
HAL Id: hal-01593012
https://inria.hal.science/hal-01593012

Submitted on 25 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Accelerating the Requirement Space Exploration
through Coarse-Grained Parallel Execution

Zhongwei Lin, Yiping Yao

To cite this version:
Zhongwei Lin, Yiping Yao. Accelerating the Requirement Space Exploration through Coarse-Grained
Parallel Execution. 8th Network and Parallel Computing (NPC), Oct 2011, Changsha„ China. pp.59-
70, �10.1007/978-3-642-24403-2_5�. �hal-01593012�

https://inria.hal.science/hal-01593012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Accelerating the Requirement Space Exploration
through Coarse-Grained Parallel Execution

Lin Zhongwei and Yao Yiping

School of Computer, National University of Defense Tecnology
{zwlin,ypyao}@nudt.edu.cn

Abstract. The design and analysis of complex systems need to deter-
mine suitable configurations for meeting requirement constraints. The
Monotonic Indices Space (MIS) method is a useful approach for mono-
tonic requirement space exploration. However, the method is highly time
and memory-Consuming. Aiming to the problem of low efficiency of se-
quential MIS method, this paper introduces a coarse-grained parallel
execution mechanism to the MIS method for accelerating the process of
requirement space exploration. The task pool model is used to receive
and deploy hyperboxes for work balancing. To validate our approach, the
speedup is estimated by a mathematical analysis and then an experiment
is conducted in a PC cluster environment. The results show that high
speedup and efficiency is achieved through our approach.

Keywords: requirement space exploration, coarse-Grained parallel execution,
task pool model

1 Introduction

A lot of practical problems, such as getting the system capability requirement
indices [1, 2, 3, and 4], getting the effective light intensity space [5], and getting
the effective radar coverage [5], can be transformed into the problem of require-
ment space exploration. These problems have a common feature: the requirement
measure of these systems is related with several factors (indices), and their com-
bination forms a huge parameter space in which we should explore to make the
measurement satisfying requirement constraints. For example, the response time
(requirement measure) of a web server is affected by several factors, including
the CPU’s frequency, memory, network, operating system, and current load, so
we are anxious about what configurations of these factors which can satisfy the
demand on the response time.

The problem of requirement space exploration can be defined formally as
follows.

Definition 1. Requirement space: suppose Rn is n-Dimensional Euclidean s-
pace, P is non-Empty subset of Rn, then P⊂Rn and P 6= ∅, there exists a
function f defined in P , f : P → R, the requirement space S satisfies: S ⊂ P
and ∀p ∈ S, f(p) ≥ α, where α is the threshold.

2 Lin Zhongwei and Yao Yiping

Due to the complexity and uncertainty of some practical problems, it is very
difficult or even impossible to get the analytic form of the function f , thus we
need to determine the require space in other ways, rather than analytic way.

A few classic methods have been used to solve the requirement space de-
termining problem. The system effectiveness analysis method [1] compares the
system capabilities and the mission requirements in a common attribute space,
while attaining the system mission requirements locus is difficult. ADC model [6]
is a very strict mathematical method, but the calculation will increase exponen-
tially with the increase of system state dimensions. In multi-Attribute analysis
method [7], the design of the weights of each attribute should be very skillful,
but very difficult. The Monotonic Indices Space (MIS) method [4] introduced by
Hu Jianwen takes the typical complex system characteristics into account, and
turns out an efficacious way.

Coarse-Grained Multicomputer (CGM) model is a well-known parallel method
for multi-Replication simulations. Frank Dehne presented the method [8], de-
scribed and proofed the time cost of the method, and employed it to solve Haus-
dorff Voronoi Diagrams problem [9]. CGM has been widely used, and turned out
effective. Thierry Garcia and David Sem’ employed CGM to solve the Longest
Repeated Suffix Ending problem [10], Albert Chan introduced CGM to the next
element search problem [11]. According to their results, CGM is highly effective.

The paper is organized as follows. In section 2, we introduce the MIS method
in detail. The coarse-Grained approach is described in section 3. We analyze the
speedup of our approach formally, and then present some experimental results
in section 4 and 5. Future work is arranged in section 6.

2 Monotonic Indices Space (MIS) Method

The main idea of the MIS method is divide-and-conquer strategy: the whole
parameter space is partitioned into a lot of hierarchical sub-spaces which are
isomorphic with their parental space. Any sub-space is called a hyperbox which
is an important concept of MIS. A hyperbox can be imaged as a hypercube, and
it is a description of parameter space.

2.1 MIS Method

The MIS method is mainly applied in monotonic vector space. In monotonic
vector space P , f should be n-Dimensional monotonic function, that means
∀p(x1, x2, · · · , u, · · · , xn), q(x1, x2, · · · , v, · · · , xn) ∈ P , if u ≥ v, then f(p) ≥
f(q) or f(p) ≤ f(q). For example: P = [0, 2]× [0, 2] ⊂ R2, f(x, y) = x2 + y2, the
requirement space S = {p : p ∈ P, f(p) ≤ 4}. In this case, the initial hyperbox is
P , and the partition point is p∗(

√
2,
√

2) which is on the diagonal of the current
hyperbox, and then it produces 4 sub-hyperboxes, as illustrated by Fig. 1.

The main operation of the MIS method is resolving hyperbox, and the re-
solving includes two procedures: search and partition:

A Coarse-Grained Parallel Approach for Requirement Space Exploration 3

x22

y

2

2

*
p

2 2
4x y

2
p

1
p

Fig. 1. an example of the MIS method. The root hyperbox is determined by point p1
and p2, and the partition point p∗ (f(p∗) = α) is on the diagonal. The partition point
cuts the current hyperbox into 4 sub-hyperboxes, one of them (determined by p1 and
p∗) belongs to requirement space, one (determined by p∗ and p2) of them doesn’t, and
the other two should be inspected again.

1. Search: search the partition point along the diagonal of the hyperbox. As
shown in Fig. 1, the current hyperbox is determined by point p1 and p2, let
a0 = p1, b0 = p2, c0 = (p1 + p2)/2, if f(ci) ≤ α, then ai+1 = ci, bi+1 =
bi, ci+1 = (ai+1 + bi+1)/2, if f(ci ≥ α), then ai+1 = ai, bi+1 = ci, ci+1 =
(ai+1 + bi+1)/2, repeat this operation. Since there must be at least one
partition point on the diagonal[4], thus the point ci can be considered as
the partition point when ‖ai − bi‖ ≤ θl0, where θ is a parameter called cut
rate, and l0 stands for the length of the diagonal of the root hyperbox.

2. Partition: each component of the partition point will divide the same di-
mension of the current hyperbox into two segments, and the combination of
all the segments will produce 2n sub-hyperboxes, see Fig. 1, and the unde-
termined 2n − 2 sub-hyperboxes should be inspected again. In the partition
procedure, sub-hyperboxes that are too little to affect the requirement space
(or affect a little bit) will be abandoned directly. Suppose V is the volume
of some sub-hyperbox, we can abandon this subhyperbox when V ≤ γV0,
where γ is a parameter called stop rate, and V0 stands for the volume of the
root hyperbox.

During the above two procedures, we can get a hyperbox tree, see Fig. 2:
After the above two procedures , we can get a requirement-Satisfied hyperbox

si (i stands for the identifier of the hyperbox on the hyperbox tree) determined

4 Lin Zhongwei and Yao Yiping

Fig. 2. hyperbox tree. Resolving the current hyperbox will produce 2n−2 undetermined
sub-hyperboxes, and the current hyperbox is the parent of these sub-hyperboxes, then
all the hyperboxes form a tree structure.

by p1 and p∗, see Fig. 1, obviously si ⊂ S, then the requirement space can be
determined as follows:

S =
∞
∪
i=0
si (1)

2.2 Time and Memory Costs of the MIS Method

The MIS method is highly recursive, thus it is very suitable to implement it by
recursive program. However the depth of the recursion is the key for precision.
We can’t get the precise requirement space with low depth. While deep depth will
bring in a very large amount of calculation and memory need (as shown in Fig.
2, the hyperbox scale is O

(
(2n − 2)k

)
, and the memory need is O

(
n(2n − 2)k

)
,

where n is the dimension of the requirement space, and k stands for the maximal
depth of recursion.) which exceed a single computer’s capability in a certain
period of time. Additionally, extra cost brought by recursion to operating system
makes the execution ineffective.

Most practical problems are related with high-Dimensional model, they need
much more calculation and memory, compared to low-Dimensional model. In
some cases, the calculation and memory need are so large that it makes a single
computer exhausted or even halted. Thus we come to the edge that we must
process the calculation and satisfy the memory need in other way.

Above all, our task becomes accelerating the execution of the MIS method,
promising a certain depth of recursion.

3 Coarse-Grained Approach

Reviewing the MIS method, we can find that the algorithm has immanent paral-
lelism: the resolving of hyperboxes is all independent. Any hyperbox determined

A Coarse-Grained Parallel Approach for Requirement Space Exploration 5

by the initial parameters can be resolved without communicating with other
hyperboxes, thus the hyperboxes can be resolved concurrently.

A Coarse-Grained Multicomputer model: p processors solving a problem on
n data items, each processor has O(n/p) � O(1) local memory, and all the
processors are connected via some arbitrary interconnection network [8], can
be represented as CGM(n, p). In the MIS method, each hyperbox is one data
item, thus the key is to assign the hyperboxes to the processors, and keep load-
Balanced for each processor.

In most cases, the requirement space is not evenly distributed in the parame-
ter space, thus it is not suitable to partition the items (hyperboxes) according to
their location in the parameter space. While it is very hard or impossible to pre-
dict the requirement space, thus we almost can’t partition the items and assign
them to the processors before the execution, and we have to do this work dur-
ing resolving dynamically. New hyperboxes will come out during resolving their
paternal hyperbox, and the hyperboxes can be stored into a container (usually
called pool), and then a hyperbox will be taken out and assigned to each idle
processer if there exists idle processers.

3.1 Parallelized Resolving in C/S Mode

There are two core operation of the MIS method: resolving hyperbox and main-
taining the hyperbox tree. Generally speaking, resolving hyperbox is a kind of
compute-intensive procedure which needs a large amount of calculation, while
maintaining the hyperbox tree is a kind of communicate-intensive procedure
which needs to communicate with others frequently. Therefore, the two opera-
tion should be implemented separately and execute on separate computers.

Basing on the analysis before, the computer which executes resolving hyper-
box is called calculative node, and it is in charge of resolving hyperbox. The
computer which executes maintaining hyperbox tree is called control node, and
it is in charge of receiving and deploying hyperbox. Therefore the calculative
nodes and the control node form a client-Server structure.

Resolving Hyperbox on Client The MIS method will generate a lot of hy-
perboxes, and the faster the generated hyperboxes resolved the faster the exper-
iment completes, thus we always assign a few calculative nodes in the system.
A procedure called clientProcedure is running on each calculative node, and it
will process the fundamental tasks of calculative node: resolving the hyperbox
and interacting with the control node. The action of calculative node is driven
by the commands from the control node, and the command can be packed into
a message, such as a socket message, thus the messages can be classified and
identified according to the command type. The main body of clientProcedure is
to operate according to the message received from the control node.

c l i en tProc edur e :
I n i t i a l i z e ;
Connect to the Server ;

6 Lin Zhongwei and Yao Yiping

Li s t en message from Server ;
switch (message)

case i n fo rmat ion o f experiment :
save the imformation ;

case hyperBox :
c a l l r e so lveProcedure ;

case c o l l e c t R e s u l t s :
c o l l e c t the l o c a l r e s u l t s and send them to

s e r v e r ;

A procedure called resolveProcedure is in charge of searching the partition
point and generating sub-hyperboxes and it will be called after the calculative
node receiving a message telling a hyperbox from the control node. Two n-
Dimensional points can determine a hyperbox uniquely, see Fig. 1, and they also
determine the diagonal on which the partition point locates. Thus we can search
the partition point along the diagonal of the hyperbox. The model is used to
calculate the requirement measure, and it is always implemented as a program
whose input is a single point. So the search can be divided into two iterative
sub-courses: calculating the input point, and calling the model program. Once
the partition point has been determined, 2n−2 sub-hyperboxes will be produced
and filtered. Any hyperbox can be determined by two n-Dimensional points, and
the two points can be packed into a message, and then the message will be sent
to the control node, telling a hyperbox. Sub-hyperbox is filtered according to
its volume, and the one that is too little to affect the requirement space will be
abandon directly. After the resolving completed, a message will be sent to the
control node to tell that this calculative node has become idle.

Maintain the Hyperbox Tree on Server Maintaining the hyperbox tree is
the main task of the control node, and it includes two fundamental operations:
receiving the subhyperboxes generated by the calculative nodes and deploying
hyperbox to them. A procedure called serverProcedure is running on the control
node, and it will process the above two operations.

s e rverProcedure :
I n i t i a l i z e ;
the user choose an experiment c o n f i g u r a t i o n f i l e ;
deploy the nece s sa ry f i l e s to the connected c l i e n t s ;
s t a r t the experiment ;
L i s t en message from the connected c l i e n t s ;
switch (message)

case f i n i s h : //means c l i e n t comple tes r e s o l v i n g
put the c l i e n t from which the message came

in to i d l e c l i e n t s queue ;
i f (the hyperbox queue i s empty && a l l the

c l i e n t s are i d l e)
c a l l r e su l tProce s sProcedure ;

A Coarse-Grained Parallel Approach for Requirement Space Exploration 7

else
c a l l deployProcedure ;

case hyperBox :
r e c e i v e the hyperbox and put i t i n to the

hyperbox queue
case r e s u l t F i l e :

r e c e i v e the r e s u l t f i l e

3.2 Task Pool Work Balancing

Task pool is one of implementations of work stealing [12], and it can be used
for load balancing. In this paper, the hyperboxes generated by the calculative
nodes will be put into a hyperbox queue which is assigned on the control node
and plays the task pool. Once a message telling a hyperbox has been received
by the control node, the serverProcedure will unpack the message to get the
two n-Dimensional points, and then construct a hyperbox according to the two
points. The constructed hyperbox will be put into the hyperbox queue.

The control node maintains a list to record the information of the calculative
nodes. In the beginning, the whole parameter space will be constructed as the
first hyperbox, and then the hyperbox will be put into the hyperbox queue.
After starting the execution , the front hyperbox of the hyperbox queue will
be taken out and assigned to the front idle calculative node of the calculative
nodes list. To use the calculative nodes fully, we hope that the nodes are keeping
resolving hyperboxes if there are unresolved hyperboxes in the hyperbox queue.
Once the control node finds an idle calculative node, a hyperbox will be taken
out and assigned to the idle node. To decrease the overhead of preparing the
message of assigning a task to the idle calculative node, the server always gets
the front hyperbox of the hyperbox queue out(time consuming O(1)), and then
packs it into the assigning message. Therefore, the calculative nodes are keeping
resolving hyperbox controlled by the calculative node. The terminal condition
of the whole execution is that the hyperbox queue on the control node is empty
and all the calculative nodes are idle.

4 Speedup Analysis

For the sequential MIS method, the total execution time is the summary of the
time of resolving each sub-hyperbox, and suppose Ts is the period of time which
the sequential MIS method costs, then

Ts =

N∑
i=1

ti ≥
N∑
i=1

tmin (2)

where N is the total number of hyperboxes in the experiment, tiis the period of
time which resolving ith hyperbox costs, and tmin = min {ti}. Tp is the period

8 Lin Zhongwei and Yao Yiping

of time which the parallel algorithm costs, then

Tp =

dN/me∑
j=1

tj ≤
dN/me∑
j=1

tmax (3)

where m is the number of calculative nodes, and tmax = max {tj}, then the
speedup is the ratio

speedup =
Ts
Tp
≥ tmin
tmax

· N

dN/me
≈ tmin
tmax

·m (N � m) (4)

In the sequential MIS method, the period of resolving a hyperbox is mainly
composed of two parts: time of model calls and the extra cost of the system
(including the OS and the program itself). While in the parallel algorithm, the
period is mainly composed of five parts: overhead of the server preparing mes-
sage, the delay of transferring message from the server to the clients (determined
by the bandwidth of the network), overhead of the client receiving message, the
overhead of the client preparing message (above four are the communication
cost), and time of model calls. The communication cost can be represented as
following

tcom = os + L+ oc + (2n − 2)oc (5)

then the period can be represented as

tj = tcom + tcall (6)

Suppose the period of single execution of the model f is const T, then the
period of model calls tcall is proportional to the number of times of the model
calls. Reviewing the search procedure of the MIS method , the repeat will have
the length of the distance between ai and bi to halve again and again , then the
terminal condition of binary search can be described as following

lk/2
r

l0
= θ (7)

where k is the depth of the current hyperbox on the hyperbox tree, lk is the
length of the diagonal of the current hyperbox, r is the number of times of the
model calls, l0 is the length of the diagonal of the root hyperbox, and θ is the
cut rate. Statistically, lk = 2−kl0 is correct, then

r = − log2 θ − k (8)

In the partition procedure, a sub-hyperbox will be abandoned directly, if its
volume is too little to affect the requirement space of the problem. Statistically,
Vk = 2−nkV0 (n is the dimension of the parameter space)is correct, then

2−nkV0
V0

= γ (9)

A Coarse-Grained Parallel Approach for Requirement Space Exploration 9

k =
log2 γ

n
(10)

formula (10) is also the maximal depth of recursion. Let

h1(θ, γ, n) =
tmin
tmax

=
(− log2 θ − k0)T

(− log2 θ − kmax)T + max {tcom}
k0=0
=

T log2 θ

(log2 θ + log2 γ
n)T −max {tcom}

(11)

For a certain experiment, the dimension of the requirement space is station-
ary, thus the variable n in formula (11) can be considered as const, and then
h1(θ, γ, n) becomes

h2(θ, γ) =
log2 θ

(log2 θ + log2 γ
n)− max {tcom}

T

(12)

speedup ≥ h2(θ, γ) ·m (13)

5 Experimental Results

To test our approach, we take the system mentioned by Hu Jianwen in [4] as an
example. It is an air defense information system consisting of three entities: long-
Distance warning radar, command and control center, and enemy’s aircraft. The
scenario is following: one of enemy’s aircraft is flying direct to target T which is
protected by us, and once the long-Distance warning system discovers the air-
craft, it sends the information of the aircraft to the command and control center,
and then the center sends firing order to the air defense missiles after processing
the information. In this case, the requirement measure is destroying the enemy’s
aircraft more than 0.7 success probability, and the indices are abstracted into
long-Distance warning radar detecting index, system processing delay index, and
tracking index of the tracking radar.

The model f is implemented by a program, and the sequential algorithm
is implemented as a recursive program. The parallel algorithm is implemented
and running in a group of PCs (PC of same type) connected by 100M Ethernet
with each other. In the group, one PC is assigned as control node to execute
the serverProcedure, and several other PCs are assigned as calculative node to
execute the clientProcedure. Test the sequential algorithm and the parallel al-
gorithm separately, and then add up the period of their execution. We played
two schemes: increase calculative nodes, keeping the parameters (θ and γ) un-
changed, and change one of the parameters, keeping the other parameter and
calculative nodes unchanged, the results are shown in Table 1.

In this case, the period of single execution of the model call is tens of seconds.
For the PCs are connected by 100M Ethernet, then the latency of transferring
message is very tiny, and the overhead of the server preparing message is also
very tiny because of the dequeue operation. Compared to tcall, tcom is too tiny
to affect h2(θ, γ) much, then we can ignore it to estimate the speedup.

10 Lin Zhongwei and Yao Yiping

Table 1. results table. Ts: time of sequential MIS, Tp: time of parallel execution, m:
number of calculative nodes, θ: cut rate, γ: stop rate, speedup: Ts/Tp, PE: Practical
Efficiency (speedup/m), TE: Theoretical Efficiency (formula (12)).

Ts(s) Tp(s) m θ γ speedup PE TE

5888 3552 2 0.05 0.05 1.658 0.829 0.750
5888 2518 3 0.05 0.05 2.338 0.779 0.750
5888 1913 4 0.05 0.05 3.078 0.769 0.750
5888 1546 5 0.05 0.05 3.809 0.762 0.750
5888 1456 6 0.05 0.05 4.044 0.674 0.750
5888 1258 7 0.05 0.05 4.680 0.669 0.750
5888 1133 8 0.05 0.05 5.197 0.650 0.750
1789 1121 2 0.05 0.10 1.600 0.798 0.796
1789 601 4 0.05 0.10 2.977 0.744 0.796
7158 4567 2 0.0375 0.05 1.567 0.784 0.767
7158 2375 4 0.0375 0.05 3.014 0.753 0.767

0

2

4

6

2 3 4 5 6 7 8

sp
e
e
d
u
p

number of calculative nodes

speedup

Fig. 3. speedup. Keep the parameters(θ and γ) unchanged, and increase calculative
node step by step, add up the period of sequential execution and the period of parallel
execution, and then calculate speedup.

We can attain pretty speedup through our parallel algorithm, and the speedup
increases almost linearly with the number of calculative node, see Fig. 3. But
there is a trend that the speedup with more nodes (6, 7, 8 nodes) increases
more slowly than that with fewer nodes (2, 3, 4, 5 nodes). The main reason for
this trend: during the execution, we found that the calculative nodes were not
well-Balanced, in spite of using task pool model. We found that: at some time,
several nodes are busy, while the others are idle (the hyperbox queue is empty
at that time), but after the busy nodes completing resolving, they will make
the idle nodes busy (because the resolving will produce sub-hyperboxes, and the
hyperbox queue will not still empty after resolving completed), that means some

A Coarse-Grained Parallel Approach for Requirement Space Exploration 11

calculative node were wasted. Therefore, the more calculative nodes we have the
more nodes will be idle, and the more speedup will decrease. The cause of the
waste is that the deploying of hyperboxes is blindly, thus the realistic work of
the calculative nodes are not exactly symmetrical, and the faster ones have to
wait for the slower ones.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

e
ff
ic
ie
n
cy

number of calculative nodes

Practical

Efficiency

Theoretical

Efficiency

Fig. 4. efficiencies. Keep the parameters(θ and γ) unchanged, and increase calculative
nodes step by step, add up the period of sequential execution and the period of parallel
execution, and then calculate parallel efficiency.

In our test, the practical efficiency is very close to the theoretical efficiency
which is determined by formula (12), and it indicates that formula (12) is useful
to estimate the parallel efficiency in this algorithm, see Fig. 4. As same as the
speedup, the practical efficiency will decrease with the increasing of number of
calculative node. The main reason for the decrease includes two points: 1) the
calculative nodes are not well-balanced; 2) extra work which is brought in by
parallelization goes up when the number of calculative node goes up.

6 Conclusions and Future Work

Basing on the analysis of the MIS method, this paper digs the immanent paral-
lelism of the algorithm, and then introduces a coarse-grained parallel execution
mechanism to the MIS method for accelerating the process of requirement s-
pace exploration. We implement the algorithm and then test it on PC clusters.
The results indicate that the parallel algorithm is much more effective than the
sequential algorithm.

In spite of the high parallel effectiveness of our parallel algorithm, we find the
communication delay can decrease more, and the memory pressure for the control
node can decrease more. In our parallel algorithm, the hyperboxes generated by
the calculative nodes should be sent to the control node, and then sent to some
calculative node back. In this course, one hyperbox is double-sent, and the delay

12 Lin Zhongwei and Yao Yiping

between the time of generating and resolving will increase logically. In fact, the
source and destination of hyperboxes are both calculative nodes, thus a hyperbox
can be sent from one calculative node to some other calculative nodes directly
or stay on itself controlled by the control node.

In our test, we find that the calculative nodes are not well load-Balanced.
In fact, some feature (such as volume, bound, and so on) of hyperbox can be
used to estimate the calculation which resolving the hyperbox needs, and the
estimated information can be used to improve the deploy policy to adjust the
load of each calculative node for load balancing.

References

1. V.Bouthonnier and A.H.Levis: System Effectiveness Analysis of C3 Systems.IEEE
Trans On Systems,Man,and Cybernetics. Vol(14),No.1,Jan ,48-54(1984).

2. A.H.Levis et al.:Effectiveness Analysis of Automotive Sys-
tem.Cambridge,MA:Lab.Inf.Decision Syst.,MIT,1984.LIDS-P-1383

3. B.M.Christine: Computer Graphics for System Effectiveness Analysis.M.S.thesis,
Dept.Elect.Eng.Comput.Sci, MIT, Cambridge, MA, 1986

4. Jian wen Hu, Xiaofeng Hu, Weiming Zhang et al.: Monotonic Indices Space Method
and Its Application in the Capability Indices effectiveness analysis of a Notional
Anti-Stealth Information System. IEEE Transaction on system, man, cybernetics
Part A, vol(39),2 ,404-413(2009).

5. Hu Jian wen: Analysis and design of search for weapon system indices. National
Defense Industry Press, Beijing (2009). (�ê©: ÉìC�NXUå�I�&¢5©
Û��O.I�ó�Ñ��,�®(2009))

6. Prediction Measurement. New York: WSEIAC, Jan , vol 1,2,3 ,Final Report of Task
Group 2(1965).

7. C.L. Hwang et al.: Multiple Attribute Decision Making. Berlin, Germany: Springer-
Verlag(1981).

8. FRANK DEHNE, ANDREAS FABRI, ANDREW RAU-CHAPLIN: SCALABLE
PARALLEL COMPUTATIONAL GEOMETRY FOR COARSE GRAINED MUL-
TICOMPUTERS. International Journal of Computational Geometry & Applica-
tions Vol. 6, No. 3,379-400(1996)

9. Frank Dehne, Anil Maheshwari and Ryan Taylor: A Coarse Grained Parallel Al-
gorithm for Hausdorff Voronoi Diagrams. Proceedings of the 2006 International
Conference on Parallel Processing (ICPP’06)

10. Thierry Garcia and David Sem’: A Coarse-Grained Multicomputer algorithm for
the Longest Repeated Suffix Ending at Each Point in a Word. 11-th Euromicro
Conference on Parallel Distributed and Network based Processing (PDP’03)

11. Albert Chan, Frank Dehne, Andrew Rau-Chaplin: Coarse Grained Parallel Geo-
metric Search. Journal of Parallel and Distributed Computing 57, 224-235(1999)

12. James Dinan, D. Brian Larkins,Sriram Krishnamoorthy, Jarek Nieplocha: Scalable
Work Stealing. Proceeding SC ’09 Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis,ACM New York, NY, US-
A(2009)

