)(σ)

b1 1 1 0 0

a1 0 0 0 0

ε 1 0 1 1

b1a2 0 1 1 1

a1b2 0 1 1 1

3.1 Local control decisions

To reach an XOR solution, we must identify appropriate
local control decision-making to accommodate the parity
rules. As a result, unlike local decisions made under fusion
rules of ∧ or ∨, a controller may not be taking a local



control decision consistent with its observations. We assign
local control decisions based on the relevant inference
chains. To respect parity for the two decision-makers,
i, j ∈ Ic(σ), only one controller can issue a disablement
command.

When an inference chain begins with tσ ∈ L \K, we must
have the controllers i, j ∈ Ic(σ) that are involved in the
inference chain correctly disable σ after t. To respect parity
of XOR, a global enablement decision is taken only when
the local control decisions of i and j are different. Note
that if |Ic(σ)| > 2, then the controllers in I \ {i, j} issue
0 as their local control decisions for all sequences involved
in the inference chain for tσ. We use the following set of
local control decisions for i, j ∈ Ic(σ), where this pattern
repeats until the end of the inferencing chain is reached:

hi(πi(t))(σ) ∈ {0, 1} hj(πj(t))(σ) = 1− hi(πi(t))(σ) (5)
hi(πi(t1))(σ) = hj(πj(t1))(σ) hj(πj(t1))(σ) = hi(πi(t))(σ)
hi(πi(t2))(σ) = 1− hj(πj(t1))(σ) hj(πj(t2)(σ) = 1− hi(πi(t2))(σ)
hi(πi(t3))(σ) = hj(πj(t3))(σ) hj(πj(t3))(σ) = hi(πi(t2))(σ)
hi(πi(t4))(σ) = 1− hj(πj(t3))(σ) hj(πj(t4))(σ) = hi(πi(t4))(σ)

When an inference chain begins with tσ ∈ K, we must
have the relevant controllers i, j ∈ Ic(σ) correctly enable
σ after t. To respect parity of XOR, a global enablement
decision is taken only when the local control decisions are
the same. As noted above, controllers in I \ {i, j} issue 0
as their local control decisions for all sequences involved
in the inference chain for tσ. We use the following set of
local control decisions for i, j ∈ Ic(σ), where this pattern
repeats until the end of the inferencing chain is reached:

hi(πi(t))(σ) ∈ {0, 1} hj(πj(t))(σ) = hi(πi(t))(σ) (6)
hi(πi(t1))(σ) = 1− hj(πj(t1))(σ) hj(πj(t1))(σ) = 1− hi(πi(t))(σ)
hi(πi(t2))(σ) = hj(πj(t1))(σ) hj(πj(t2)(σ) = hi(πi(t2))(σ)
hi(πi(t3))(σ) = 1− hj(πj(t3))(σ) hj(πj(t3))(σ) = 1− hi(πi(t2))(σ)
hi(πi(t4))(σ) = hj(πj(t3))(σ) hj(πj(t4))(σ) = 1− hi(πi(t4))(σ)

Revisiting Example 1 for the last time: We examine one
of the inference chains for t = a1, where i = 2 and j = 1.
In this case, t1 = ε, t2 = b1, and t3 = b1a2. Following
the local control decisions of Eq. (6), as a1σ ∈ K, since no
prior decisions have been assigned, let h2(π1(a1))(σ) = 0.
As an immediate consequence, h1(π1(a1))(σ) = 0 and
h1(π1(ε))(σ) = 1. Subsequently, h2(π2(ε))(σ) = 0. We
then have h2(π2(b1))(σ) = 1 and h1(π1(b1a2))(σ) = 0.
Consequently, h1(π1(b1))(σ) = 1 and h2(π2(b1a2))(σ) =
1. These values confirm the XOR solution presented in
Table 3.

3.2 Inference observable but not XOR inference-observable

When K is inference observable but not XOR inference-
observable, there is a sequence t ∈ K, σ ∈ Σc and
i, j ∈ Ic(σ) for which the relevant inference chains have
a non-empty intersection. We present such an example
below.

Example 2. Let ML and MK be given as in Fig. 2. In this
example, K is EBD inference-observable but is not XOR
inference-observable.

Table 4 contains the inference chains for the disablement
decisions of Ex. 2. In particular, we choose to apply
Definition 7 to the inference chains for tσ = a1b2σ. Here we

01 2

3 4 5 6
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b1 b2 b1 b2

σ σ σ σ

Fig. 2. Ex. 2: Σo,1 = {a1, a2},Σo,2 = {b1, b2}; Ic(σ) =
{1, 2}

have {a2b1σ, a2b2σ} ∩ {a1b2σ, a2b2σ} \{a1b2σ} = {a2b2},
and, therefore, conclude that K is not XOR-observable.

Table 4. Links of inferencing chains for enable-
ment decisions of Ex. 2.

[[a1b2]]1σ = {a1b2σ, a1b1σ} [[a1b2]]2σ = {a1b2σ, a2b2σ}
[[a1b1]]2σ = {a1b1σ, a2b1σ}

[[a2b1]]1σ = {a2b1σ, a2b2σ}
[[a2b1]]1σ = {a2b1σ, a2b2σ} [[a2b1]]2σ = {a2b1σ, a1b1σ}

[[a1b1]]1σ = {a1a2σ, a1b1σ}
[[a1a2]]2σ = {a1a2σ, a2a2σ}

[[a2b2]]1σ = {a2b1σ, a2b2σ} [[a2b2]]2σ = {a1b2σ, a2b2σ}

It is straightforward to illustrate that an XOR solu-
tion does not exist: let h1(π1(a1b2))(σ) = 1 and, thus,
h2(π2(a1b2))(σ) = 0. Consequently, h2(π2(a1b1))(σ) = 1
and h1(a1b1)(σ) = 1, leaving h1(π1(a2b1))(σ) = 0, thus
resulting in a global enablement decision for σ of 0 af-
ter a2b2 occurs. We achieve the same result if instead
h1(π1(a1b2))(σ) = 0. It is also straightforward to show
that there is no XORSAT solution for this example. �

3.3 Existence of controllers

It can be shown that decentralized controllers that cor-
rectly solve the control problem using ⊕ as a fusion rule
exist when K is XOR inference-observable.

Theorem 2. Given non-empty prefix-closed languages K,
L such that K ⊆ L and L(ML) = L. There exist n local
decision functions h1, . . . , hn that form a valid global
decision function H w.r.t. ⊕ such that L(H/ML) = K iff
K is controllable and XOR inference-observable.

4. XOR OBSERVABILITY WHEN K IS
DISTRIBUTED OBSERVABLE BUT NOT

INFERENCE OBSERVABLE

When a language is not inference observable, the inferenc-
ing chain does not converge to a set of estimates either
entirely in K or entirely in L \K. Instead, the estimates
start repeating from a previous link in the chain, thus
forming a cycle of inferences. When a language is not
distributed observable, it is straightforward to show the
this cycle is of length 2; however, when a language is
distributed observable but not inference observable, the
cycles have different lengths, which we use to characterize
when ⊕ can be used as a fusion rule for this family of
languages.



Definition 8. An inferencing cycle for tσ ∈ L\K w.r.t.
i0 ∈ Ic(σ) is defined as follows.

(∃t ∈ K)(∃σ ∈ Σ)tσ ∈ L \K ⇒ (7)

(∃k,m ∈ N s.t. k < m)(∃i0 ∈ Ic(σ))[[t]]i0σ ∩K 6= ∅ ⇒
. . .

(∃ik ∈ Ic(σ))(∃tkσ ∈ [[tk−1]]ik−1
σ ∩K)

[[tk]]ikσ ∩ L \K 6= ∅ ⇒
. . .

(∃im−1 ∈ Ic(σ))(∃tm−1σ ∈ [[tm−2]]im−2
σ ∩K)

[[tm−1]]im−1
σ ∩ L \K 6= ∅ ⇒

(∃im ∈ Ic(σ))(∃tmσ ∈ [[tm−1]]im−1
σ ∩ L \K)

[[tm]]imσ = [[tk]]ikσ.

An inferencing cycle for tσ ∈ K w.r.t. i0 ∈ Ic(σ) is
similarly defined:

(∃t ∈ K)(∃σ ∈ Σ)tσ ∈ K ⇒ (8)

(∃k,m ∈ N s.t. k < m)(∃i0 ∈ Ic(σ))[[t]]i0σ ∩ L \K 6= ∅ ⇒
. . .

(∃ik ∈ Ic(σ))(∃tkσ ∈ [[tk−1]]ik−1
σ ∩ L \K)

[[tk]]ikσ ∩K 6= ∅ ⇒
. . .

(∃im−1 ∈ Ic(σ))(∃tm−1σ ∈ [[tm−2]]im−2
σ ∩ L \K)

[[tm−1]]im−1
σ ∩K 6= ∅ ⇒

(∃im ∈ Ic(σ))(∃tmσ ∈ [[tm−1]]im−1
σ ∩K)

[[tm]]imσ = [[tk]]ikσ.

We denote a inferencing cycle w.r.t. ik ∈ Ic(σ), whether
tσ lies in L \K or K, by i-cycleik(tσ). The length of the
cycle is defined by |i-cycleik(tσ)| = m− k.

We can now identify whether or not a distributed-
observable language that is not inference observable is
XOR observable.

Definition 9. A distributed observable, but not inference
observable, language K ⊆ L is XOR observable if (∀
t ∈ K)(∀σ ∈ Σc) tσ ∈ L \K ⇒ ∃i, j ∈ Ic(σ) s.t.

|i-cyclei(tσ)| mod 4 = 0 ∧ |i-cyclej(tσ)| mod 4 = 0.

Example 3. Let ML and MK be given as in Fig. 3. In this
example, K is distributed observable but not inference-
observable.
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Fig. 3. Ex. 3 (adapted from Chakib and Khoumsi (2008):
Σo,1 = {a, σ} and Σo,2 = {b, σ}; Ic(σ) = {1, 2}.

It is straightforward to assert that K is distributed ob-
servable:

[[a]]1σ ∩ [[a]]2σ ∩K = ∅; [[b]]1σ ∩ [[b]]2σ ∩K = ∅.
We begin by trying to compute an inferencing chain w.r.t.
controller 1 for the disablement decision for a w.r.t. σ:

• [[a]]1σ = {aσ, abσ, baσ}
[[ab]]2σ = [[ba]]2σ = {abσ, baσ, bσ}

[[b]]1σ = {bσ, σ}
[[ε]]2σ = {σ, aσ}

[[a]]1σ = {aσ, abσ, baσ}
We can see that the inferencing does not converge to a
set of estimates either entirely in K or entirely in L \K,
but that it cycles back to the original set of estimates for
tσ = aσ, i.e., m = 4 and k = 0, w.r.t. controller 1. We see
similar results when beginning with controller 2:

• [[a]]2σ = {aσ, σ}
[[ε]]1σ = {σ, bσ}

[[b]]2σ = {bσ, abσ, baσ}
[[ab]]1σ = [[ba]]1σ = {abσ, baσ, aσ}

[[a]]2σ = {aσ, σ}
Thus, we have i, j ∈ Ic(σ), i.e., i = 1, j = 2, such that their
estimates of a produce inferencing cycles. It can be shown
that inferencing cycles exist for the other disablement
decision regarding σ for b. So we conclude that K is not
inference-observable. In this case, all cycles have length 4,
and, thus, K is XOR observable. A possible solution is
shown in Table 5. �

Table 5. Possible XOR solution for Ex. 3.

h1(·)(σ) h2(·)(σ) ⊕ H(·)(σ)

a 0 1 1 1

b 1 0 1 1

ε 1 1 0 0

ab 0 0 0 0

ba 0 0 0 0

4.1 Local control decisions

When K is not inference observable but is XOR observ-
able, the local control decisions are defined using the same
set of equations when K is inference observable. That is,
for an inference cycle that begins with tσ ∈ L \ K, use
Eq. (5) and repeat until the end of the cycle, otherwise
use Eq. (6).

Revisiting Example 3: A set of local control decisions
for Ex. 3 that produce a correct control solution under
⊕ proceeds as follows. Begin with i-cycle1(aσ): because
no local decisions have been assigned yet, we are free to
choose a local decision and we can let h1(π1(a))(σ) = 1.
As this is an anticipated global disablement decision, it
must be the case that h2(π2(a))(σ) = 0. The next link in
the cycle, according to Eq. (5) requires h2(π2(ab))(σ) = 1.
As this is an anticipated global enablement decision under
⊕, we must have h1(π1(ab))(σ) = 1. The remaining local
decisions for the links in the cycle are: h1(π1(b))(σ) = 0,
h2(π2(b))(σ) = 0, and h2(π2(ε))(σ) = 0, h2(π2(ε))(σ) = 0.
This is a different XOR solution than the one in Table 5,
simply due to the fact that we initialized h1(π1(a))(σ) to
1 and not 0.

4.2 Distributed observable but not inference observable
and not XOR observable

For the family of distributed-observable languages that are
neither inference observable nor XOR observable, there are
no simple Boolean operations that will lead to a correct



control solution. Thus, in the absence of communication,
there is no way to construct a solution that will be sat-
isfactory using ∨, ∧ or ⊕ (or their negation). Since K
is still distributed observable, it is the case that if the
controllers combined their information as per the defini-
tion of distributed-observability, all controllers would be
able to take the correct control decision; however, this
effectively amounts to a broadcast. Instead, we recommend
the synthesis of a point-to-point synchronous communica-
tion protocol (e.g., Ricker (2008)) to solve this class of
languages.

Example 4. Let ML and MK be given as in Fig. 4. Here
K is distributed observable, but is not XOR observable.
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Fig. 4. Ex. 4: Σo,1 = {a1, a2}, Σo,2 = {b1, b2}, Ic(σ) =
{1, 2}.

We examine the inferencing for one disablement decision
w.r.t. controller 1:

• [[a1b1]]1σ = {a1b1σ, b2a1σ}
[[b2a1]]2σ = {b2a1σ, a2b2σ}

[[a2b2]]1σ = {a2b2σ, b3a2σ}
[[b3a2]]2σ = {b3a2σ, b3σ}

[[b3]]1σ = {b3σ, b1σ}
[[b1]]2σ = {b1σ, a1b1σ}

[[a1b1]]1σ = {a1b1σ, b2a1σ}
And inferencing with the same sequence w.r.t. controller
2:

• [[a1b1]]2σ = {a1b1σ, b1σ}
[[b1]]1σ = {b1σ, b3σ}

[[b3]]2σ = {b3σ, b3a2σ}
[[b3a2]]1σ = {b3a2σ, a2b2σ}

[[a2b2]]2σ = {a2b2σ, b2a1σ}
[[b2a1]]1σ = {b2a1σ, a1b1σ}

[[a1b1]]2σ = {a1b1σ, b1σ}
Note that these two sets of estimates both result in an
inferencing cycle of length 6. It can be verified that this is
also the case for the other two disablement decisions. As
a result, we conclude that K is not XOR observable. It is
another straightforward exercise to show that no XORSAT
solution exists. �

4.3 Existence of Controllers

It can also be shown that we can synthesize correct control
decision functions that use ⊕ as the fusion rule when K is
XOR observable.

Theorem 3. Given non-empty prefix-closed languages K,
L such that K ⊆ L and L(ML) = L. There exist n local

decision functions h1, . . . , hn that form a valid global
decision function H w.r.t. ⊕ such that L(H/ML) = K iff
K is controllable and XOR observable.

5. CONCLUSION

We have provided a language-based characterization for
the existence of parity-based architectures. It is unclear
why ⊕ might be preferred as the fusion rule for inference-
observable languages over the existing ∨ or ∧, as construct-
ing correct control solutions is somewhat more straight-
forward with these operators. But introducing ⊕ for lan-
guages that are not inference-observable, but are dis-
tributed observable, allows us to extend the class of lan-
guages for which we can generate decentralized control
solutions in the absence of communication between con-
trollers.

REFERENCES

Biere, Armin and Marijn J. H. Heule and Hans van Maaren
and Toby Walsh. Handbook of Satisfiability. IOS Press,
Vol. 185, 2009.

Chakib, H. and Khoumsi, A. Multi-decision Supervisory
Control: Parallel Decentralized Architectures Cooper-
ating for Controlling Discrete Event Systems. IEEE
Trans. Automat. Control, 56(11), pp. 2608–2622, 2011.

Chakib, H. and Khoumsi, A. Multi-Decision Decentralized
Control of Discrete Event Systems : Application to the
C&P Architecture. In Proc. 9th International Workshop
on Discrete Event Systems, 480–485, 2008.

Kumar, R. and Takai, S. Inference-based ambiguity
management in decentralized decision-making: Decen-
tralized control of discrete event systems. IEEE Trans.
Autom. Control 52(10) 1783–94, 2007.

Prosser, J.H. and Kam, M. and Kwatny, H.G. Decision
fusion and supervisor synthesis in decentralized discrete-
event systems. In Proc. Ameri. Contr. Conf. pp 2251-
2255, 1997.

Qiu, W. and Kumar, R. and Chandra, V. Decentralized
Control of Discrete Event Systems Using Prioritized
Composition With Exclusion. IEEE Trans. Autom.
Control 53(10): 2425 – 2430, 2008.

Ramadge, P. and W.M. Wonham Supervisory Control of
a Class of Discrete Event Processes. SIAM J. Contr.
Optim. 25: 206–230, 1987.

Ricker, S.L. and H. Marchand A parity-based architecture
for decentralized discrete-event control. In Proc. Ameri.
Contr. Conf., pp. 5678–5684, 2013.

Ricker, S. L. Asymptotic Minimal Communication for
Decentralized Discrete-Event Control. In Proc. 9th
International Workshop on Discrete Event Systems, pp.
486–491, 2008.

Ricker, S. L. and K. Rudie, Know Means No: Incorporat-
ing knowledge into discrete-event control systems. IEEE
Trans. Autom. Control 45(9):1656–1668, 2000.

Rudie, K. and Wonham, W.M. Think Globally, Act Lo-
cally: Decentralized Supervisory Control. IEEE Trans.
Autom. Control 37:1692-1708, 1992.

Yoo, T.-S. and S. Lafortune A general architecture
for decentralized supervisory control of discrete-event
system. Discrete Event Dyn. S.12: 335–377, 2002.

Yoo, T-S. and Lafortune, S Decentralized supervisory
control with conditional decisions: supervisor existence
IEEE Trans. Autom. Control 49(11):1886–1904, 2004.


