Helping Users Sort Faster with Adaptive Machine Learning Recommendations

Abstract : Sorting and clustering large numbers of documents can be an overwhelming task: manual solutions tend to be slow, while machine learning systems often present results that don’t align well with users’ intents. We created and evaluated a system for helping users sort large numbers of documents into clusters. iCluster has the capability to recommend new items for existing clusters and appropriate clusters for items. The recommendations are based on a learning model that adapts over time – as the user adds more items to a cluster, the system’s model improves and the recommendations become more relevant. Thirty-two subjects used iCluster to sort hundreds of data items both with and without recommendations; we found that recommendations allow users to sort items more rapidly. A pool of 161 raters then assessed the quality of the resulting clusters, finding that clusters generated with recommendations were of statistically indistinguishable quality. Both the manual and assisted methods were substantially better than a fully automatic method.
Type de document :
Communication dans un congrès
Pedro Campos; Nicholas Graham; Joaquim Jorge; Nuno Nunes; Philippe Palanque; Marco Winckler. 13th International Conference on Human-Computer Interaction (INTERACT), Sep 2011, Lisbon, Portugal. Springer, Lecture Notes in Computer Science, LNCS-6948 (Part III), pp.187-203, 2011, Human-Computer Interaction – INTERACT 2011. 〈10.1007/978-3-642-23765-2_13〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01591827
Contributeur : Hal Ifip <>
Soumis le : vendredi 22 septembre 2017 - 09:24:40
Dernière modification le : vendredi 22 septembre 2017 - 09:27:15
Document(s) archivé(s) le : samedi 23 décembre 2017 - 12:58:49

Fichier

978-3-642-23765-2_13_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Steven Drucker, Danyel Fisher, Sumit Basu. Helping Users Sort Faster with Adaptive Machine Learning Recommendations. Pedro Campos; Nicholas Graham; Joaquim Jorge; Nuno Nunes; Philippe Palanque; Marco Winckler. 13th International Conference on Human-Computer Interaction (INTERACT), Sep 2011, Lisbon, Portugal. Springer, Lecture Notes in Computer Science, LNCS-6948 (Part III), pp.187-203, 2011, Human-Computer Interaction – INTERACT 2011. 〈10.1007/978-3-642-23765-2_13〉. 〈hal-01591827〉

Partager

Métriques

Consultations de la notice

60

Téléchargements de fichiers

6