
HAL Id: hal-01592368
https://inria.hal.science/hal-01592368

Submitted on 13 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond computational reproducibility, let us aim for
reusability

Gaël Varoquaux

To cite this version:
Gaël Varoquaux. Beyond computational reproducibility, let us aim for reusability. IEEE CIS Newslet-
ter on Cognitive and Developmental Systems, 2016, What is Computational Reproducibility?, 13 (2).
�hal-01592368�

https://inria.hal.science/hal-01592368
https://hal.archives-ouvertes.fr


Beyond computational reproducibility, let us
aim for reusability

Gaël Varoquaux∗

Science is based on the ability to falsify claims. Thus, reproduction or replication of

published results is central to the progress of science. Researchers failing to reproduce a result

will raise questions: Are these investigators not skilled enough? Did they misunderstand the

original scientific endeavor? Or is the scientific claim unfounded? For this reason, the quality

of the methods description in a research paper is crucial. Beyond papers, computers –central

to science in our digital era– bring the hope of automating reproduction. Indeed, computers

excel at doing the same thing several times.

However, there are many challenges to computational reproducibility. To begin with,

computers enable reproducibility only if all steps of a scientific study are automated. In this

sense, interactive environments –productivity-boosters for many– are detrimental unless they

enable easy recording and replay of the actions performed. Similarly, as a computational-

science study progresses, it is crucial to keep track of changes to the corresponding data

and scripts. With a software-engineering perspective, version control is the solution. It

should be in the curriculum of today’s scientists. But it does not suffice. Automating a

computational study is difficult. This is because it comes with a large maintenance burden:

operations change rapidly, straining limited resources –processing power and storage. Saving

intermediate results helps. As does devising light experiments that are easier to automate.

These are crucial to the progress of science, as laboratory classes or thought experiments in

physics. A software engineer would relate them to unit tests, elementary operations checked

repeatedly to ensure the quality of a program.

Once a study is automated and published, ensuring reproducibility should be easy; just

a matter of archiving the computer used, preferably in a thermally-regulated nuclear-proof

vault. Maybe, dear reader, the scientist in you frowns at this solution. Indeed, studies

should also be reproduced by new investigators. Hardware and software variations then get

in the way. Portability, ie achieving identical results across platforms, is well-known by the

software industry as being a difficult problem. It faces great hurdles due to incompatibilities

in compilers, libraries, or operating systems. Beyond these issues, portability also faces

numerical and statistical stability issues in scientific computing. Hiding instability problems

with heavy restrictions on the environment is like rearranging deck chairs on the Titanic.

While enough freezing will recover reproducibility, unstable operations cast doubt upon

scientific conclusions they might lead to. Computational reproducibility is more than a

software engineering challenge; it must build upon solid numerical and statistical methods.

Reproducibility is not enough. It is only a means to an end, scientific progress. Setting

in stone a numerical pipeline that produces a figure is of little use to scientific thinking if it

is a black box. Researchers need to understand the corresponding set of operations to relate

them to modeling assumptions. New scientific discoveries will arise from varying those

assumptions, or applying the methodology to new questions or new data. Future studies

build upon past studies, standing on the shoulders of giants, as Isaac Newton famously wrote.

∗Inria Saclay Ile-de-France, Parietal team, Palaiseau, France

1 of 2

Originaly published: newsletter of the IEEE Technical Committee on Cognitive and Developmental Systems, Vol. 13 (2016)



In this process, published results need to be modified and adapted, not only reproduced.

Enabling reuse is an important goal.

To a software architect, a reusable computational experiment may sound like a library.

Software libraries are not only a good analogy, but also an essential tool. The demanding

process of designing a good library involves isolating elementary steps, ensuring their quality,

and documenting them. It is akin to the editorial work needed to assemble a textbook from

the research literature.

Science should value libraries made of code, and not only bookshelves. But they are

expensive to develop, and even more so to maintain. Where to set the cursor? It is clear

that in physics not every experimental setup can be stored for later reuse. Costs are less

tangible with computational science; but they should not be underestimated. In addition,

the race to publish creates legions of studies. As an example, Google scholar lists 28 000

publications concerning compressive sensing in 2015. Arguably many are incremental and

research could do with less publications. Yet the very nature of research is to explore new

ideas, not all of which are to stay.

Computational research will best create scientific progress by identifying and consolidat-

ing the major results. It is a difficult but important task. These studies should be made

reusable. Limited resources imply that the remainder will suffer from “code rot”, with results

becoming harder and harder to reproduce as their software environment becomes obsolete.

Libraries, curated and maintained, are the building blocks that can enable progress.

2 of 2

Originaly published: newsletter of the IEEE Technical Committee on Cognitive and Developmental Systems, Vol. 13 (2016)


