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Abstract

We develop the theory of a possibilistic framework for OWL 2 axiom testing

against RDF datasets, as an alternative to statistics-based heuristics. The in-

tuition behind it is to evaluate the credibility of OWL 2 axioms based on the

evidence available in the form of a set of facts contained in a chosen RDF

dataset. To achieve it, we first define the notions of development, content, sup-

port, confirmation and counterexample of an axiom. Then we use these notions

to define the possibility and necessity of an axiom and its acceptance/rejection

index combining both of them. Finally, we report a practical application of

the proposed framework to test SubClassOf axioms against the DBpedia RDF

dataset.

Keywords: Possibility Theory, Linked Data, Ontology Learning, OWL 2,

Axioms

1. Introduction

Ontology learning [1] is a broad field of research, aiming at overcoming the

knowledge acquisition bottleneck through the automatic generation of ontolo-

gies, that has started to emerge at the beginning of this century, mainly within

the context of the semantic Web. The input for ontology learning can be text5

in natural language or existing ontologies (typically expressed in OWL) and in-
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stance data (typically represented in RDF) [2]. In the former case, the focus is

on the population of ontologies with facts derived from text using natural lan-

guage processing methods, although the generation of lightweight taxonomies

can also be undertaken. In the latter case, which is the one we are interested in,10

induction-based methods like the ones developed in inductive logic programming

and data mining are developed to detect meaningful patterns and learn schema

axioms from existing instance data (facts) and their metadata, if available.

On a related note, there exists a need for evaluating and validating ontolo-

gies, be they the result of an analysis effort or of a semi-automatic learning15

method, and/or validating instance data. Indeed, instead of starting from the a

priori assumption that a given ontology is correct and verify whether the facts

contained in an RDF base satisfy it, one may treat ontologies like hypotheses

and develop a methodology to verify whether the RDF facts corroborate or

falsify them. Ontology learning and validation are thus strictly related. They20

could even be seen as an agile and test-driven approach to ontology develop-

ment, where the linked data is used as a giant test case library not only to

validate the schema but even to suggest new developments.

Both ontology learning and ontology/data validation rely critically on (can-

didate) axiom scoring. To see why, let us consider the following example.25

While constructing an ontology for a given domain (say, politics), based on

the description of instances in a given dataset, e.g., DBpedia, we might sus-

pect that a mayor is an elected representative. Before we insert this knowledge

into the ontology, we should score the corresponding axiom SubClassOf(Mayor

ElectedRepresentative) against the statements in the dataset, i.e., mea-30

sure the extent to which it is compatible with them. Conversely, for val-

idation, imagine that an ontology about politics models the fact that plu-

rality of offices is banned, through a set of axioms like SubClassOf(Mayor

ObjectComplementOf(MP)). In order to check whether a given country obeys

this rule, we might score the above axiom against the linked open government35

data of that country.

In this paper, we will tackle the problem of testing a single, isolated ax-
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iom, which is anyway the first step to solve the problem of validating an entire

ontology.

This article is organized as follows: Section 2 discusses related work on40

ontology learning and validation. Section 3 presents the principles of axiom

testing and Section 4 discusses the difficulties and shortcomings of conventional

probability-based scoring heuristics, which motivate the search for an alterna-

tive. Section 5 presents our proposal of an axiom scoring heuristics based on

possibility theory. A computational framework for axiom scoring based on such45

heuristics is then presented in Section 6 and evaluated on SubClassOf axioms.

Section 7 draws some conclusions and gives directions for future work.

2. Related Work

Recent contributions towards the automatic creation of OWL 2 ontologies

from large repositories of RDF facts include FOIL-like algorithms for learning50

concept definitions [3], statistical schema induction via association rule min-

ing [4], and light-weight schema enrichment methods based on the DL-Learner

framework [5, 6]. All these methods apply and extend techniques developed

within inductive logic programming (ILP) [7]. For a recent survey of the wider

field of ontology learning, see [2].55

The growing need for evaluating and validating ontologies is witnessed by

general methodological investigations [8, 9], surveys [10] and tools like OOPS! [11]

for detecting pitfalls in ontologies. Ontology engineering methodologies, such

as METHONTOLOGY [12], distinguish two validation activities, namely veri-

fication (through formal methods, syntax, logics, etc.) and validation through60

usage. Whilst this latter is usually thought of as user studies, an automatic

process of validation based on RDF data would provide a cheap and scalable

assistance, whereby the existing linked data may be regarded as usage traces

that can be used to test and improve the ontologies, much like log mining can

be used to provide test cases for development in the replay approaches. Alter-65

natively, one may regard the ontology as a set of integrity constraints and check
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if the data satisfy them, using a tool like Pellet integrity constraint validator

(ICV), which translates OWL ontologies into SPARQL queries to automatically

validate RDF data [13]. The RDF Data Shapes W3C Working Group has been

created in 2014 and published in 2017 a working draft, intended to become a70

W3C recommendation, of the SHACL Shapes Constraint Language, a language

for validating RDF graphs against a set of structural conditions.1 A similar

approach also underlies the idea of test-driven evaluation of linked data qual-

ity [14]. To this end, OWL ontologies are interpreted under the closed-world

assumption and the weak unique name assumption.75

The most popular scoring heuristics proposed in the literature are based on

statistical inference (see, e.g., [6]). As such a probability-based framework is

not always completely satisfactory, we have recently proposed [15, 16] an axiom

scoring heuristics based on a formalization in possibility theory of the notions

of logical content of a theory and of falsification, loosely inspired by Karl Pop-80

per’s approach to epistemology, and working with an open-world semantics. In

this article, we justify such proposal and we develop a theory of OWL axiom

testing against RDF facts based on possibility theory, whose output is a degree

of possibility and necessity of an axiom, given the available evidence. Our pro-

posal is coherent with a recently proposed possibilistic extension of description85

logics [17, 18].

In particular, our first attempts [15] pointed out that a possibilistic approach

to test candidate axioms could be beneficial to ontology learning, as well as

to ontology and knowledge base validation, although at the cost of a heavier

computational cost than the probabilistic scores it aims to complement. Further90

investigation [16] showed that time capping can alleviate the computation of the

proposed possibilistic axiom scoring heuristics without giving up the precision

of the scores.

1https://www.w3.org/TR/shacl/
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3. Principles of OWL 2 Axiom Testing

The problem we study may be stated as follows: given a hypothesis about95

the relations holding among some entities of a domain, syntactically expressed

in the form of an OWL 2 axiom, we wish to evaluate its credibility based on

the evidence available in the form of a set of facts contained in an RDF dataset

and, therefore, syntactically expressed in RDF. We call this task axiom testing.

If, for a moment, we abstract away from the particular syntax of the hy-100

pothesis and of the available evidence, what we have here is a fundamental

problem in epistemology, with important ramifications in statistical inference,

data mining, inductive reasoning, medical diagnosis, judicial decision making,

and even the philosophy of science. Central to this problem is the notion of

confirmation: see [19] for a general overview of the major approaches to confir-105

mation theory in contemporary philosophy. All the approaches build on logical

entailment (from evidence to the hypothesis or from the hypothesis to evidence,

to which background knowledge may be added). The approach we follow may

be classified as a form of extended hypothetico-deductivism, whereby, roughly

speaking, evidence e confirms a hypothesis h if the latter entails it, h |= e, and110

disconfirms it if the former entails the negation of the latter, e |= ¬h. As we

will see, other considerations will be added to extend this basic idea.

Testing an OWL 2 axiom against an RDF dataset can thus be done by

checking whether the formulas entailed by it are confirmed by the facts contained

in the RDF dataset.2 The rest of this section will be devoted to formalizing and115

developing this intuition.

2Note that calling linked data search engines like Sindice could virtually extend the dataset

to the whole LOD cloud.
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3.1. OWL 2 Direct Model-Theoretic Semantics and Development of OWL 2

Axioms

We refer to the model-theoretic semantics of OWL 2 as defined in [20].3 An

interpretation I for a datatype map D and a vocabulary V over D is defined by120

an interpretation domain ∆I = ∆I ∪∆D (∆I is the object domain and ∆D the

data domain), and a valuation function ·I with seven restrictions: ·C mapping

class expressions to subsets of ∆I , ·OP mapping object properties to subsets

of ∆I ×∆I , ·DP mapping data properties to subsets of ∆I ×∆D, ·I mapping

individuals to elements of ∆I , ·DT mapping datatypes to subsets of ∆D, ·LT125

mapping literals to elements of ∆D and ·FT mapping facets to subsets of ∆D.

Table 1 provides a reference of the model-theoretic semantics of OWL 2

expressions.

Table 2 provides a reference of the semantics of the 32 axiom types of OWL 2.

We aim at operationalizing the model-theoretic semantics of OWL 2 axioms130

into corresponding first-order logic formulas which will serve as a basis to query

an RDF dataset in order to test OWL 2 candidate axioms against it. It was

proposed by Hempel [21] that, given some body of evidence, a hypothesis φ can

be developed into a finite ground formula, which he calls the development of

the hypothesis. It is useful to recall Hempel’s proposal first, which we will then135

adapt to RDF + OWL 2.

Let L be a finite first-order language; let e, h ∈ L be the available evidence

and a hypothesis, respectively; let C be a finite set of individual constants of L

(typically, those occurring non-vacuously in e). The development of hypothesis

h according to C is the formula DC(h), such that h |= DC(h), defined recursively140

as follows: Let φ, ψ ∈ L,

1. if C = ∅ or φ is atomic, then DC(φ) = φ;

2. otherwise,

(a) DC(¬φ) = ¬DC(φ);

3http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/,

Section 2.2 Interpretations
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Table 1: The model-theoretic semantics of OWL 2 expressions. The first column gives the

OWL 2 functional syntax of the expression, the second column its more compact SHOIQ

description logic syntax, and the last column shows its semantics.

OWL 2 Functional Syntax DL Syntax Interpretation

ObjectInverseOf(R) R− (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}

DataIntersectionOf(D1 . . . Dn) D1 u . . . uDn DI1 ∩ . . . ∩D
I
n

DataUnionOf(D1 . . . Dn) D1 t . . . tDn DI1 ∪ . . . ∪D
I
n

DataComplementOf(D) ¬D Darity(D) \DI

DataOneOf(d1 . . . dn) {d1, . . . , dn} {dI1 , . . . , d
I
n}

DatatypeRestriction(D F1 d1 . . . Fn dn) DI ∩ 〈F1, d1〉I ∩ . . . ∩ 〈Fn, dn〉I

ObjectIntersectionOf(C1 . . . Cn) C1 u . . . u Cn CI1 ∩ . . . ∩ C
I
n

ObjectUnionOf(C1 . . . Cn) C1 t . . . t Cn CI1 ∪ . . . ∪ C
I
n

ObjectComplementOf(C) ¬C ∆I \ CI

ObjectOneOf(a1 . . . an) {a1, . . . , an} {aI1 , . . . , a
I
n}

ObjectSomeValuesFrom(R C) ∃R.C {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}

ObjectAllValuesFrom(R C) ∀R.C {x | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ CI}

ObjectHasValue(R a) ∃R.{a} {x | 〈x, aI〉 ∈ RI}

ObjectHasSelf(R) ∃R.Self {x | 〈x, x〉 ∈ RI}

ObjectMinCardinality(n R) ≥ nR.> {x | ‖{y | 〈x, y〉 ∈ RI}‖ ≥ n}

ObjectMaxCardinality(n R) ≤ nR.> {x | ‖{y | 〈x, y〉 ∈ RI}‖ ≤ n}

ObjectExactCardinality(n R) = nR.> {x | ‖{y | 〈x, y〉 ∈ RI}‖ = n}

ObjectMinCardinality(n R C) ≥ nR.C {x | ‖{y | 〈x, y〉 ∈ RI ∧ y ∈ CI}‖ ≥ n}

ObjectMaxCardinality(n R C) ≤ nR.C {x | ‖{y | 〈x, y〉 ∈ RI ∧ y ∈ CI}‖ ≤ n}

ObjectExactCardinality(n R C) = nR.C {x | ‖{y | 〈x, y〉 ∈ RI ∧ y ∈ CI}‖ = n}

DataSomeValuesFrom(R D) ∃R.D {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ DI}

DataAllValuesFrom(R D) ∀R.D {x | ∀y.〈x, y〉 ∈ RI ⇒ y ∈ DI}

DataHasValue(R d) ∃R.d {x | 〈x, dI〉 ∈ RI}

DataMinCardinality(n R) ≥ nR.> {x | ‖{y | 〈x, y〉 ∈ RI}‖ ≥ n}

DataMaxCardinality(n R) ≤ nR.> {x | ‖{y | 〈x, y〉 ∈ RI}‖ ≤ n}

DataExactCardinality(n R) = nR.> {x | ‖{y | 〈x, y〉 ∈ RI}‖ = n}

DataMinCardinality(n R D) ≥ nR.D {x | ‖{y | 〈x, y〉 ∈ RI ∧ y ∈ DI}‖ ≥ n}

DataMaxCardinality(n R D) ≤ nR.D {x | ‖{y | 〈x, y〉 ∈ RI ∧ y ∈ DI}‖ ≤ n}

DataExactCardinality(n R D) = nR.D {x | ‖{y | 〈x, y〉 ∈ RI ∧ y ∈ DI}‖ = n}
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Table 2: The model-theoretic semantics of OWL 2 axioms. The first column gives the OWL 2

Functional syntax of the axiom, the second column its more compact SHOIQ description

logic syntax, and the last column shows it semantics.

OWL 2 Functional Syntax DL Syntax Semantics

SubClassOf(C D) C v D CI ⊆ DI

EquivalentClasses(C1 . . . Cn) Ci ≡ Cj , i, j ∈ {1, . . . n} CIi = CIj , i, j ∈ {1, . . . n}

DisjointClasses(C1 . . . Cn) Dis(C1, . . . , Cn) CIi ∩ C
I
j = ∅, i, j ∈ {1, . . . n}, i 6= j

DisjointUnion(C C1 . . . Cn) C ≡ C1 t . . . t Cn, and CI = CI1 ∪ . . . ∪ C
I
n , and

Dis(C1, . . . , Cn) CIi ∩ C
I
j = ∅, i, j ∈ {1, . . . n}, i 6= j

SubObjectPropertyOf(S,R) S v R SI ⊆ RI

SubObjectPropertyOf(w,R), with S1 . . . Sn v R SI1 ◦ . . . ◦ S
I
n ⊆ R

I , i.e., ∀y0, . . . , yn,

w = ObjectPropertyChain(S1 . . . Sn) 〈y0, y1〉 ∈ SI1 ∧ . . . ∧ 〈yn−1, yn〉 ∈ SIn
⇒ 〈y0, yn〉 ∈ RI

EquivalentObjectProperties(R1 . . . Rn) Ri ≡ Rj , i, j ∈ {1, . . . n} RIi = RIj , i, j ∈ {1, . . . n}

DisjointObjectProperties(R1 . . . Rn) Dis(R1, . . . , Rn) RIi ∩ R
I
j = ∅, i, j ∈ {1, . . . n}, i 6= j

ObjectPropertyDomain(R C) ≥ 1R v C 〈x, y〉 ∈ RI ⇒ x ∈ CI

ObjectPropertyRange(R C) > v ∀R.C 〈x, y〉 ∈ RI ⇒ y ∈ CI

InverseObjectProperties(S R) S ≡ R− SI = {〈y, x〉 | 〈x, y〉 ∈ RI}

FunctionalObjectProperty(R) Fun(R) 〈x, y〉 ∈ RI ∧ 〈x, z〉 ∈ RI ⇒ y = z

InverseFunctionalObjectProperty(R) Fun(R−) 〈x, y〉 ∈ RI ∧ 〈z, y〉 ∈ RI ⇒ x = z

ReflexiveObjectProperty(R) Ref(R) 〈x, x〉 ∈ RI

IrreflexiveObjectProperty(R) Irr(R) 〈x, x〉 /∈ RI

SymmetricObjectProperty(R) Sym(R) 〈x, y〉 ∈ RI ⇒ 〈y, x〉 ∈ RI

AsymmetricObjectProperty(R) Asy(R) 〈x, y〉 ∈ RI ⇒ 〈y, x〉 /∈ RI

TransitiveObjectProperty(R) Tra(R) 〈x, y〉 ∈ RI ∧ 〈y, z〉 ∈ RI ⇒ 〈x, z〉 ∈ RI

SubDataPropertyOf(S,R) S v R SI ⊆ RI

EquivalentDataProperties(R1 . . . Rn) Ri ≡ Rj , i, j ∈ {1, . . . n} RIi = RIj , i, j ∈ {1, . . . n}

DisjointDataProperties(R1 . . . Rn) Dis(R1, . . . , Rn) RIi ∩ R
I
j = ∅, i, j ∈ {1, . . . n}, i 6= j

DataPropertyDomain(R C) ≥ 1R v C 〈x, y〉 ∈ RI ⇒ x ∈ CI

DataPropertyRange(R D) > v ∀R.D 〈x, y〉 ∈ RI ⇒ y ∈ DI

FunctionalDataProperty(R) Fun(R) 〈x, y〉 ∈ RI ∧ 〈x, z〉 ∈ RI ⇒ y = z

DatatypeDefinition(T D) T ≡ D TI = DI

HasKey(C (R1 . . . Rn) (S1 . . . Sm)) Key(C) = a, b ∈ CI a, ai, b, bi named individuals

with Ri object properties {R1, . . . , Rn, S1, . . . , Sm} ∧〈a, ai〉 ∈ RIi ∧ 〈b, bi〉 ∈ R
I
i

and Si data properties ∧〈a, di〉 ∈ SIi ∧ 〈b, ei〉 ∈ S
I
i ⇒ a = b

SameIndividual(a1 . . . an) ai
.
= aj , i, j ∈ {1, . . . , n} aIi = aIj , i, j ∈ {1, . . . n}

DifferentIndividuals(a1 . . . an) ai 6
.
= aj , i, j ∈ {1, . . . , n}, i 6= j aIi 6= aIj , i, j ∈ {1, . . . n}, i 6= j

ClassAssertion(C a) C(a) aI ∈ CI

ObjectPropertyAssertion(R a b) R(a, b) 〈aI , bI〉 ∈ RI

NegativeObjectPropertyAssertion(R a b) ¬R(a, b) 〈aI , bI〉 /∈ RI

DataPropertyAssertion(R a d) R(a, d) 〈aI , dI〉 ∈ RI

NegativeDataPropertyAssertion(R a d) ¬R(a, d) 〈aI , dI〉 /∈ RI

8



(b) DC(φ ∨ ψ) = DC(φ) ∨DC(ψ);145

(c) DC(φ ∧ ψ) = DC(φ) ∧DC(ψ);

(d) DC(∀xφ) =
∧
c∈C DC(φ{c/x});

(e) DC(∃xφ) =
∨
c∈C DC(φ{c/x}).

In the above definition, φ{c/x} stands for the formula obtained from φ by

substituting all free occurrences of variable x with constant c.150

We can observe that DC(φ), as defined above, can always be transformed

either into conjunctive normal form (CNF) or disjunctive normal form (DNF)

by repeated application of the De Morgan Laws, i.e.

DC(φ) =
∧
i

ψi or DC(φ) =
∨
i

ψi. (1)

In either case, the ground formulas ψi, which we may call basic statements, may

be tested directly against the available facts to compute a degree of corrobora-155

tion of hypothesis φ.

We shall now define the notion of development of an OWL 2 axiom with

respect to an RDF dataset. That notion relies on a transformation, which

translates an OWL 2 axiom into a first-order logic formula based on the set-

theoretic formulas of the OWL direct semantics.4160

Definition 1. Let t(·;x, y) be recursively defined as follows, with an OWL 2

entity, expression, or axiom as the first argument and x, y variables:

• Entities:

– if d is a data value (a literal), t(d;x, y) = (x = d);

– if a is an individual name (an IRI), t(a;x, y) = (x = a);165

– if C is an atomic concept, t(C;x, y) = C(x);

– if D is an atomic datatype, t(D;x, y) = D(x);

– if R is an atomic relation, t(R;x, y) = R(x, y);

4This transformation is similar to the two mappings defined in [22] (pages 154–155) to

show the equivalence of DL and a two-variable fragment of first-order logic.
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• Expressions:

– t(R−;x, y) = t(R; y, x);170

– t(D1 u . . . uDn;x, y) = t(D1;x, y) ∧ . . . ∧ t(Dn;x, y);

– t(D1 t . . . tDn;x, y) = t(D1;x, y) ∨ . . . ∨ t(Dn;x, y);

– t(¬D;x, y) = ¬t(D;x, y);

– t({d1, . . . , dn};x, y) = t(d1;x, y) ∨ . . . ∨ t(dn;x, y);

– t(C1 u . . . u Cn;x, y) = t(C1;x, y) ∧ . . . ∧ t(Cn;x, y);175

– t(C1 t . . . t Cn;x, y) = t(C1;x, y) ∨ . . . ∨ t(Cn;x, y);

– t(¬C;x, y) = ¬t(C;x, y);

– t({a1, . . . , an};x, y) = t(a1;x, y) ∨ . . . ∨ t(an;x, y);

– t(∃R.C;x, y) = ∃y(t(R;x, y) ∧ t(C; y, z));

– t(∀R.C;x, y) = ∀y(¬t(R;x, y) ∨ t(C; y, z));180

– t(∃R.{a};x, y) = t(R;x, a);

– t(∃R.Self;x, y) = t(R;x, x);

– t(≥ nR.>;x, y) = (‖{y | t(R;x, y)}‖ ≥ n);

– t(≤ nR.>;x, y) = (‖{y | t(R;x, y)}‖ ≤ n);

– t(= nR.>;x, y) = (‖{y | t(R;x, y)}‖ = n);185

– t(≥ nR.C;x, y) = (‖{y | t(R;x, y) ∧ t(C; y, z)}‖ ≥ n);

– t(≤ nR.C;x, y) = (‖{y | t(R;x, y) ∧ t(C; y, z)}‖ ≤ n);

– t(= nR.C;x, y) = (‖{y | t(R;x, y) ∧ t(C; y, z)}‖ = n);

– t(∃R.D;x, y) = ∃y(t(R;x, y) ∧ t(D; y, z));

– t(∀R.D;x, y) = ∀y(¬t(R;x, y) ∨ t(D; y, z));190

– t(∃R.{d};x, y) = t(R;x, d);

– t(≥ nR.D;x, y) = (‖{y | t(R;x, y) ∧ t(D; y, z)}‖ ≥ n);

– t(≤ nR.D;x, y) = (‖{y | t(R;x, y) ∧ t(D; y, z)}‖ ≤ n);
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– t(= nR.D;x, y) = (‖{y | t(R;x, y) ∧ t(D; y, z)}‖ = n);

• Axioms:195

– t(C1 v C2;x, y) = ∀x(¬t(C1;x, y) ∨ t(C2;x, y));

– t(C1 ≡ C2;x, y) = ∀x((t(C1;x, y)∧t(C2;x, y))∨(¬t(C1;x, y)∧¬t(C2;x, y)));

– t(Dis(C1, . . . , Cn);x, y) =
∧n
i=1

∧n
j=i+1(¬t(Ci;x, y) ∨ ¬t(Cj ;x, y));

– t(C ≡ C1t. . .tCn,Dis(C1, . . . , Cn);x, y) = t(C ≡ C1t. . .tCn;x, y)∧

t(Dis(C1, . . . , Cn);x, y);200

– t(S v R;x, y) = ∀x∀y(¬t(S;x, y) ∨ t(R;x, y));

– t(S1 . . . Sn v R;x, y) = ∀x∀z1 . . . ∀zn−1∀y(¬t(S1;x, z1)∨¬t(S2; z1, z2)∨

. . . ∨ ¬t(Sn; zn−1, y) ∨ t(R;x, y));

– t(R1 ≡ R2;x, y) = ∀x∀y((t(R1;x, y) ∧ t(R2;x, y)) ∨ (¬t(R1;x, y) ∧

¬t(R2;x, y)));205

– t(Dis(R1, . . . , Rn);x, y) =
∧n
i=1

∧n
j=i+1(¬t(Ri;x, y) ∨ ¬t(Rj ;x, y));

– t(≥ 1R v C;x, y) = ∀x∀y(¬t(R;x, y) ∨ t(C;x, y));

– t(> v ∀R.C) = ∀x∀y(¬t(R;x, y) ∨ t(C; y, z));

– t(S ≡ R−;x, y) = ∀x∀y((t(S;x, y)∧t(R; y, x))∨(¬t(S;x, y)∧¬t(R; y, x)));

– t(Fun(R);x, y) = ∀x∀y∀z(¬t(R;x, y) ∨ ¬t(R;x, z) ∨ y = z);210

– t(Fun(R−);x, y) = ∀x∀y∀z(¬t(R;x, y) ∨ ¬t(R; z, y) ∨ x = z);

– t(Ref(R);x, y) = ∀x(t(R;x, x));

– t(Irr(R);x, y) = ∀x(¬t(R;x, x));

– t(Sym(R);x, y) = ∀x∀y(¬t(R;x, y) ∨ t(R; y, x));

– t(Asy(R);x, y) = ∀x∀y(¬t(R;x, y) ∨ ¬t(R; y, x));215

– t(Tra(R);x, y) = ∀x∀y∀z(¬t(R;x, y) ∨ ¬t(R; y, z) ∨ t(R;x, z));

– t(> v ∀R.D) = ∀x∀y(¬t(R;x, y) ∨ t(D; y, z));

– t(T ≡ D;x, y) = ∀x((t(T ;x, y)∧t(D;x, y))∨(¬t(T ;x, y)∧¬t(D;x, y)));
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– t(Key(C) = {R1, . . . , Rn};x, y) = ∀x∀z∀z1 . . . ∀azn(¬t(C;x, y)∨t(C; z, y)∨∨n
i=1(¬Ri(x, zi) ∨ ¬Ri(z, zi)) ∨ x = z);220

– t(a
.
= b;x, y) = (a = b);

– t(a 6 .= b;x, y) = ¬(a = b);

– t(C(a);x, y) = C(a);

– t(¬C(a);x, y) = ¬C(a);

– t(R(a, b);x, y) = R(a, b);225

– t(¬R(a, b);x, y) = ¬R(a, b);

– t(R(a, d);x, y) = R(a, d);

– t(¬R(a, d);x, y) = ¬R(a, d);

where z, zi, denote “fresh” variables, C, Ci denote concepts, D, Di, T datatypes,

R, Ri, S, Si (object or data) properties, a, b individuals, and d data values.230

For instance, let us consider the following OWL 2 axiom:

φ = SubClassOf(dbo:LaunchPad dbo:Infrastructure),

Its transformation into FOL is:

t(φ, x, y) =

t(SubClassOf(dbo:LaunchPad dbo:Infrastructure), x, y) =

∀x(¬t(dbo:LaunchPad, x, y) ∨ t(dbo:Infrastructure), x, y)) =

∀x(¬dbo:LaunchPad(x) ∨ dbo:Infrastructure)(x))

The semantic equivalence of t(φ;x, y) and φ can be readily verified by observ-

ing that the definition of t(φ;x, y) is obtained from the set-theoretic formulas

of the OWL direct semantics of φ (cf. Tables 1 and 2) by235

• substituting all symbols aI denoting elements of ∆I by their names (IRI)

a,

• substituting all symbols CI denoting subsets of ∆I by their corresponing

class name or datatype name C, and
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• substituting all symbols RI denoting subsets of ∆I ×∆I or ∆I ×∆D by240

their corresponding object or data property name R.

Definition 2 (Development of an Axiom). Let φ be an OWL 2 axiom and let

K be an RDF dataset. The development DK(φ) of φ with respect to K is defined

as follows:

1. Let φ̂ = t(φ;x, y) (cf. Definition 1);245

2. Let I(K) be the set of (named or blank) individuals occurring in K (it is

reasonable to assume that I(K) 6= ∅ and I(K) is finite);

3. DK(φ) = NF (D̂(φ̂)), where

• D̂(·) is recursively defined as follows:

(a) if φ̂ is atomic, then D̂(φ̂) = φ̂,250

(b) D̂(¬φ̂) = ¬D̂(φ̂),

(c) D̂(φ̂ ∨ ψ̂) = D̂(φ̂) ∨ D̂(ψ̂),

(d) D̂(φ̂ ∧ ψ̂) = D̂(φ̂) ∧ D̂(ψ̂),

(e) D̂(∀xφ̂) =
∧
c∈I(K) D̂(φ̂{c/x}),

(f) D̂(∃xφ̂) =
∨
c∈I(K) D̂(φ̂{c/x});255

• and NF (·) is a function transforming a formula either in conjunctive

or in disjunctive normal form. We will see in Section 5 that DK(φ)

being in conjunctive or disjunctive form has some consequences on

the way φ is scored. We shall call the conjuncts (disjuncts, respec-

tively) of DK(φ) if it is in conjunctive (disjunctive) normal form the260

basic statements of DK(φ). NF (·) chooses between a conjunctive or

disjunctive normal form to produce the formula with the greatest

number of basic statements.

3.2. Content, Support, Confirmation, and Counterexample of an OWL 2 Axiom

We are now ready to define the notion of content of an axiom, which is at265

the foundation of axiom testing.
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Definition 3 (Content of an Axiom). Let φ be an OWL 2 axiom and let K be

an RDF dataset. The content of φ, given K, contentK(φ), is defined as the set

of all the basic statements of DK(φ).

We will omit the subscript K when there is no ambiguity and write simply270

content(φ) to denote the content of axiom φ.

For example, let us consider the test of candidate axiom

φ = SubClassOf(dbo:LaunchPad dbo:Infrastructure),

against the DBpedia dataset. As we have seen above, this axiom translates into

the first-order formula

φ̂ = t(φ;x, y) = ∀x(¬dbo:LaunchPad(x) ∨ dbo:Infrastructure(x)),

and is finally developed according to DBpedia into:275

DDBpedia(φ) =
∧

r∈I(DBpedia)

(¬dbo:LaunchPad(x) ∨ dbo:Infrastructure(x)).

We may thus express the content of φ as:

content(dbo:LaunchPad v dbo:Infrastructure) =

{¬dbo:LaunchPad(r) ∨ dbo:Infrastructure(r) :

r is a resource occurring in DBpedia}.

By construction, ∀ψ ∈ content(φ), φ |= ψ. Indeed, let I be a model of φ; by

definition, I is also a model of the formula which expresses the semantics of φ

and a fortiori, also of all its groundings; since ψ is a grounding of the formula

which expresses the semantics of φ, I is a model of ψ.280

Now, given a formula ψ ∈ content(φ) and an RDF dataset K, there are three

cases:

1. K |= ψ: in this case, we will call ψ a confirmation of φ;

2. K |= ¬ψ: in this case, we will call ψ a counterexample of φ;

3. K 6|= ψ and K 6|= ¬ψ: in this case, ψ is neither a confirmation nor a285

counterexample of φ.
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The definition of content(φ) may be refined by adopting Scheffler and Good-

man’s principle of selective confirmation [23], which characterizes a confirma-

tion as a fact not simply confirming a candidate axiom, but, further, favoring

the axiom rather than its contrary. For instance, the occurrence of a black290

raven selectively confirms the axiom Raven v Black because it both confirms

it and fails to confirm its negation, namely that there exist ravens that are not

black. On the contrary, the observation of a green apple does not contradict

Raven v Black, but it does not disconfirm Raven 6v Black either, i.e., it does

not selectively confirm Raven v Black.295

The definition of content(φ) may thus be further refined, in order to restrict

it just to those ψ which can be counterexamples of φ, thus leaving out all those

ψ which would be trivial confirmations of φ. That is like saying that, to test a

hypothesis, we have to try, as hard as we can, to refute it.

A formal definition of the content of an axiom taking into account this300

principle of selective confirmation can hardly be given in the general case, since

it depends very closely on the form of the axiom. This should rather be shifted

to the computational definition of each type of OWL 2 axioms (see Section 6).

For example, in the case of a SubClassOf(C D) axiom, all ψ involving the

existence of a resource r for which K 6|= C(r) will either be confirmations (if305

K |= D(r)) or they will fall into Case 3 otherwise. Therefore, such ψ will not

be interesting and should be left out of content(SubClassOf(C D)).

Applying this principle greatly reduces content(φ) and, therefore, the num-

ber of ψ that will have to be checked.

Definition 4 (Support of an Axiom). Let φ be an OWL 2 axiom and let K310

be an RDF dataset. We shall denote by uφ the support of φ, defined as the

cardinality of its content:

uφ = ‖content(φ)‖.

Notice that, since I(K) is finite, content(φ) is a finite set and, therefore uφ

is a natural number.

Definition 5. We denote by u+
φ the number of formulas ψ ∈ content(φ) which315
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are entailed by the RDF dataset (confirmations); and by u−φ the number of such

formulas whose negation ¬ψ is entailed by the RDF dataset (counterexamples).

Notice that it is possible that, for some ψ ∈ content(φ), the RDF dataset

entails neither ψ nor ¬ψ (Case 3 above). Therefore,

u+
φ + u−φ ≤ uφ. (2)

For example, when testing φ = dbo:LaunchPad v dbo:Infrastructure against320

the DBpedia dataset, we found that uφ = 85, u+
φ = 83, i.e., there are 83

confirmations of φ in the dataset; and u−φ = 1, i.e., there is 1 counterexample in

the dataset, namely

dbo:LaunchPad(:USA)⇒ dbo:Infrastructure(:USA),

since

DBpedia |= dbo:LaunchPad(:USA),

DBpedia |= ¬dbo:Infrastructure(:USA).

and one formula in content(φ) neither is a confirmation nor a counterexample,325

namely

dbo:LaunchPad(:Cape Canaveral)⇒ dbo:Infrastructure(:Cape Canaveral),

because

DBpedia |= dbo:LaunchPad(:Cape Canaveral),

DBpedia 6|= dbo:Infrastructure(:Cape Canaveral),

DBpedia 6|= ¬dbo:Infrastructure(:Cape Canaveral).

The following are further interesting properties of uφ, u+
φ , and u−φ .

Theorem 1. Let φ be a candidate OWL 2 axiom. Then φ and ¬φ have the

same support: uφ = u¬φ.330
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Proof. We know that either DK(φ) is in CNF or it is in DNF. In the former

case,

DK(φ) =

uφ∧
i=1

ψi;

by the De Morgan Laws,

DK(¬φ) = ¬DK(φ) = ¬
uφ∧
i=1

ψi =

uφ∨
i=1

¬ψi,

whence we see that the basic statements of ¬φ are the negations of the basic

statements of φ. Therefore, u¬φ = uφ.335

Analogously in the case DK(φ) is in DNF.

Theorem 2. Let φ be a candidate OWL 2 axiom. If the RDF dataset K is

consistent, then

1. u+
φ = u−¬φ (the confirmations of φ are counterexamples of ¬φ);

2. u−φ = u+
¬φ (the counterexamples of φ are confirmations of ¬φ).340

Proof. From the proof of Theorem 1, we know that the basic statements of

¬φ are the negations of the basic statements of φ. Therefore, given a basic

statement ψi ∈ content(φ),

• if K |= ψi (ψi is a confirmation of φ), then K 6|= ¬ψi, since K is consistent;

but then ¬ψi is a counterexample of ¬φ;345

• if K |= ¬ψi (ψi is a counterexample of φ), then K 6|= ψi, since K is

consistent; but then ¬ψi is a confirmation of ¬φ;

• if K 6|= ψi and K 6|= ¬ψi, then ψi is neither a confirmation nor a coun-

terexample for both φ and ¬φ.

350

Likewise, we could characterize the support, confirmations, and counterex-

amples of the conjunction and of the disjunction of OWL axioms. For instance,

it would be easy to prove that, if both DK(φ) and DK(ψ) are in CNF, then both
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DK(φ ∨ ψ) and DK(φ ∧ ψ) are in CNF too and, furthermore, uφ∨ψ = uφ · uψ,

uφ∧ψ = uφ+uψ, u+
φ∨ψ = u+

φ ·uψ+u+
ψ ·uφ−u

+
φ ·u

+
ψ , u−φ∨ψ = u−φ ·u

−
ψ , etc. However,355

results like these would be of limited interest here, since the conjunction and

the disjunction of OWL axioms are not OWL axioms.

4. A Critique of Probabilistic Candidate Axiom Scoring

Before going on to expound our proposal for candidate axiom testing, let us

examine what most researchers would consider an obvious first choice for that360

task, namely an approach based on statistical hypothesis testing, and explain

why we believe this is not a suitable choice.

Indeed, all previous work on automatic knowledge base enrichment we are

aware of is based on some form of probabilistic axiom scoring. Most work on

data mining, too, relies on model performance measures that are essentially365

probabilistic (of the frequentist type): consider, for example,

• the confidence measure used in association rule mining [24], which can be

interpreted as an estimate of the conditional probability that the conse-

quent of a rule is satisfied by a transaction, given that the antecedent is

satisfied;370

• the accuracy measure used in binary classification or prediction, defined

as the proportion of correct classifications (both true positives and true

negatives) over the total number of cases examined;

• precision and recall, used in information retrieval as well as in classification

and prediction.375

If we restrict our attention to the scoring heuristics used for the discovery of

OWL 2 axioms from RDF datasets, the approach proposed by Bühmann and

Lehmann [6] may be regarded essentially as scoring an axiom by an estimate

of the probability that one of its logical consequences is confirmed (or, alterna-

tively, falsified) by the facts stored in the RDF repository.380
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This relies on the assumption of a binomial distribution, which applies when

an experiment (here, checking if a logical consequence of a candidate axiom is

confirmed by the facts) is repeated a fixed number of times, each trial having two

possible outcomes (conventionally labeled success and failure; here, we might

call them confirmation, if the observed fact agrees with the candidate axiom,385

and counterexample, if the observed fact contadicts it), the probability of success

being the same for each observation, and the observations being statistically

independent.

Estimating the probability of confirmation of axiom φ just by p̂φ = u+
φ /uφ

would be too crude and would not take the cardinality of the content of φ in390

the RDF repository into account. The parameter estimation must be carried

out by performing a statistical inference.

One of the most basic analyses in statistical inference is to form a confi-

dence interval for a binomial parameter pφ (probability of confirmation of ax-

iom φ), given a binomial variate u+
φ for sample size uφ and a sample proportion395

p̂φ = u+
φ /uφ. Most introductory statistics textbooks use to this end the Wald

confidence interval, based on the asymptotic normality of p̂φ and estimating the

standard error. This (1− α) confidence interval for pφ would be

p̂φ ± zα/2
√
p̂φ(1− p̂φ)/uφ, (3)

where zc denotes the 1− c quantile of the standard normal distribution.

However, the central limit theorem applies poorly to this binomial distribu-400

tion with uφ < 30 or where p̂φ is close to 0 or 1. The normal approximation fails

totally when p̂φ = 0 or p̂φ = 1. That is why Bühmann and Lehmann [6] base

their probabilistic score on Agresti and Coull’s binomial proportion confidence

interval [25], an adjustment of the Wald confidence interval which goes: “Add

two successes and two failures and then use Formula 3.” Such adjustment is405

specific for constructing 95% confidence intervals.

In fact, Agresti and Coull’s suggestion is a simplification of the Wilson score
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interval p̂φ +
z2
α/2

2uφ
± zα/2

√√√√ p̂φ(1− p̂φ) +
z2
α/2

4uφ

uφ

 /

(
1 +

z2
α/2

2uφ

)
, (4)

which is an approximate binomial confidence interval obtained by inverting the

approximately normal test that uses the null, rather than the estimated, stan-410

dard error. When used to compute the 95% score interval, this confidence

interval has coverage probabilities close to the nominal confidence level and can

be recommended for use with nearly all sample sizes and parameter values.

A remark about Bühmann and Lehmann’s approach is in order. Bühmann

and Lehmann only look for confirmations of φ, and treat the absence of a con-415

firmation as a failure in the calculation of the confidence interval. This is like

making an implicit closed-world assumption. In reality, the probability of find-

ing a confirmation and the probability of finding a counterexample do not add

to one, because there is a non-zero probability of finding neither a confirmation

nor a counterexample for every potential falsifier of an axiom. Their scoring420

method should thus be corrected in view of the open-world assumption, for

example by using p̂∗ = u+
φ /(u

+
φ + u−φ ) as the sample proportion instead of p̂.

However, there is a more fundamental critique to the very idea of computing

the likelihood of axioms based on probabilities. In essence, this idea relies on

the assumption that it is possible to compute the probability that an axiom425

φ is true given some evidence e, for example e = “ψ ∈ content(φ) is in the

RDF repository”, or e = “ψ /∈ content(φ) is in the RDF repository”, or e =

“ψ ∈ content(φ) is not in the RDF repository”, etc., which, by Bayes’ formula,

may be written as

Pr(φ | e) =
Pr(e | φ) Pr(φ)

Pr(e | φ) Pr(φ) + Pr(e | ¬φ) Pr(¬φ)
(5)

However, in order to compute (or estimate) such probability, one should at least430

be able to estimate probabilities such as

• the probability that a fact confirming φ is added to the repository given

that φ holds;
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• the probability that a fact contradicting φ is added to the repository in

error, i.e., given that φ holds;435

• the probability that a fact confirming φ is added to the repository in error,

i.e., given that φ does not hold;

• the probability that a fact contradicting φ is added to the repository given

that φ does not hold.

Now, it is not hard to argue that the above probabilities may vary as a function440

of the concepts and properties involved. Let us take a subsumption axiom

C v D as an example. A fact confirming it is a triple “x a D”, with x ∈ CI ,

whereas a fact contradicting it is a triple “x a C ′”, with x ∈ CI and C ′uC = ⊥.

Assuming that C v D holds, we may suspect that a triple “x a D” is much

likely to be found in the repository if D is either very specific (and thus “closer”445

to x) or very general (like owl:Person), and less likely if it is somewhere in the

middle. This supposition is based on our expectations of what people are likely

to say about x: for instance, an average person, if asked “what is this?” when

pointing to a basset hound, is more likely to answer “a dog” or “an animal”

than, say, “a carnivore” or “a mammal”, which, on purely logical grounds,450

would be perfectly valid things to say about it [26], a phenomenon which John

Sowa [27] calls salience of an ontological or linguistic term. There is thus an

inherent difficulty with estimating the above probabilities, one which cannot

be solved otherwise than by performing a large number of experiments, whose

results, then, would be hard to generalize. By this argument, any axiom scoring455

method based on probability or statistics is doomed to be largely arbitrary and

subjective or, in other words, qualitative and therefore hardly more rigorous or

objective than our approach based on possibility theory.

5. A Possibilistic Candidate Axiom Scoring Framework

We present now an axiom scoring heuristics which captures the basic intu-460

ition behind the process of axiom discovery based on possibility theory: assign-
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ing to a candidate axiom a degree of possibility equal to 1 just means that this

axiom is possible, plausible, i.e., it is not contradicted by facts in the knowledge

base. This is much weaker than assigning a probability equal to 1, meaning that

the candidate axiom certainly is an axiom.465

5.1. Possibility Theory

Possibility theory [28] is a mathematical theory of epistemic uncertainty.

Given a finite universe of discourse Ω, whose elements ω ∈ Ω may be regarded

as events, values of a variable, possible worlds, or states of affairs, a possibility

distribution is a mapping π : Ω → [0, 1], which assigns to each ω a degree470

of possibility ranging from 0 (impossible, excluded) to 1 (completely possible,

normal). A possibility distribution π for which there exists a completely possible

state of affairs (∃ω ∈ Ω : π(ω) = 1) is said to be normalized.

There is a similarity between possibility distribution and probability density.

However, it must be stressed that π(ω) = 1 just means that ω is a plausible475

(normal) situation and therefore should not be excluded. A degree of possibility

can then be viewed as an upper bound of a degree of probability. See [29]

for a discussion about the relationships between fuzzy sets, possibility, and

probability degrees. A fundamental difference between possibility theory and

probability theory is that possibility theory is suitable to represent incomplete480

knowledge while probability theory is adapted to represent random and observed

phenomena.

A possibility distribution π induces a possibility measure and its dual neces-

sity measure, denoted by Π and N respectively. Both measures apply to a set

A ⊆ Ω (or to a formula φ, by way of the set of its models, A = {ω : ω |= φ}),485

and are usually defined as follows:

Π(A) = max
ω∈A

π(ω); (6)

N(A) = 1−Π(Ā) = min
ω∈Ā
{1− π(ω)}. (7)

In other words, the possibility measure of A corresponds to the greatest of the

possibilities associated to its elements; conversely, the necessity measure of A is
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equivalent to the impossibility of its complement Ā.

A generalisation of the above definition can be obtained by replacing the490

min and the max operators with any dual pair of triangular norm and co-norm.

Here are a few properties of possibility and necessity measures induced by a

normalized possibility distribution on a finite universe of discourse Ω:

1. Π(∅) = N(∅) = 0, Π(Ω) = N(Ω) = 1;

2. Π(A) = 1−N(Ā) (duality);495

3. N(A) ≤ Π(A);

4. N(A) > 0 implies Π(A) = 1, and Π(A) < 1 implies N(A) = 0.

In case of complete ignorance on A, Π(A) = Π(Ā) = 1. The above properties

are independent of a particular choice of a dual pair of triangular norm and

co-norm. Examples of additional properties that are satisfied for 〈T, S〉 a dual500

pair of triangular norm and co-norm are the following:

1. Π(A ∪B) = S(Π(A),Π(B)) ≥ max{Π(A),Π(B)};

2. N(A ∩B) = T (N(A), N(B)) ≤ min{N(A), N(B)}.

5.2. Possibility and Necessity of an Axiom

It was noted by Popper [30] that there is an inherent asymmetry between505

confirmations and counterexamples of a hypothesis φ. When the development

of φ is conjunctive, a single counterexample is enough to falsify it, even in

the face of any number of confirmations. Conversely, when the development

of φ is disjunctive, a single confirmation is enough to prove φ, no matter how

many counterexamples are known. Of course, in the presence of noisy data, a510

single counterexample is hardly a conclusive argument to reject a hypothesis

with a conjunctive development and, likewise, a single confirmation is hardly

a conclusive argument to accept a hypothesis with a disjunctive development.

This is why we turn to the gradual notions of possibility and necessity.

We shall now lay down a number of intuitive postulates the possibility and515

necessity of a hypothesis (in the form of an OWL 2 axiom) should satisfy and
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we shall then propose a mathematical definition of these measures that satis-

fies all the postulates. The basic principle for establishing the possibility of an

axiom φ should be that the absence of counterexamples to φ (if φ has a conjunc-

tive development) or the presence of confirmations to φ (if φ has a disjunctive520

development) in the RDF repository means that φ is completely possible, i.e.,

Π(φ) = 1. A hypothesis should be regarded as all the more necessary as it

is explicitly supported by facts and, if it has a conjunctive development, not

contradicted by any fact; and all the more possible as it is not contradicted by

facts. We recall that, by Theorem 2, a confirmation of φ is a counterexample of525

¬φ and a counterexample of φ is a confirmation of ¬φ.

We give here the properties that, based on common sense and the above con-

siderations, necessity and possibility of an axiom should satisfy. These proper-

ties may be taken as postulates which will serve as a basis for a formal definition

of Π and N :530

1. Π(φ) = 1 if u−φ = 0 or, if D(φ) is disjunctive, u+
φ > 0, i.e., an axiom

is fully possible if no counterexample for it is known; furthermore, if its

development is disjunctive, which is typical of axioms whose semantics

involves an existential quantification, even one confirmation is sufficient

to grant its full possibility;535

2. N(φ) = 0 if u+
φ = 0 or, if D(φ) is conjunctive, u−φ > 0, i.e., for an axiom to

have a non-zero degree of necessity, confirmations for it must be known;

however, if its development is conjunctive, which is typical of axioms whose

semantics involves a universal quantification, a single counterexample is

enough to offset any number of known confirmations;540

3. let uφ = uψ; then Π(φ) > Π(ψ) iff u−φ < u−ψ and, if D(φ) is disjunctive,

u+
ψ = 0, i.e., the possibility of an axiom is inversely proportional to the

number of known counterexamples, unless the axiom has a disjunctive de-

velopment and at least a confirmation, in which case its possibility is 1

and does not depend on the number of counterexamples; as the number545

of counterexamples increases, Π(φ) → 0 strictly monotonically, if the de-
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velopment of φ is conjunctive or, if it is disjunctive, if no confirmations

are found;

4. let uφ = uψ; then N(φ) > N(ψ) iff u+
φ > u+

ψ and, if D(φ) is conjunctive,

u−φ = 0, i.e., the necessity of an axiom increases as the number of confir-550

mations for it increases, unless its development is conjunctive and at least

a counterexample for it is known, in which case the necessity of the axiom

is zero and does not depend on the number of confirmations; N(φ) → 1

strictly monotonically as the number of confirmations increases and, if the

development of φ is conjunctive, no counterexamples are found;555

5. let uφ = uψ = uχ and u+
ψ = u+

φ = u+
χ = 0, and let u−ψ < u−φ < u−χ : then

Π(ψ)−Π(φ)

u−φ − u
−
ψ

>
Π(φ)−Π(χ)

u−χ − u−φ
,

i.e., the first counterexamples found to an axiom should determine a

sharper decrease of the degree to which we regard the axiom as possible

than any further counterexamples, because these latter will only confirm

our suspicions and, therefore, will provide less and less information;560

6. let uφ = uψ = uχ and u−ψ = u−φ = u−χ = 0, and let u+
ψ < u+

φ < u+
χ : then

N(φ)−N(ψ)

u+
φ − u

+
ψ

>
N(χ)−N(φ)

u+
χ − u+

φ

,

i.e., in the absence of counterexamples, the first confirmations found to

an axiom should determine a sharper increase of the degree to which we

regard the axiom as necessary than any further confirmations, because

these latter will only add up to our acceptance and, therefore, will provide565

less and less information.

We propose now a definition of Π and N which satisfies the above postulates.

Definition 6. Let φ be an OWL 2 axiom and let uφ be the support of φ, u+
φ the

number of its confirmations, and u−φ the number of its counterexamples. The

possibility and necessity of φ are defined as follows:570
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• if uφ > 0 and D(φ) is in conjunctive normal form,

Π(φ) = 1−

√√√√1−

(
uφ − u−φ
uφ

)2

; (8)

N(φ) =


√

1−
(
uφ−u+

φ

uφ

)2

, if u−φ = 0,

0, if u−φ > 0;

(9)

• if uφ > 0 and D(φ) is in disjunctive normal form,

Π(φ) =


1−

√
1−

(
uφ−u−φ
uφ

)2

, if u+
φ = 0,

1, if u+
φ > 0;

(10)

N(φ) =

√√√√1−

(
uφ − u+

φ

uφ

)2

; (11)

(12)

• if uφ = 0, Π(φ) = 1 and N(φ) = 0, i.e., we are in a state of maximum

ignorance, given that no evidence is available in the RDF dataset to assess

the credibility of φ.575

Theorem 3. The measures Π and N of Definition 6 satisfy all the postulates

of axiom possibility and necessity.

Proof. Postulates 1 and 2 hold trivially.

To prove that postulate 3 holds, we observe that, when the hypotheses of

the postulate hold, Π(·) can be expressed as a function of the counterexamples580

of an axiom,

Π(u−φ ) = 1−

√√√√1−

(
u− u−φ
u

)2

, (13)

where u = uφ = uψ, which is strictly decreasing; therefore, Π(φ) > Π(ψ) iff

φ < ψ. The proof for postulate 4 is analogous.

To prove that postulate 5 holds, we observe that, once again, when the

hypotheses of the postulate hold, Π(·) can be expressed as in Equation 13 above;585
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it will thus suffice to observe that Π(·) is strictly concave (since Π′′ > 0, see also

Figure 1a) and that u−φ is in the convex hull of u−φ and u−ψ .

The proof for postulate 6 is analogous.

Notice that this definition, derived from a quadratic equation, is by no means

the only possible one, but it is the simplest one, as the following result suggests.590

Theorem 4. Any definition of Π and N as linear functions of u+
φ and u−φ

cannot satisfy all the postulates of axiom possibility and necessity.

Proof. We show that a linear definition of Π and N would not satisfy Postu-

lates 5 and 6. A linear function f satisfies additivity (f(x + y) = f(x) + f(y))

and homogeneity of degree 1 (f(kx) = kf(x)). Let us assume Π(u+
φ , u

−
φ )595

and N(u+
φ , u

−
φ ) are linear. Then, given uφ = uψ = uχ = u, let us assume

u−ψ < u−φ < u−χ (as in Postulate 5) and, furthermore, u+
φ = u+

ψ = uχ = u+; then

Π(u+
ψ , u

−
ψ )−Π(u+

φ , u
−
φ )

u−φ − u
−
ψ

=
Π(u+ − u+, u−ψ − u

−
φ )

u−φ − u
−
ψ

=
Π(0, u−ψ − u

−
φ )

u−φ − u
−
ψ

and

Π(u+
φ , u

−
φ )−Π(u+

χ , u
−
χ )

u−χ − u−φ
=

Π(u+ − u+, u−φ − u−χ )

u−χ − u−φ
=

Π(0, u−φ − u−χ )

u−χ − u−φ
.

Now, if u−φ − u
−
ψ = u−χ − u−φ , we obtain

Π(0, u−ψ − u
−
φ )

u−φ − u
−
ψ

=
Π(0, u−φ − u−χ )

u−χ − u−φ
,

which violates Postulate 5. A similar reasoning may be applied to N to show600

that there exist conditions under which Postulate 6 is violated.

Figure 1 shows Π(φ) and N(φ) as a function of u−φ and u+
φ , respectively. The

two functions describe an arc of an ellipse between the minor and the major axes.

Besides satisfying the postulates of axiom possibility and necessity, Π and N

satisfy the general properties of possibility and necessity measures.605

Theorem 5. The measures Π and N of Definition 6 satisfy the duality property:

N(φ) = 1−Π(¬φ) and Π(φ) = 1−N(¬φ).
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Proof. The thesis holds mainly because if D(φ) is conjunctive, D(¬φ) is dis-

junctive and vice versa.

Let us assume D(φ) is in conjunctive normal form; Π(φ) is then given by610

Equation 8 and N(φ) by Equation 9; D(¬φ) is in disjunctive normal form; thus

Π(¬φ) is given by Equation 10 and N(¬φ) by Equation 11. From Theorems 1

and 2, we know that u¬φ = uφ, u+
φ = u−¬φ, and u−φ = u+

¬φ; we can thus write:

N(φ) =


√

1−
(
uφ−u+

φ

uφ

)2

, if u−φ = 0,

0, if u−φ > 0;

=


√

1−
(
u¬φ−u−¬φ
u¬φ

)2

, if u+
¬φ = 0,

0, if u+
¬φ > 0;

= 1−Π(¬φ),

and

Π(φ) = 1−

√√√√1−

(
uφ − u−φ
uφ

)2

= 1−

√√√√1−

(
u¬φ − u+

¬φ

u¬φ

)2

= 1−N(¬φ).

The same applies when D(φ) is in disjunctive normal form: just rename φ as615

¬ψ and ¬φ as ψ; now D(ψ) is in conjunctive normal form, for which we have

just proven the thesis.

As a matter of fact, we will seldom be interested in computing the necessity

and possibility degrees of the negation of OWL 2 axioms, for the simple reason

that, in most cases, the latter are not OWL 2 axioms themselves. For instance,620

while C v D is an axiom, ¬(C v D) ≡ C 6v D is not.
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Figure 1: A plot of Π(φ) as a function of u−
φ

(a) and of N(φ) as a function of u+
φ

(b) when

uφ = 100.

5.3. Axiom Scoring

We combine the possibility and necessity of an axiom to define a single handy

acceptance/rejection index (ARI) as follows:5

ARI(φ) = N(φ)−N(¬φ) = N(φ) + Π(φ)− 1 ∈ [−1, 1]. (14)

A negative ARI(φ) suggests rejection of φ (Π(φ) < 1), whilst a positive ARI(φ)625

suggests its acceptance (N(φ) > 0), with a strength proportional to its absolute

value. A value close to zero reflects ignorance about the status of φ. Figure 2

shows ARI(φ) as a function of u−φ and u+
φ in the two cases of a φ whose devel-

opment is a conjunction or a disjunction, respectively, of basic statements.

Although this ARI is useful for the purpose of analyzing the results of our630

experiments and to visualize the distribution of the tested axiom with respect

to a single axis, one should always bear in mind that an axiom is scored by the

proposed heuristics in terms of two bipolar figures of merit, whose meanings,

5The suggestion that this type of representation may simplify the treatment of possibilistic

uncertainty in some contexts goes back to [31].
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Figure 2: Two plots of ARI(φ) as a function of u−
φ

and u+
φ

: (a) when φ has a conjunctive

development and (b) when φ has a disjunctive development.

though related, are very different:

• Π(φ) expresses the degree to which φ may be considered “normal”, in the635

sense of “not exceptional, not surprising”, or not contradicted by actual

observations;

• N(φ), on the other hand, expresses the degree to which φ is certain,

granted by positive evidence and corroborated by actual observations.

6. Application to SubClassOf Axiom Testing640

To illustrate how the theory developed in the previous sections can be applied

in practice, we summarize here an application to SubClassOf axiom testing,

developed in [15, 16]. Scoring these axioms with their ARI requires to compute

the development of Class entities and ObjectComplementOf expressions.

We define a mapping Q(E, ?x) from OWL 2 class expressions to SPARQL645

graph patterns, where E is an OWL 2 class expression, and ?x is a variable,

such that the query SELECT DISTINCT ?x WHERE { Q(E, ?x) } returns all the
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individuals which are instances of E. We denote this set by [Q(E, ?x)]:

[Q(E, ?x)] = {v : (?x, v) ∈ ResultSet(SELECT DISTINCT ?x WHERE{Q(E, ?x)}}.

(15)

For a Class entity A,

Q(A, ?x) = {?x a A}, (16)

where A is a valid IRI.650

For an ObjectComplementOf expression, things are slightly more compli-

cated, since RDF does not support negation. The model-theoretic semantics of

OWL class expressions of the form ObjectComplementOf(C) (¬C in DL syn-

tax), where C denotes a class, is ∆I \ CI . However, to learn axioms from an

RDF dataset, the open-world hypothesis must be made: the absence of sup-655

porting evidence does not necessarily contradict an axiom, moreover an axiom

might hold even in the face of a few counterexamples. Therefore, as proposed

in [15], we define Q(¬C, ?x) as follows, to approximate an open-world semantics:

Q(¬C, ?x) = { ?x a ?dc .

FILTER NOT EXISTS { ?z a ?dc . Q(C, ?z) } },

(17)

where ?z is a variable that does not occur anywhere else in the query.

For a Class entity A, this becomes660

Q(¬A, ?x) = { ?x a ?dc . FILTER NOT EXISTS {?z a ?dc . ?z a A}}.

(18)

A computational definition of uCvD is the following SPARQL query:

SELECT (count(DISTINCT ?x) AS ?u)

WHERE {Q(C, ?x)}.
(19)

In order to compute the score of SubClassOf axioms, ARI(C v D), we must

provide a computational definition of u+
CvD and u−CvD, respectively:

SELECT (count(DISTINCT ?x) AS ?nConfirm)

WHERE { Q(C, ?x) Q(D, ?x) }
(20)
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and

SELECT (count(DISTINCT ?x) AS ?nCounter)

WHERE { Q(C, ?x) Q(¬D, ?x) }.
(21)

The results of our first experiments described below showed that an axiom665

which takes too long to test will likely end up having a very negative score. We

defined two heuristics based on this idea.

• We time-cap the SPARQL queries to compute the ARI of a candidate

axiom and decide whether to accept or reject it, since above a computation

time threshold, the axiom being tested is likely to get a negative ARI and670

be rejected.

• We construct candidate axioms of the form C v D, by considering the

subclasses C in increasing order of the number of classes D sharing at

least one instance with C. This enables us to maximize the number of

tested and accepted axioms in a given time period, since it appears that675

the time it takes to test C v D increases with that number and the lower

the time, the higher the ARI.

We evaluated the proposed scoring heuristics by performing tests of SubClassOf

axioms using DBpedia 3.9 in English as the reference RDF fact repository. In

particular, on April 27, 2014, we downloaded the DBpedia dumps of English680

version 3.9, generated in late March/early April 2013, along with the DBpedia

ontology, version 3.9. This local dump of DBpedia, consisting of 812,546,748

RDF triples, with materialized inferences, has been bulk-loaded into Jena TDB

and a prototype for performing axiom tests using the proposed method has been

coded in Java, using Jena ARQ and TDB to access the RDF repository.685

We systematically generated and tested SubClassOf axioms involving atomic

classes only according to the following protocol: for each of the 442 classes C

referred to in the RDF repository, we construct all axioms of the form C v D

such that C and D share at least one instance. Classes D are obtained with the

following query:690

SELECT DISTINCT ?D WHERE{Q(C, ?x) . ?x a ?D}.
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We experimentally fixed to 20 min the threshold to time-cap the SPARQL

queries to compute u+
CvD and u−CvD in order to decide whether to accept or

reject a candidate axiom C v D.

An in-depth quantitative and qualitative analysis of our experimental results

is reported in [15] and [16]. Here we summarize the main findings.695

We tested 5050 axioms using the time-capping heuristics. Of these, 632 have

been also tested without time capping, which is much more expensive in terms

of computing time by a factor of 142; the outcome of the test was different

on just 25 of them, which represents an error rate of 3.96%, a very reasonable

price to pay, in terms of accuracy degradation, in exchange for faster testing.700

It should be observed that, by construction, these errors are all in the same

direction, i.e., some axioms which should be accepted are in fact rejected: our

heuristics are conservative, since they do not generate false positives.

Validating the results of our scoring heuristics in absolute term would require

having a knowledge engineer tag as true or false every axiom tested and compare705

her judgment with the test score. Some insights gained from trying to do so

are given in [16], but besides being an extremely tedious and error-prone task,

manual evaluation is not completely reliable.

In order to obtain a more objective evaluation, we took all SubClassOf

axioms in the DBpedia ontology and added to them all SubClassOf axioms710

that can be inferred from them, thus obtaining a “gold standard” of axioms

that should be all considered as valid. This, at least, looks like a reasonable

assumption, despite the fact that in [15] a number of potential issues were

pointed out with the subsumption axioms of the DBpedia ontology. Of the

5050 tested axioms, 1915 occur in the gold standard; of these, 327 get an ARI715

below 1/3, which would yield an error rate of about 17%. In fact, in most cases,

the ARI of these axioms is around zero, which means that our heuristic gives

a suspended judgment. Only 34 axioms have an ARI below −1/3. If we took

these latter as the real errors, the error rate would fall to just 1.78%.

Finally, a comparison of the proposed scoring heuristic with a probabilistic720

score, summarized in Figure 3, highlights some remarkable differences in behav-
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Figure 3: A comparison of the acceptance/rejection index and the probability-based score

used in [6] on axioms tested with time capping. The vertical red line shows the acceptance

threshold ARI(φ) > 1/3; the horizontal blue line the acceptance threshold of 0.7 for the

probabilistic score.

ior. In the figure, each axiom is plotted according to its ARI (X-axis) and its

probabilistic score computed as in [6] (Y-axis). First of all it is clear that both

scores tend to agree in the extremes, with some notable exceptions, but behave

quite differently in all other cases. With very few exceptions, all the axioms in725

the bottom right rectangle are false negatives for the probabilistic score; most

axioms in the upper left rectangle are false positives. In addition, the color of

the axioms is a function of the time it took to compute their ARI (according to

a terrain color scale)

On the 380 axioms tested in [15] without time capping, the probabilistic score730

with the 0.7 threshold suggested by [6] gave 13 false negatives (7 more than the

ARI) and 4 false positives (one more than the ARI). It was observed that most

false axiom candidates got an ARI close to −1, whilst their probabilistic scores

are almost evenly distributed between 0 and 0.5, which led us to argue that,
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besides being more accurate, ARI gives clearer indications than the probabilistic735

score.

The increased accuracy and clarity of the possibilistic score come to a some-

how expensive price: we do not have precise figures, but the computational over-

head introduced by considering the possibilistic approach instead of a simpler

probabilistic score is orders of magnitude higher. The source of such dramatic740

increase in cost is the execution of the SPARQL query in Equation 17 to approx-

imate the semantics of open-world negation. While it is true that such a query

is an integral part of our proposal, one could argue that any probabilistic model

wishing to take the open-world assumption into account would have to incur

similar costs; furthermore, it is possible that SPARQL query execution engines745

can be optimized to make the execution of queries of that type significantly

faster.

7. Conclusion

We have developed the theory of a possibilistic framework for OWL 2 axiom

testing as an alternative to statistics-based heuristics.750

The practical application of such a framework has been demonstrated by

studying the case of SubClassOf axiom testing against the DBpedia database.

A qualitative analysis of the results confirms the interest of using possibilistic

axiom scoring heuristics like the one we propose not only to learn axioms from

the LOD, but also to drive the validation and debugging of ontologies and RDF755

datasets.

Future research directions include the systematic computational definition

of the content of each kind of OWL 2 axioms, taking into account the princi-

ple of selective confirmation. Based on it, we will continue our experiments by

testing the possibilistic framework on domain specific datasets and extending it760

to test other types of OWL axioms, beginning with SubObjectPropertyOf and

SubDataPropertyOf axioms and SubClassOf axioms involving

ObjectSomeValuesFrom class expressions.
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idating ontologies with OOPS!, in: A. ten Teije, J. Völker, S. Handschuh,

H. Stuckenschmidt, M. d’Aquin, A. Nikolov, N. Aussenac-Gilles, N. Her-

nandez (Eds.), Knowledge Engineering and Knowledge Management - 18th815

International Conference, EKAW 2012, Galway City, Ireland, October 8-

12, 2012. Proceedings, Vol. 7603 of Lecture Notes in Computer Science,

Springer, 2012, pp. 267–281. doi:10.1007/978-3-642-33876-2_24.
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[31] J. Garćıa del Real, R. G. Molina, J. Ŕıos Carrión, J. Cardeñosa Lera, A

simplified technique for using necessity-possibility measures, International

Journal of Approximate Reasoning 5 (4) (1991) 399–413. doi:10.1016/890

0888-613X(91)90019-I.

40

http://dx.doi.org/10.1109/FUZZY.1993.327367
http://dx.doi.org/10.1109/FUZZY.1993.327367
http://dx.doi.org/10.1109/FUZZY.1993.327367
http://dx.doi.org/10.1016/0888-613X(91)90019-I
http://dx.doi.org/10.1016/0888-613X(91)90019-I
http://dx.doi.org/10.1016/0888-613X(91)90019-I

	Introduction
	Related Work
	Principles of OWL 2 Axiom Testing
	OWL 2 Direct Model-Theoretic Semantics and Development of OWL 2 Axioms
	Content, Support, Confirmation, and Counterexample of an OWL 2 Axiom

	A Critique of Probabilistic Candidate Axiom Scoring
	A Possibilistic Candidate Axiom Scoring Framework
	Possibility Theory
	Possibility and Necessity of an Axiom
	Axiom Scoring

	Application to SubClassOf Axiom Testing
	Conclusion

